Nodal count via topological data analysis

Iosif Polterovich

joint work with

Lev Buhovsky, Jordan Payette, Leonid Polterovich, Egor Shelukhin and Vukašin Stojisavljević

Université de Montréal

ICMS, Edinburgh September 2022

Laplace-Beltrami operator

Laplace-Beltrami operator

Consider the Laplace–Beltrami operator on a compact connected n-dimensional Riemannian manifold M.

Laplace–Beltrami operator

Consider the Laplace–Beltrami operator on a compact connected *n*-dimensional Riemannian manifold M. If $\partial M \neq 0$, we assume Dirichlet conditions.

Laplace-Beltrami operator

Consider the Laplace–Beltrami operator on a compact connected *n*-dimensional Riemannian manifold M. If $\partial M \neq 0$, we assume Dirichlet conditions.

The spectrum is discrete, and the eigenvalues form a sequence

 $0 \leq \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_j \leq \cdots \nearrow +\infty$

Laplace-Beltrami operator

Consider the Laplace–Beltrami operator on a compact connected *n*-dimensional Riemannian manifold M. If $\partial M \neq 0$, we assume Dirichlet conditions.

The spectrum is discrete, and the eigenvalues form a sequence

 $0 \leq \lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_j \leq \cdots \nearrow +\infty$

The corresponding eigenfunctions f_j ,

 $\Delta f_j = \lambda_j f_j,$

form an orthonormal basis in $L^2(M)$.

Let \mathbb{Z}_f denote the *nodal* (i.e. zero) set of a function f.

Let \mathbb{Z}_f denote the *nodal* (i.e. zero) set of a function f. A *nodal domain* of f is a connected component of the set $M \setminus \mathbb{Z}_f$.

Let \mathbb{Z}_f denote the *nodal* (i.e. zero) set of a function f. A *nodal domain* of f is a connected component of the set $M \setminus \mathbb{Z}_f$. Nodal patterns tend to get increasingly complex as $\lambda_j \to \infty$.

Let \mathbb{Z}_f denote the *nodal* (i.e. zero) set of a function f. A *nodal domain* of f is a connected component of the set $M \setminus \mathbb{Z}_f$. Nodal patterns tend to get increasingly complex as $\lambda_j \to \infty$.

Nodal pattern of an eigenfunction on \mathbb{S}^2 corresponding to an eigenvalue $\lambda = 17 \cdot 18$. (*Picture credit: M. Levitin.*)

Example

Let $M = (0, \pi)$. The *j*-th Dirichlet eigenfunction $f_j(x) = \sin jx$ has exactly *j* nodal domains.

Example

Let $M = (0, \pi)$. The *j*-th Dirichlet eigenfunction $f_j(x) = \sin jx$ has exactly *j* nodal domains.

In higher dimensions there is no such statement, but there is a fundamental upper bound.

Example

Let $M = (0, \pi)$. The *j*-th Dirichlet eigenfunction $f_j(x) = \sin jx$ has exactly *j* nodal domains.

In higher dimensions there is no such statement, but there is a fundamental upper bound.

Theorem (R. Courant, 1923)

A Laplace eigenfunction f_j has at most j nodal domains.

Denote by $m_0(f)$ the number of nodal domains of f.

Denote by $m_0(f)$ the number of nodal domains of f. Together with Weyl's law, Courant's theorem implies

$$m_0(f) = O\left(\lambda_j^{n/2}\right).$$

Denote by $m_0(f)$ the number of nodal domains of f. Together with Weyl's law, Courant's theorem implies

$$m_0(f) = O\left(\lambda_j^{n/2}\right).$$

Denote by $m_0(f)$ the number of nodal domains of f. Together with Weyl's law, Courant's theorem implies

$$m_0(f) = O\left(\lambda_j^{n/2}
ight).$$

Questions: Can one extend this bound to

Inear combinations of eigenfunctions (Courant-Herrmann conjecture)

Denote by $m_0(f)$ the number of nodal domains of f. Together with Weyl's law, Courant's theorem implies

$$m_0(f) = O\left(\lambda_j^{n/2}
ight).$$

- Inear combinations of eigenfunctions (Courant-Herrmann conjecture)
- 2 products of eigenfunctions (Arnold, 2005)

Denote by $m_0(f)$ the number of nodal domains of f. Together with Weyl's law, Courant's theorem implies

$$m_0(f) = O\left(\lambda_j^{n/2}\right).$$

- Inear combinations of eigenfunctions (Courant-Herrmann conjecture)
- 2 products of eigenfunctions (Arnold, 2005)
- 3 higher order operators (e.g. clamped plate problem)

Denote by $m_0(f)$ the number of nodal domains of f. Together with Weyl's law, Courant's theorem implies

$$m_0(f) = O\left(\lambda_j^{n/2}\right).$$

- Inear combinations of eigenfunctions (Courant-Herrmann conjecture)
- 2 products of eigenfunctions (Arnold, 2005)
- (a) higher order operators (e.g. clamped plate problem)
- (a) higher topological invariants: Betti numbers m_r instead of m_0 (Arnold, 2005)

Negative results

There exists a Riemannian metric g on a 2-torus and a sequence f_j of eigenfunctions of the Laplacian Δ_g , such that the functions $f_j + 1$ have infinitely many nodal domains.

There exists a Riemannian metric g on a 2-torus and a sequence f_j of eigenfunctions of the Laplacian Δ_g , such that the functions $f_j + 1$ have infinitely many nodal domains.

Other related examples by Bérard–Charron–Helffer (2021).

There exists a Riemannian metric g on a 2-torus and a sequence f_j of eigenfunctions of the Laplacian Δ_g , such that the functions $f_j + 1$ have infinitely many nodal domains.

Other related examples by Bérard–Charron–Helffer (2021).

Using this result one can show

```
Proposition (BP^3S^2, 2022)
```

In general, the answer to all the questions above is no.

There exists a Riemannian metric g on a 2-torus and a sequence f_j of eigenfunctions of the Laplacian Δ_g , such that the functions $f_j + 1$ have infinitely many nodal domains.

Other related examples by Bérard–Charron–Helffer (2021).

Using this result one can show

```
Proposition (BP^3S^2, 2022)
```

In general, the answer to all the questions above is no.

Idea: What if we ignore *small* oscillations?

Definition (L. Polterovich – Sodin, 2007) A nodal domain Ω of a function f is called δ -deep for some $\delta > 0$ if $\max_{\Omega} |f| > \delta$.

Definition (L. Polterovich – Sodin, 2007) A nodal domain Ω of a function f is called δ -deep for some $\delta > 0$ if $\max_{\Omega} |f| > \delta$.

Let $m_0(f, \delta)$ be the number of δ -deep nodal domains of a function f.

Definition (L. Polterovich – Sodin, 2007) A nodal domain Ω of a function f is called δ -deep for some $\delta > 0$ if $\max_{\Omega} |f| > \delta$.

Let $m_0(f, \delta)$ be the number of δ -deep nodal domains of a function f.

Let $W^{k,p}(M)$ be the Sobolev space of integer order k based on $L^p(M)$.

Definition (L. Polterovich – Sodin, 2007) A nodal domain Ω of a function f is called δ -deep for some $\delta > 0$ if $\max_{\Omega} |f| > \delta$.

Let $m_0(f, \delta)$ be the number of δ -deep nodal domains of a function f.

Let $W^{k,p}(M)$ be the Sobolev space of integer order k based on $L^{p}(M)$.

Our first main result shows that $m_0(f, \delta)$ is controlled by the appropriate Sobolev norms of f.

Main result: coarse nodal count

Main result: coarse nodal count

Theorem (BP³S², 2022) Let $f \in W^{k,p}(M)$ for $k > \frac{n}{p}$, where $n = \dim M$. Then for any $\delta > 0$,

 $m_0(f,\delta) \le C\delta^{-\frac{n}{k}} \|f\|_{W^{k,p}}^{\frac{n}{k}},$

where C depends on M, k, p but not on δ .

Theorem ($BP^{3}S^{2}$, 2022)

Let $f \in W^{k,p}(M)$ for $k > \frac{n}{p}$, where $n = \dim M$. Then for any $\delta > 0$,

 $m_0(f,\delta) \le C\delta^{-\frac{n}{k}} \|f\|_{W^{k,p}}^{\frac{n}{k}},$

where C depends on M, k, p but not on δ .

By Sobolev embedding theorem, the condition $k > \frac{n}{p}$ implies that f is continuous.
Theorem ($BP^{3}S^{2}$, 2022)

Let $f \in W^{k,p}(M)$ for $k > \frac{n}{p}$, where $n = \dim M$. Then for any $\delta > 0$,

 $m_0(f,\delta) \le C\delta^{-\frac{n}{k}} \|f\|_{W^{k,p}}^{\frac{n}{k}},$

where C depends on M, k, p but not on δ .

By Sobolev embedding theorem, the condition $k > \frac{n}{p}$ implies that f is continuous.

Note that the estimate blows up as $\delta \to 0$, and one can check that the constant *C* blows up as $k \to \infty$.

Let \mathcal{F}_{λ} denote the subspace spanned by all eigenfunctions with eigenvalues $\leq \lambda$.

Let \mathcal{F}_{λ} denote the subspace spanned by all eigenfunctions with eigenvalues $\leq \lambda$. Given L^2 -normalised $f \in \mathcal{F}_{\lambda}$, one can use elliptic regularity to control $||f||_{W^{k,2}}$ in terms of λ .

Let \mathcal{F}_{λ} denote the subspace spanned by all eigenfunctions with eigenvalues $\leq \lambda$. Given L^2 -normalised $f \in \mathcal{F}_{\lambda}$, one can use elliptic regularity to control $||f||_{W^{k,2}}$ in terms of λ .

Theorem

Let $k > \frac{n}{2}$ be an integer. Then for any $\delta > 0$ and any $f \in \mathcal{F}_{\lambda}$ with $||f||_{L^2} = 1$, $m_0(f, \delta) \le C\delta^{-\frac{n}{k}} (\lambda + 1)^{\frac{n}{2}}$.

Let \mathcal{F}_{λ} denote the subspace spanned by all eigenfunctions with eigenvalues $\leq \lambda$. Given L^2 -normalised $f \in \mathcal{F}_{\lambda}$, one can use elliptic regularity to control $||f||_{W^{k,2}}$ in terms of λ .

Theorem

Let $k > \frac{n}{2}$ be an integer. Then for any $\delta > 0$ and any $f \in \mathcal{F}_{\lambda}$ with $\|f\|_{L^2} = 1$, $m_0(f, \delta) \le C\delta^{-\frac{n}{k}} (\lambda + 1)^{\frac{n}{2}}$.

Remark

All other extensions mentioned earlier can be also obtained in the *coarse* setting.

Bézout theorem: the number of common zeros of polynomials is bounded by the product of their degrees.

Bézout theorem: the number of common zeros of polynomials is bounded by the product of their degrees.

Donnelly–Fefferman philosophy: for large λ , Laplace eigenfunctions behave roughly as polynomials of degree $\sqrt{\lambda}$.

Bézout theorem: the number of common zeros of polynomials is bounded by the product of their degrees.

Donnelly–Fefferman philosophy: for large λ , Laplace eigenfunctions behave roughly as polynomials of degree $\sqrt{\lambda}$.

Question (V. Arnold, L. Polterovich, 2000s): find an analogue of Bézout's theorem for eigenfunctions.

Bézout theorem: the number of common zeros of polynomials is bounded by the product of their degrees.

Donnelly–Fefferman philosophy: for large λ , Laplace eigenfunctions behave roughly as polynomials of degree $\sqrt{\lambda}$.

Question (V. Arnold, L. Polterovich, 2000s): find an analogue of Bézout's theorem for eigenfunctions.

Gichev (2009), Akhiezer–Kazarnovskii (2017): Bézout theorem for spherical harmonics and eigenfunctions on certain homogeneous manifolds.

Bézout theorem: the number of common zeros of polynomials is bounded by the product of their degrees.

Donnelly–Fefferman philosophy: for large λ , Laplace eigenfunctions behave roughly as polynomials of degree $\sqrt{\lambda}$.

Question (V. Arnold, L. Polterovich, 2000s): find an analogue of Bézout's theorem for eigenfunctions.

Gichev (2009), Akhiezer–Kazarnovskii (2017): Bézout theorem for spherical harmonics and eigenfunctions on certain homogeneous manifolds.

In order to use our approach, we need to introduce the notion of coarse zero count.

Coarse Bézout theorem

Theorem

Let $f = (f_1, \ldots, f_n)$, where $f_j \in \mathcal{F}_{\lambda}$, $j = 1, \ldots, n$, and let k > n/2 be an integer. Then for any $\delta > 0$,

$$z_0(f,\delta) \le C\delta^{-\frac{n}{k}} \left(\lambda+1\right)^{\frac{n}{2}} + 1,$$

Theorem

Let $f = (f_1, \ldots, f_n)$, where $f_j \in \mathcal{F}_{\lambda}$, $j = 1, \ldots, n$, and let k > n/2 be an integer. Then for any $\delta > 0$,

$$z_0(f,\delta) \le C\delta^{-\frac{n}{k}} \left(\lambda+1\right)^{\frac{n}{2}} + 1,$$

Here $|f| = \sqrt{f_1^2 + \dots + f_n^2}$.

Theorem

Let $f = (f_1, \ldots, f_n)$, where $f_j \in \mathcal{F}_{\lambda}$, $j = 1, \ldots, n$, and let k > n/2 be an integer. Then for any $\delta > 0$,

$$z_0(f,\delta) \le C\delta^{-\frac{n}{k}} \left(\lambda+1\right)^{\frac{n}{2}} + 1,$$

Here $|f| = \sqrt{f_1^2 + \dots + f_n^2}$.

Our bound agrees with a sharp bound for spherical harmonics corresponding to the same eigenvalue λ .

Theorem

Let $f = (f_1, \ldots, f_n)$, where $f_j \in \mathcal{F}_{\lambda}$, $j = 1, \ldots, n$, and let k > n/2 be an integer. Then for any $\delta > 0$,

$$z_0(f,\delta) \le C\delta^{-\frac{n}{k}} \left(\lambda+1\right)^{\frac{n}{2}} + 1,$$

Here $|f| = \sqrt{f_1^2 + \dots + f_n^2}$.

Our bound agrees with a sharp bound for spherical harmonics corresponding to the same eigenvalue λ .

The proof of the main theorem relies on techniques of topological data analysis.

The proof of the main theorem relies on techniques of topological data analysis. Barcode is a multiset $\mathcal{B} = \{I_j\}_{j \in \mathcal{J}}$ of intervals $I_j \subset \mathbb{R}$.

The proof of the main theorem relies on techniques of topological data analysis. Barcode is a multiset $\mathcal{B} = \{I_j\}_{j \in \mathcal{J}}$ of intervals $I_j \subset \mathbb{R}$.

 \mathcal{B} and \mathcal{B}' are ε -matched if after erasing some bars of length $< 2\varepsilon$ the rest are in bijection up to an error of ε on the endpoints.

The proof of the main theorem relies on techniques of topological data analysis. Barcode is a multiset $\mathcal{B} = \{I_j\}_{j \in \mathcal{J}}$ of intervals $I_j \subset \mathbb{R}$.

 \mathcal{B} and \mathcal{B}' are ε -matched if after erasing some bars of length $< 2\varepsilon$ the rest are in bijection up to an error of ε on the endpoints.

Bottleneck distance is given by

 $d_{\textit{bottle}}(\mathcal{B}, \mathcal{B}') = \inf\{\varepsilon \mid \mathcal{B}, \mathcal{B}' \text{ are } \varepsilon \text{-matched}\}.$

The proof of the main theorem relies on techniques of topological data analysis. Barcode is a multiset $\mathcal{B} = \{I_j\}_{j \in \mathcal{J}}$ of intervals $I_j \subset \mathbb{R}$.

 \mathcal{B} and \mathcal{B}' are ε -matched if after erasing some bars of length $< 2\varepsilon$ the rest are in bijection up to an error of ε on the endpoints.

Bottleneck distance is given by

$$d_{bottle}(\mathcal{B}, \mathcal{B}') = \inf\{\varepsilon \mid \mathcal{B}, \mathcal{B}' \text{ are } \varepsilon \text{-matched}\}.$$

Examples:

$$d_{bottle}(\{(0,2],[0,1]\},\{(0,2.1)\})=rac{1}{2}$$

 $d_{\textit{bottle}}(\{(0,2],[0,1]\},\{(0,+\infty)\})=+\infty$

Example: barcode of a height function

(Picture credit: V. Stojisavljević.)

Example: barcode of a height function

Barcode $\mathcal{B}(f)$. (Picture credit: M. Levitin.)

I. Polterovich (Université de Montréal)

Nodal count via topological data analysis

• Endpoints of bars in $\mathcal{B}(f)$ are critical values of f.

- Endpoints of bars in $\mathcal{B}(f)$ are critical values of f.
- Number of endpoints is equal to the number of critical points.

- Endpoints of bars in $\mathcal{B}(f)$ are critical values of f.
- Number of endpoints is equal to the number of critical points. Each critical point either "gives birth" to a homology class or "kills" a homology class.

- Endpoints of bars in $\mathcal{B}(f)$ are critical values of f.
- Number of endpoints is equal to the number of critical points. Each critical point either "gives birth" to a homology class or "kills" a homology class.
- Infinite bars are of the form $(a, +\infty)$, where *a* is a critical value.

- Endpoints of bars in $\mathcal{B}(f)$ are critical values of f.
- Number of endpoints is equal to the number of critical points. Each critical point either "gives birth" to a homology class or "kills" a homology class.
- Infinite bars are of the form $(a, +\infty)$, where *a* is a critical value. They represent classes that are born but never die, i.e. genuine homology classes.

- Endpoints of bars in $\mathcal{B}(f)$ are critical values of f.
- Number of endpoints is equal to the number of critical points. Each critical point either "gives birth" to a homology class or "kills" a homology class.
- Infinite bars are of the form $(a, +\infty)$, where *a* is a critical value. They represent classes that are born but never die, i.e. genuine homology classes. This means that

number of infinite bars
$$= \beta_M := \sum_{r=0}^{\dim M} b_r(M),$$

where β_M is the total Betti number of M.

Stability

Theorem (Stability theorem, Cohen-Steiner–Edelsbrunner–Harer, 2007) Let f, g be two Morse functions on M. Then

 $d_{bottle}(\mathcal{B}(f), \mathcal{B}(g)) \leq d_{C^0}(f, g).$

Theorem (Stability theorem, Cohen-Steiner–Edelsbrunner–Harer, 2007) Let f, g be two Morse functions on M. Then

 $d_{bottle}(\mathcal{B}(f), \mathcal{B}(g)) \leq d_{C^0}(f, g).$

Stability theorem is a key feature of the theory.
Define the barcode counting function $N_{\delta}(f)$ equal to the number of all finite bars of length $> \delta$.

Define the barcode counting function $N_{\delta}(f)$ equal to the number of all finite bars of length $> \delta$.

By stability theorem and density of Morse functions, one can extend this definition to any continuous function.

Define the barcode counting function $N_{\delta}(f)$ equal to the number of all finite bars of length $> \delta$.

By stability theorem and density of Morse functions, one can extend this definition to any continuous function.

What we need: an estimate on $N_{\delta}(|f|)$.

Define the barcode counting function $N_{\delta}(f)$ equal to the number of all finite bars of length $> \delta$.

By stability theorem and density of Morse functions, one can extend this definition to any continuous function.

What we need: an estimate on $N_{\delta}(|f|)$.

Indeed, 0 is the minimal value of |f|, and its maximal value in a δ -deep nodal domain is $\geq \delta$.

Define the barcode counting function $N_{\delta}(f)$ equal to the number of all finite bars of length $> \delta$.

By stability theorem and density of Morse functions, one can extend this definition to any continuous function.

What we need: an estimate on $N_{\delta}(|f|)$.

Indeed, 0 is the minimal value of |f|, and its maximal value in a δ -deep nodal domain is $\geq \delta$. Hence

 $m_0(f,\delta) \leq N_\delta(|f|).$

Main theorem: coarse bar count

Main theorem: coarse bar count

Theorem

Let $f \in W^{k,p}(M)$ for $k > \frac{n}{p}$, where $n = \dim M$. Then for any $\delta > 0$, $N_{\delta}(|f|) \le C\delta^{-\frac{n}{k}} ||f||_{W^{k,p}}^{\frac{n}{k}} + \beta_M$,

where C depends on M, k, p but not on δ , and β_M is the total Betti number of M.

• Milnor's bound on the number of critical points of polynomials.

- Milnor's bound on the number of critical points of polynomials.
- Polynomial approximation and Morrey–Sobolev theorem.

- Milnor's bound on the number of critical points of polynomials.
- Polynomial approximation and Morrey–Sobolev theorem.

Theorem (Morrey–Sobolev)

Let $Q \subset \mathbb{R}^n$ be a cube and let $\mathcal{P}_k(Q) \subset C^0(Q)$ denote the subspace of polynomials of degree $\leq k$. Then

 $d_{C^0}(f, \mathcal{P}_{k-1}(Q)) \le C_{n,k,p} (\operatorname{Vol}(Q))^{\frac{k}{n} - \frac{1}{p}} \|f\|_{W^{k,p}(Q)}.$

- Milnor's bound on the number of critical points of polynomials.
- Polynomial approximation and Morrey–Sobolev theorem.

Theorem (Morrey–Sobolev)

Let $Q \subset \mathbb{R}^n$ be a cube and let $\mathcal{P}_k(Q) \subset C^0(Q)$ denote the subspace of polynomials of degree $\leq k$. Then

 $d_{C^0}(f, \mathcal{P}_{k-1}(Q)) \le C_{n,k,p} (\operatorname{Vol}(Q))^{\frac{k}{n} - \frac{1}{p}} \|f\|_{W^{k,p}(Q)}.$

• Multiscale dyadic partition into small cubes until functions are well aproximated by polynomials.

- Milnor's bound on the number of critical points of polynomials.
- Polynomial approximation and Morrey–Sobolev theorem.

Theorem (Morrey–Sobolev)

Let $Q \subset \mathbb{R}^n$ be a cube and let $\mathcal{P}_k(Q) \subset C^0(Q)$ denote the subspace of polynomials of degree $\leq k$. Then

 $d_{C^0}\left(f, \mathcal{P}_{k-1}(Q)\right) \le C_{n,k,p}\left(\operatorname{Vol}(Q)\right)^{\frac{k}{n} - \frac{1}{p}} \|f\|_{W^{k,p}(Q)}.$

• Multiscale dyadic partition into small cubes until functions are well aproximated by polynomials.

• Nice behavior of N_{δ} under unions and stability theorem.

Thank you for your attention!