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Laplace–Beltrami operator

Consider the Laplace–Beltrami operator on a compact connected n-dimensional
Riemannian manifold M. If ∂M ̸= 0, we assume Dirichlet conditions.

The spectrum is discrete, and the eigenvalues form a sequence

0 ≤ λ1 ⩽ λ2 ⩽ · · · ⩽ λj ≤ · · · ↗ +∞

The corresponding eigenfunctions fj ,

∆fj = λjfj,

form an orthonormal basis in L2(M).
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Nodal patterns

Let Zf denote the nodal (i.e. zero) set of a function f .
A nodal domain of f is a connected component of the set M \ Zf .
Nodal patterns tend to get increasingly complex as λj → ∞.

Nodal pattern of an eigenfunction on S2 corresponding to an eigenvalue λ = 17 · 18.
(Picture credit: M. Levitin.)
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Courant’s theorem

Example
Let M = (0, π). The j-th Dirichlet eigenfunction fj(x) = sin jx has exactly j
nodal domains.

In higher dimensions there is no such statement, but there is a fundamental upper
bound.

Theorem (R. Courant, 1923)
A Laplace eigenfunction fj has at most j nodal domains.
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Nodal count

Denote by m0(f ) the number of nodal domains of f . Together with Weyl’s law,
Courant’s theorem implies

m0(f ) = O
(
λ

n/2
j

)
.

Questions: Can one extend this bound to

1 linear combinations of eigenfunctions (Courant–Herrmann conjecture)

2 products of eigenfunctions (Arnold, 2005)

3 higher order operators (e.g. clamped plate problem)

4 higher topological invariants: Betti numbers mr instead of m0 (Arnold, 2005)

I. Polterovich (Université de Montréal) Nodal count via topological data analysis 5 / 19



Nodal count

Denote by m0(f ) the number of nodal domains of f .

Together with Weyl’s law,
Courant’s theorem implies

m0(f ) = O
(
λ

n/2
j

)
.

Questions: Can one extend this bound to

1 linear combinations of eigenfunctions (Courant–Herrmann conjecture)

2 products of eigenfunctions (Arnold, 2005)

3 higher order operators (e.g. clamped plate problem)

4 higher topological invariants: Betti numbers mr instead of m0 (Arnold, 2005)

I. Polterovich (Université de Montréal) Nodal count via topological data analysis 5 / 19



Nodal count

Denote by m0(f ) the number of nodal domains of f . Together with Weyl’s law,
Courant’s theorem implies

m0(f ) = O
(
λ

n/2
j

)
.

Questions: Can one extend this bound to

1 linear combinations of eigenfunctions (Courant–Herrmann conjecture)

2 products of eigenfunctions (Arnold, 2005)

3 higher order operators (e.g. clamped plate problem)

4 higher topological invariants: Betti numbers mr instead of m0 (Arnold, 2005)

I. Polterovich (Université de Montréal) Nodal count via topological data analysis 5 / 19



Nodal count

Denote by m0(f ) the number of nodal domains of f . Together with Weyl’s law,
Courant’s theorem implies

m0(f ) = O
(
λ

n/2
j

)
.

Questions: Can one extend this bound to

1 linear combinations of eigenfunctions (Courant–Herrmann conjecture)

2 products of eigenfunctions (Arnold, 2005)

3 higher order operators (e.g. clamped plate problem)

4 higher topological invariants: Betti numbers mr instead of m0 (Arnold, 2005)
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Negative results

Theorem (Buhovsky–Logunov–Sodin, 2020)
There exists a Riemannian metric g on a 2-torus and a sequence fj of eigenfunctions
of the Laplacian ∆g , such that the functions fj + 1 have infinitely many nodal
domains.

Other related examples by Bérard–Charron–Helffer (2021).

Using this result one can show

Proposition (BP3S2, 2022)
In general, the answer to all the questions above is no.

Idea: What if we ignore small oscillations?
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Deep nodal domains and Sobolev norms

Definition (L. Polterovich – Sodin, 2007)
A nodal domain Ω of a function f is called δ-deep for some δ > 0 if
maxΩ |f | > δ.

Let m0(f , δ) be the number of δ-deep nodal domains of a function f .

Let W k,p(M) be the Sobolev space of integer order k based on Lp(M).

Our first main result shows that m0(f , δ) is controlled by the appropriate Sobolev
norms of f .
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Main result: coarse nodal count

Theorem (BP3S2, 2022)
Let f ∈ W k,p(M) for k > n

p , where n = dimM. Then for any δ > 0,

m0(f , δ) ≤ Cδ−
n
k ∥f ∥

n
k
W k,p ,

where C depends on M, k, p but not on δ.

By Sobolev embedding theorem, the condition k > n
p implies that f is continuous.

Note that the estimate blows up as δ → 0, and one can check that the constant C
blows up as k → ∞.
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Coarse Courant for linear combinations

Let Fλ denote the subspace spanned by all eigenfunctions with eigenvalues ≤ λ.

Given L2-normalised f ∈ Fλ, one can use elliptic regularity to control ∥f ∥W k,2 in
terms of λ.

Theorem
Let k > n

2 be an integer. Then for any δ > 0 and any f ∈ Fλ with ∥f ∥L2 = 1,

m0(f , δ) ≤ Cδ−
n
k (λ+ 1)

n
2 .

Remark
All other extensions mentioned earlier can be also obtained in the coarse setting.
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Towards Bézout’s theorem for eigenfunctions

Bézout theorem: the number of common zeros of polynomials is bounded by the
product of their degrees.

Donnelly–Fefferman philosophy: for large λ, Laplace eigenfunctions behave
roughly as polynomials of degree

√
λ.

Question (V. Arnold, L. Polterovich, 2000s): find an analogue of Bézout’s
theorem for eigenfunctions.

Gichev (2009), Akhiezer–Kazarnovskii (2017): Bézout theorem for spherical
harmonics and eigenfunctions on certain homogeneous manifolds.

In order to use our approach, we need to introduce the notion of coarse zero count.
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Coarse Bézout theorem

Let z0(f , δ) denote the number of connected components of {|f | < δ} which
contain zeros of f .

Theorem
Let f = (f1, . . . , fn), where fj ∈ Fλ, j = 1, . . . , n, and let k > n/2 be an integer.
Then for any δ > 0,

z0(f , δ) ≤ Cδ−
n
k (λ+ 1)

n
2 + 1,

Here |f | =
√

f 2
1 + · · ·+ f 2

n .

Our bound agrees with a sharp bound for spherical harmonics corresponding to
the same eigenvalue λ.
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Coarse Bézout theorem

Let z0(f , δ) denote the number of connected components of {|f | < δ} which
contain zeros of f .

Theorem
Let f = (f1, . . . , fn), where fj ∈ Fλ, j = 1, . . . , n, and let k > n/2 be an integer.
Then for any δ > 0,

z0(f , δ) ≤ Cδ−
n
k (λ+ 1)

n
2 + 1,

Here |f | =
√

f 2
1 + · · ·+ f 2

n .

Our bound agrees with a sharp bound for spherical harmonics corresponding to
the same eigenvalue λ.
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I. Polterovich (Université de Montréal) Nodal count via topological data analysis 11 / 19
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I. Polterovich (Université de Montréal) Nodal count via topological data analysis 11 / 19



Persistence barcodes: encoding topology of sublevel sets

The proof of the main theorem relies on techniques of topological data analysis.

Barcode is a multiset B = {Ij}j∈J of intervals Ij ⊂ R.

B and B′ are ε-matched if after erasing some bars of length < 2ε the rest are in
bijection up to an error of ε on the endpoints.

Bottleneck distance is given by

dbottle(B,B′) = inf{ε | B,B′ are ε-matched}.

Examples:

dbottle({(0, 2], [0, 1]}, {(0, 2.1)}) = 1
2

dbottle({(0, 2], [0, 1]}, {(0,+∞)}) = +∞
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I. Polterovich (Université de Montréal) Nodal count via topological data analysis 12 / 19



Persistence barcodes: encoding topology of sublevel sets

The proof of the main theorem relies on techniques of topological data analysis.

Barcode is a multiset B = {Ij}j∈J of intervals Ij ⊂ R.

B and B′ are ε-matched if after erasing some bars of length < 2ε the rest are in
bijection up to an error of ε on the endpoints.

Bottleneck distance is given by

dbottle(B,B′) = inf{ε | B,B′ are ε-matched}.

Examples:

dbottle({(0, 2], [0, 1]}, {(0, 2.1)}) = 1
2

dbottle({(0, 2], [0, 1]}, {(0,+∞)}) = +∞
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Example: barcode of a height function

f : S1 → R is a height function on deformed circle given by:

d

c

b

a

f

(Picture credit: V. Stojisavljević.)

Barcode B(f ). (Picture credit: M. Levitin.)
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Properties of barcodes

Endpoints of bars in B(f ) are critical values of f .

Number of endpoints is equal to the number of critical points. Each critical
point either “gives birth” to a homology class or “kills” a homology class.

Infinite bars are of the form (a,+∞), where a is a critical value. They
represent classes that are born but never die, i.e. genuine homology classes.
This means that

number of infinite bars = βM :=

dim M∑
r=0

br(M),

where βM is the total Betti number of M.
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Stability

Theorem (Stability theorem, Cohen-Steiner–Edelsbrunner–Harer, 2007)
Let f , g be two Morse functions on M. Then

dbottle(B(f ),B(g)) ≤ dC0(f , g).

Stability theorem is a key feature of the theory.
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The barcode counting function

Define the barcode counting function Nδ(f ) equal to the number of all finite bars
of length > δ.

By stability theorem and density of Morse functions, one can extend this
definition to any continuous function.

What we need: an estimate on Nδ(|f |).

Indeed, 0 is the minimal value of |f |, and its maximal value in a δ-deep nodal
domain is ≥ δ. Hence

m0(f , δ) ≤ Nδ(|f |).
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Main theorem: coarse bar count

Theorem
Let f ∈ W k,p(M) for k > n

p , where n = dimM. Then for any δ > 0,

Nδ(|f |) ≤ Cδ−
n
k ∥f ∥

n
k
W k,p + βM ,

where C depends on M, k, p but not on δ, and βM is the total Betti number of M.
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Ingredients of the proof

• Milnor’s bound on the number of critical points of polynomials.

• Polynomial approximation and Morrey–Sobolev theorem.

Theorem (Morrey–Sobolev)
Let Q ⊂ Rn be a cube and let Pk(Q) ⊂ C0(Q) denote the subspace of polynomials of
degree ≤ k. Then

dC0 (f ,Pk−1(Q)) ≤ Cn,k,p (Vol(Q))
k
n−

1
p ∥f ∥W k,p(Q).

• Multiscale dyadic partition into small cubes until functions are well aproximated
by polynomials.

• Nice behavior of Nδ under unions and stability theorem.
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I. Polterovich (Université de Montréal) Nodal count via topological data analysis 18 / 19



Ingredients of the proof

• Milnor’s bound on the number of critical points of polynomials.

• Polynomial approximation and Morrey–Sobolev theorem.

Theorem (Morrey–Sobolev)
Let Q ⊂ Rn be a cube and let Pk(Q) ⊂ C0(Q) denote the subspace of polynomials of
degree ≤ k. Then

dC0 (f ,Pk−1(Q)) ≤ Cn,k,p (Vol(Q))
k
n−

1
p ∥f ∥W k,p(Q).

• Multiscale dyadic partition into small cubes until functions are well aproximated
by polynomials.

• Nice behavior of Nδ under unions and stability theorem.
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I. Polterovich (Université de Montréal) Nodal count via topological data analysis 18 / 19



Ingredients of the proof

• Milnor’s bound on the number of critical points of polynomials.

• Polynomial approximation and Morrey–Sobolev theorem.

Theorem (Morrey–Sobolev)
Let Q ⊂ Rn be a cube and let Pk(Q) ⊂ C0(Q) denote the subspace of polynomials of
degree ≤ k. Then

dC0 (f ,Pk−1(Q)) ≤ Cn,k,p (Vol(Q))
k
n−

1
p ∥f ∥W k,p(Q).

• Multiscale dyadic partition into small cubes until functions are well aproximated
by polynomials.

• Nice behavior of Nδ under unions and stability theorem.
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Thank you for your attention!
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