Nodal count via topological data analysis

Iosif Polterovich

joint work with
Lev Buhovsky, Jordan Payette, Leonid Polterovich, Egor Shelukhin and Vukašin Stojisavljević

Université de Montréal
ICMS, Edinburgh
September 2022

Laplace-Beltrami operator

Laplace-Beltrami operator

Consider the Laplace-Beltrami operator on a compact connected n-dimensional Riemannian manifold M.

Laplace-Beltrami operator

Consider the Laplace-Beltrami operator on a compact connected n-dimensional Riemannian manifold M. If $\partial M \neq 0$, we assume Dirichlet conditions.

Laplace-Beltrami operator

Consider the Laplace-Beltrami operator on a compact connected n-dimensional Riemannian manifold M. If $\partial M \neq 0$, we assume Dirichlet conditions.

The spectrum is discrete, and the eigenvalues form a sequence

$$
0 \leq \lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{j} \leq \cdots \nearrow+\infty
$$

Laplace-Beltrami operator

Consider the Laplace-Beltrami operator on a compact connected n-dimensional Riemannian manifold M. If $\partial M \neq 0$, we assume Dirichlet conditions.

The spectrum is discrete, and the eigenvalues form a sequence

$$
0 \leq \lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \leqslant \lambda_{j} \leq \cdots \nearrow+\infty
$$

The corresponding eigenfunctions f_{j},

$$
\Delta f_{j}=\lambda_{j} f_{j}
$$

form an orthonormal basis in $L^{2}(M)$.

Nodal patterns

Nodal patterns

Let \mathcal{Z}_{f} denote the nodal (i.e. zero) set of a function f.

Nodal patterns

Let \mathcal{Z}_{f} denote the nodal (i.e. zero) set of a function f.
A nodal domain of f is a connected component of the set $M \backslash \mathcal{Z}_{f}$.

Nodal patterns

Let \mathcal{Z}_{f} denote the nodal (i.e. zero) set of a function f.
A nodal domain of f is a connected component of the set $M \backslash \mathcal{Z}_{f}$. Nodal patterns tend to get increasingly complex as $\lambda_{j} \rightarrow \infty$.

Nodal patterns

Let \mathcal{Z}_{f} denote the nodal (i.e. zero) set of a function f.
A nodal domain of f is a connected component of the set $M \backslash \mathcal{Z}_{f}$.
Nodal patterns tend to get increasingly complex as $\lambda_{j} \rightarrow \infty$.

Nodal pattern of an eigenfunction on \mathbb{S}^{2} corresponding to an eigenvalue $\lambda=17 \cdot 18$. (Picture credit: M. Levitin.)

Courant's theorem

Courant's theorem

Example

Let $M=(0, \pi)$. The j-th Dirichlet eigenfunction $f_{j}(x)=\sin j x$ has exactly j nodal domains.

Courant's theorem

Example

Let $M=(0, \pi)$. The j-th Dirichlet eigenfunction $f_{j}(x)=\sin j x$ has exactly j nodal domains.

In higher dimensions there is no such statement, but there is a fundamental upper bound.

Courant's theorem

Example
 Let $M=(0, \pi)$. The j-th Dirichlet eigenfunction $f_{j}(x)=\sin j x$ has exactly j nodal domains.
 In higher dimensions there is no such statement, but there is a fundamental upper bound.

Theorem (R. Courant, 1923)
A Laplace eigenfunction f_{j} bas at most j nodal domains.

Nodal count

Nodal count

Denote by $m_{0}(f)$ the number of nodal domains of f.

Nodal count

Denote by $m_{0}(f)$ the number of nodal domains of f. Together with Weyl's law, Courant's theorem implies

$$
m_{0}(f)=O\left(\lambda_{j}^{n / 2}\right)
$$

Nodal count

Denote by $m_{0}(f)$ the number of nodal domains of f. Together with Weyl's law, Courant's theorem implies

$$
m_{0}(f)=O\left(\lambda_{j}^{n / 2}\right)
$$

Questions: Can one extend this bound to

Nodal count

Denote by $m_{0}(f)$ the number of nodal domains of f. Together with Weyl's law, Courant's theorem implies

$$
m_{0}(f)=O\left(\lambda_{j}^{n / 2}\right)
$$

Questions: Can one extend this bound to
(1) linear combinations of eigenfunctions (Courant-Herrmann conjecture)

Nodal count

Denote by $m_{0}(f)$ the number of nodal domains of f. Together with Weyl's law, Courant's theorem implies

$$
m_{0}(f)=O\left(\lambda_{j}^{n / 2}\right)
$$

Questions: Can one extend this bound to
(11) linear combinations of eigenfunctions (Courant-Herrmann conjecture)
(2) products of eigenfunctions (Arnold, 2005)

Nodal count

Denote by $m_{0}(f)$ the number of nodal domains of f. Together with Weyl's law, Courant's theorem implies

$$
m_{0}(f)=O\left(\lambda_{j}^{n / 2}\right)
$$

Questions: Can one extend this bound to
(1) linear combinations of eigenfunctions (Courant-Herrmann conjecture)
(2) products of eigenfunctions (Arnold, 2005)
(3) higher order operators (e.g. clamped plate problem)

Nodal count

Denote by $m_{0}(f)$ the number of nodal domains of f. Together with Weyl's law, Courant's theorem implies

$$
m_{0}(f)=O\left(\lambda_{j}^{n / 2}\right)
$$

Questions: Can one extend this bound to
(1) linear combinations of eigenfunctions (Courant-Herrmann conjecture)
(2) products of eigenfunctions (Arnold, 2005)
(3) higher order operators (e.g. clamped plate problem)
(44) higher topological invariants: Betti numbers m_{r} instead of m_{0} (Arnold, 2005)

Negative results

Negative results

Theorem (Buhovsky-Logunov-Sodin, 2020)

There exists a Riemannian metric g on a 2 -torus and a sequence f_{j} of eigenfunctions of the Laplacian Δ_{g}, such that the functions $f_{j}+1$ bave infinitely many nodal domains.

Negative results

Theorem (Buhovsky-Logunov-Sodin, 2020)

There exists a Riemannian metric g on a 2 -torus and a sequence f_{j} of eigenfunctions of the Laplacian Δ_{g}, such that the functions $f_{j}+1$ bave infinitely many nodal domains.

Other related examples by Bérard-Charron-Helffer (2021).

Negative results

Theorem (Buhovsky-Logunov-Sodin, 2020)
There exists a Riemannian metric g on a 2 -torus and a sequence f_{j} of eigenfunctions of the Laplacian Δ_{g}, such that the functions $f_{j}+1$ bave infinitely many nodal domains.

Other related examples by Bérard-Charron-Helffer (2021).
Using this result one can show
Proposition ($\mathrm{BP}^{3} \mathrm{~S}^{2}$, 2022)
In general, the answer to all the questions above is no.

Negative results

Theorem (Buhovsky-Logunov-Sodin, 2020)
There exists a Riemannian metric g on a 2 -torus and a sequence f_{j} of eigenfunctions of the Laplacian Δ_{g}, such that the functions $f_{j}+1$ bave infinitely many nodal domains.

Other related examples by Bérard-Charron-Helffer (2021).
Using this result one can show
Proposition ($\mathrm{BP}^{3} \mathrm{~S}^{2}$, 2022)
In general, the answer to all the questions above is no.

Idea: What if we ignore small oscillations?

Deep nodal domains and Sobolev norms

Deep nodal domains and Sobolev norms

Definition (L. Polterovich - Sodin, 2007)
A nodal domain Ω of a function f is called δ-deep for some $\delta>0$ if $\max _{\Omega}|f|>\delta$.

Deep nodal domains and Sobolev norms

```
Definition (L. Polterovich - Sodin, 2007)
A nodal domain \Omega of a function }f\mathrm{ is called }\delta\mathrm{ -deep for some }\delta>0\mathrm{ if
max}\Omega|f|>\delta\mathrm{ .
```

Let $m_{0}(f, \delta)$ be the number of δ-deep nodal domains of a function f.

Deep nodal domains and Sobolev norms

> Definition (L. Polterovich - Sodin, 2007)
> A nodal domain Ω of a function f is called δ-deep for some $\delta>0$ if $\max _{\Omega}|f|>\delta$.

Let $m_{0}(f, \delta)$ be the number of δ-deep nodal domains of a function f.
Let $W^{k, p}(M)$ be the Sobolev space of integer order k based on $L^{p}(M)$.

Deep nodal domains and Sobolev norms

> Definition (L. Polterovich - Sodin, 2007)
> A nodal domain Ω of a function f is called δ-deep for some $\delta>0$ if $\max _{\Omega}|f|>\delta$.

Let $m_{0}(f, \delta)$ be the number of δ-deep nodal domains of a function f.
Let $W^{k, p}(M)$ be the Sobolev space of integer order k based on $L^{p}(M)$.
Our first main result shows that $m_{0}(f, \delta)$ is controlled by the appropriate Sobolev norms of f.

Main result: coarse nodal count

Main result: coarse nodal count

$$
\begin{aligned}
& \text { Theorem }\left(\mathrm{BP}^{3} \mathrm{~S}^{2}, 2022\right) \\
& \text { Letf } \in W^{k, p}(M) \text { for } k>\frac{n}{p} \text {, where } n=\operatorname{dim} M \text {. Then for any } \delta>0 \text {, } \\
& \qquad m_{0}(f, \delta) \leq C \delta^{-\frac{n}{k}}\|f\|_{W^{k, p}}^{\frac{n}{k}} \text {, } \\
& \text { where } C \text { depends on } M, k, p \text { but not on } \delta \text {. }
\end{aligned}
$$

Main result: coarse nodal count

$$
\begin{aligned}
& \text { Theorem }\left(\mathrm{BP}^{3} \mathrm{~S}^{2}, 2022\right) \\
& \text { Let } f \in W^{k, p}(M) \text { for } k>\frac{n}{p} \text {, where } n=\operatorname{dim} M \text {. Then for any } \delta>0 \text {, } \\
& \qquad m_{0}(f, \delta) \leq C \delta^{-\frac{n}{k}}\|f\|_{W^{k, p}}^{\frac{n}{k}} \text {, } \\
& \text { where } C \text { depends on } M, k, p \text { but not on } \delta \text {. }
\end{aligned}
$$

By Sobolev embedding theorem, the condition $k>\frac{n}{p}$ implies that f is continuous.

Main result: coarse nodal count

$$
\begin{aligned}
& \text { Theorem }\left(\mathrm{BP}^{3} \mathrm{~S}^{2}, 2022\right) \\
& \text { Letf } \in W^{k, p}(M) \text { for } k>\frac{n}{p} \text {, where } n=\operatorname{dim} M \text {. Then for any } \delta>0 \text {, } \\
& \qquad m_{0}(f, \delta) \leq C \delta^{-\frac{n}{k}}\|f\|_{W^{k, p}}^{\frac{n}{k}} \text {, } \\
& \text { where } C \text { depends on } M, k, p \text { but not on } \delta \text {. }
\end{aligned}
$$

By Sobolev embedding theorem, the condition $k>\frac{n}{p}$ implies that f is continuous.
Note that the estimate blows up as $\delta \rightarrow 0$, and one can check that the constant C blows up as $k \rightarrow \infty$.

Coarse Courant for linear combinations

Coarse Courant for linear combinations

Let \mathcal{F}_{λ} denote the subspace spanned by all eigenfunctions with eigenvalues $\leq \lambda$.

Coarse Courant for linear combinations

Let \mathcal{F}_{λ} denote the subspace spanned by all eigenfunctions with eigenvalues $\leq \lambda$. Given L^{2}-normalised $f \in \mathcal{F}_{\lambda}$, one can use elliptic regularity to control $\|f\|_{W^{k, 2}}$ in terms of λ.

Coarse Courant for linear combinations

Let \mathcal{F}_{λ} denote the subspace spanned by all eigenfunctions with eigenvalues $\leq \lambda$. Given L^{2}-normalised $f \in \mathcal{F}_{\lambda}$, one can use elliptic regularity to control $\|f\|_{W^{k, 2}}$ in terms of λ.

Theorem
Let $k>\frac{n}{2}$ be an integer. Then for any $\delta>0$ and any $f \in \mathcal{F}_{\lambda}$ with $\|f\|_{L^{2}}=1$,

$$
m_{0}(f, \delta) \leq C \delta^{-\frac{n}{k}}(\lambda+1)^{\frac{n}{2}}
$$

Coarse Courant for linear combinations

Let \mathcal{F}_{λ} denote the subspace spanned by all eigenfunctions with eigenvalues $\leq \lambda$. Given L^{2}-normalised $f \in \mathcal{F}_{\lambda}$, one can use elliptic regularity to control $\|f\|_{W^{k, 2}}$ in terms of λ.

Theorem
Let $k>\frac{n}{2}$ be an integer. Then for any $\delta>0$ and any $f \in \mathcal{F}_{\lambda}$ with $\|f\|_{L^{2}}=1$,

$$
m_{0}(f, \delta) \leq C \delta^{-\frac{n}{k}}(\lambda+1)^{\frac{n}{2}}
$$

Remark

All other extensions mentioned earlier can be also obtained in the coarse setting.

Towards Bézout's theorem for eigenfunctions

Towards Bézout's theorem for eigenfunctions

Bézout theorem: the number of common zeros of polynomials is bounded by the product of their degrees.

Towards Bézout's theorem for eigenfunctions

Bézout theorem: the number of common zeros of polynomials is bounded by the product of their degrees.

Donnelly-Fefferman philosophy: for large λ, Laplace eigenfunctions behave roughly as polynomials of degree $\sqrt{\lambda}$.

Towards Bézout's theorem for eigenfunctions

Bézout theorem: the number of common zeros of polynomials is bounded by the product of their degrees.

Donnelly-Fefferman philosophy: for large λ, Laplace eigenfunctions behave roughly as polynomials of degree $\sqrt{\lambda}$.

Question (V. Arnold, L. Polterovich, 2000s): find an analogue of Bézout's theorem for eigenfunctions.

Towards Bézout's theorem for eigenfunctions

Bézout theorem: the number of common zeros of polynomials is bounded by the product of their degrees.

Donnelly-Fefferman philosophy: for large λ, Laplace eigenfunctions behave roughly as polynomials of degree $\sqrt{\lambda}$.

Question (V. Arnold, L. Polterovich, 2000s): find an analogue of Bézout's theorem for eigenfunctions.

Gichev (2009), Akhiezer-Kazarnovskii (2017): Bézout theorem for spherical harmonics and eigenfunctions on certain homogeneous manifolds.

Towards Bézout's theorem for eigenfunctions

Bézout theorem: the number of common zeros of polynomials is bounded by the product of their degrees.

Donnelly-Fefferman philosophy: for large λ, Laplace eigenfunctions behave roughly as polynomials of degree $\sqrt{\lambda}$.

Question (V. Arnold, L. Polterovich, 2000s): find an analogue of Bézout's theorem for eigenfunctions.

Gichev (2009), Akhiezer-Kazarnovskii (2017): Bézout theorem for spherical harmonics and eigenfunctions on certain homogeneous manifolds.

In order to use our approach, we need to introduce the notion of coarse zero count.

Coarse Bézout theorem

Coarse Bézout theorem

Let $z_{0}(f, \delta)$ denote the number of connected components of $\{|f|<\delta\}$ which contain zeros of f.

Coarse Bézout theorem

Let $z_{0}(f, \delta)$ denote the number of connected components of $\{|f|<\delta\}$ which contain zeros of f.

Theorem

Let $f=\left(f_{1}, \ldots, f_{n}\right)$, where $f_{j} \in \mathcal{F}_{\lambda}, j=1, \ldots, n$, and let $k>n / 2$ be an integer.
Then for any $\delta>0$,

$$
z_{0}(f, \delta) \leq C \delta^{-\frac{n}{k}}(\lambda+1)^{\frac{n}{2}}+1,
$$

Coarse Bézout theorem

Let $z_{0}(f, \delta)$ denote the number of connected components of $\{|f|<\delta\}$ which contain zeros of f.

Theorem

$\operatorname{Let} f=\left(f_{1}, \ldots, f_{n}\right)$, where $f_{j} \in \mathcal{F}_{\lambda}, j=1, \ldots, n$, and let $k>n / 2$ be an integer.
Then for any $\delta>0$,

$$
z_{0}(f, \delta) \leq C \delta^{-\frac{n}{k}}(\lambda+1)^{\frac{n}{2}}+1,
$$

Here $|f|=\sqrt{f_{1}^{2}+\cdots+f_{n}^{2}}$.

Coarse Bézout theorem

Let $z_{0}(f, \delta)$ denote the number of connected components of $\{|f|<\delta\}$ which contain zeros of f.

Theorem

$\operatorname{Let} f=\left(f_{1}, \ldots, f_{n}\right)$, where $f_{j} \in \mathcal{F}_{\lambda}, j=1, \ldots, n$, and let $k>n / 2$ be an integer. Then for any $\delta>0$,

$$
z_{0}(f, \delta) \leq C \delta^{-\frac{n}{k}}(\lambda+1)^{\frac{n}{2}}+1,
$$

Here $|f|=\sqrt{f_{1}^{2}+\cdots+f_{n}^{2}}$.
Our bound agrees with a sharp bound for spherical harmonics corresponding to the same eigenvalue λ.

Coarse Bézout theorem

Let $z_{0}(f, \delta)$ denote the number of connected components of $\{|f|<\delta\}$ which contain zeros of f.

Theorem

$\operatorname{Let} f=\left(f_{1}, \ldots, f_{n}\right)$, where $f_{j} \in \mathcal{F}_{\lambda}, j=1, \ldots, n$, and let $k>n / 2$ be an integer. Then for any $\delta>0$,

$$
z_{0}(f, \delta) \leq C \delta^{-\frac{n}{k}}(\lambda+1)^{\frac{n}{2}}+1,
$$

Here $|f|=\sqrt{f_{1}^{2}+\cdots+f_{n}^{2}}$.
Our bound agrees with a sharp bound for spherical harmonics corresponding to the same eigenvalue λ.

Persistence barcodes: encoding topology of sublevel sets

Persistence barcodes: encoding topology of sublevel sets

The proof of the main theorem relies on techniques of topological data analysis.

Persistence barcodes: encoding topology of sublevel sets

The proof of the main theorem relies on techniques of topological data analysis. Barcode is a multiset $\mathcal{B}=\left\{I_{j}\right\}_{j \in \mathcal{J}}$ of intervals $I_{j} \subset \mathbb{R}$.

Persistence barcodes: encoding topology of sublevel sets

The proof of the main theorem relies on techniques of topological data analysis. Barcode is a multiset $\mathcal{B}=\left\{I_{j}\right\}_{j \in \mathcal{J}}$ of intervals $I_{j} \subset \mathbb{R}$.
\mathcal{B} and \mathcal{B}^{\prime} are ε-matched if after erasing some bars of length $<2 \varepsilon$ the rest are in bijection up to an error of ε on the endpoints.

Persistence barcodes: encoding topology of sublevel sets

The proof of the main theorem relies on techniques of topological data analysis. Barcode is a multiset $\mathcal{B}=\left\{I_{j}\right\}_{j \in \mathcal{J}}$ of intervals $I_{j} \subset \mathbb{R}$.
\mathcal{B} and \mathcal{B}^{\prime} are ε-matched if after erasing some bars of length $<2 \varepsilon$ the rest are in bijection up to an error of ε on the endpoints.

Bottleneck distance is given by

$$
d_{\text {bottle }}\left(\mathcal{B}, \mathcal{B}^{\prime}\right)=\inf \left\{\varepsilon \mid \mathcal{B}, \mathcal{B}^{\prime} \text { are } \varepsilon \text {-matched }\right\}
$$

Persistence barcodes: encoding topology of sublevel sets

The proof of the main theorem relies on techniques of topological data analysis.
Barcode is a multiset $\mathcal{B}=\left\{I_{j}\right\}_{j \in \mathcal{J}}$ of intervals $I_{j} \subset \mathbb{R}$.
\mathcal{B} and \mathcal{B}^{\prime} are ε-matched if after erasing some bars of length $<2 \varepsilon$ the rest are in bijection up to an error of ε on the endpoints.

Bottleneck distance is given by

$$
d_{\text {bottle }}\left(\mathcal{B}, \mathcal{B}^{\prime}\right)=\inf \left\{\varepsilon \mid \mathcal{B}, \mathcal{B}^{\prime} \text { are } \varepsilon \text {-matched }\right\}
$$

Examples:

$$
\begin{gathered}
d_{\text {bottle }}(\{(0,2],[0,1]\},\{(0,2.1)\})=\frac{1}{2} \\
d_{\text {bottle }}(\{(0,2],[0,1]\},\{(0,+\infty)\})=+\infty
\end{gathered}
$$

Example: barcode of a height function

$f: \mathbb{S}^{1} \rightarrow \mathbb{R}$ is a height function on deformed circle given by:

(Picture credit: V. Stojisavljevici.)

Example: barcode of a height function

$f: \mathbb{S}^{1} \rightarrow \mathbb{R}$ is a height function on deformed circle given by:

(Picture credit: V. Stojisavljevici.)

Barcode $\mathcal{B}(f)$. (Picture credit: M. Levitin.)

Properties of barcodes

Properties of barcodes

- Endpoints of bars in $\mathcal{B}(f)$ are critical values of f.

Properties of barcodes

- Endpoints of bars in $\mathcal{B}(f)$ are critical values of f.
- Number of endpoints is equal to the number of critical points.

Properties of barcodes

- Endpoints of bars in $\mathcal{B}(f)$ are critical values of f.
- Number of endpoints is equal to the number of critical points. Each critical point either "gives birth" to a homology class or "kills" a homology class.

Properties of barcodes

- Endpoints of bars in $\mathcal{B}(f)$ are critical values of f.
- Number of endpoints is equal to the number of critical points. Each critical point either "gives birth" to a homology class or "kills" a homology class.
- Infinite bars are of the form $(a,+\infty)$, where a is a critical value.

Properties of barcodes

- Endpoints of bars in $\mathcal{B}(f)$ are critical values of f.
- Number of endpoints is equal to the number of critical points. Each critical point either "gives birth" to a homology class or "kills" a homology class.
- Infinite bars are of the form $(a,+\infty)$, where a is a critical value. They represent classes that are born but never die, i.e. genuine homology classes.

Properties of barcodes

- Endpoints of bars in $\mathcal{B}(f)$ are critical values of f.
- Number of endpoints is equal to the number of critical points. Each critical point either "gives birth" to a homology class or "kills" a homology class.
- Infinite bars are of the form $(a,+\infty)$, where a is a critical value. They represent classes that are born but never die, i.e. genuine homology classes. This means that

$$
\text { number of infinite bars }=\beta_{M}:=\sum_{r=0}^{\operatorname{dim} M} b_{r}(M),
$$

where β_{M} is the total Betti number of M.

Stability

Stability

Theorem (Stability theorem, Cohen-Steiner-Edelsbrunner-Harer, 2007)
Let f, g be two Morse functions on M. Then

$$
d_{\text {bottle }}(\mathcal{B}(f), \mathcal{B}(g)) \leq d_{C^{0}}(f, g)
$$

Stability

Theorem (Stability theorem, Cohen-Steiner-Edelsbrunner-Harer, 2007)
Let f, g be two Morse functions on M. Then

$$
d_{\text {bottle }}(\mathcal{B}(f), \mathcal{B}(g)) \leq d_{C^{0}}(f, g)
$$

Stability theorem is a key feature of the theory.

The barcode counting function

The barcode counting function

Define the barcode counting function $N_{\delta}(f)$ equal to the number of all finite bars of length $>\delta$.

The barcode counting function

Define the barcode counting function $N_{\delta}(f)$ equal to the number of all finite bars of length $>\delta$.
By stability theorem and density of Morse functions, one can extend this definition to any continuous function.

The barcode counting function

Define the barcode counting function $N_{\delta}(f)$ equal to the number of all finite bars of length $>\delta$.
By stability theorem and density of Morse functions, one can extend this definition to any continuous function.

What we need: an estimate on $N_{\delta}(|f|)$.

The barcode counting function

Define the barcode counting function $N_{\delta}(f)$ equal to the number of all finite bars of length $>\delta$.
By stability theorem and density of Morse functions, one can extend this definition to any continuous function.

What we need: an estimate on $N_{\delta}(|f|)$.
Indeed, 0 is the minimal value of $|f|$, and its maximal value in a δ-deep nodal domain is $\geq \delta$.

The barcode counting function

Define the barcode counting function $N_{\delta}(f)$ equal to the number of all finite bars of length $>\delta$.

By stability theorem and density of Morse functions, one can extend this definition to any continuous function.

What we need: an estimate on $N_{\delta}(|f|)$.
Indeed, 0 is the minimal value of $|f|$, and its maximal value in a δ-deep nodal domain is $\geq \delta$. Hence

$$
m_{0}(f, \delta) \leq N_{\delta}(|f|)
$$

Main theorem: coarse bar count

Main theorem: coarse bar count

Theorem

Let $f \in W^{k, p}(M)$ fork $>\frac{n}{p}$, where $n=\operatorname{dim} M$. Then for any $\delta>0$,

$$
N_{\delta}(|f|) \leq C \delta^{-\frac{n}{k}}\|f\|_{W^{k, p}}^{\frac{n}{k}}+\beta_{M},
$$

where C depends on M, k, p but not on δ, and β_{M} is the total Betti number of M.

Ingredients of the proof

Ingredients of the proof

- Milnor's bound on the number of critical points of polynomials.

Ingredients of the proof

- Milnor's bound on the number of critical points of polynomials.
- Polynomial approximation and Morrey-Sobolev theorem.

Ingredients of the proof

- Milnor's bound on the number of critical points of polynomials.
- Polynomial approximation and Morrey-Sobolev theorem.

Theorem (Morrey-Sobolev)

Let $Q \subset \mathbb{R}^{n}$ be a cube and let $\mathcal{P}_{k}(Q) \subset C^{0}(Q)$ denote the subspace of polynomials of degree $\leq k$. Then

$$
d_{C^{0}}\left(f, \mathcal{P}_{k-1}(Q)\right) \leq C_{n, k, p}(\operatorname{Vol}(Q))^{\frac{k}{n}-\frac{1}{p}}\|f\|_{W^{k, p}(Q)}
$$

Ingredients of the proof

- Milnor's bound on the number of critical points of polynomials.
- Polynomial approximation and Morrey-Sobolev theorem.

Theorem (Morrey-Sobolev)

Let $Q \subset \mathbb{R}^{n}$ be a cube and let $\mathcal{P}_{k}(Q) \subset C^{0}(Q)$ denote the subspace of polynomials of degree $\leq k$. Then

$$
d_{C^{0}}\left(f, \mathcal{P}_{k-1}(Q)\right) \leq C_{n, k, p}(\operatorname{Vol}(Q))^{\frac{k}{n}-\frac{1}{p}}\|f\|_{W^{k, p}(Q)}
$$

- Multiscale dyadic partition into small cubes until functions are well aproximated by polynomials.

Ingredients of the proof

- Milnor's bound on the number of critical points of polynomials.
- Polynomial approximation and Morrey-Sobolev theorem.

Theorem (Morrey-Sobolev)

Let $Q \subset \mathbb{R}^{n}$ be a cube and let $\mathcal{P}_{k}(Q) \subset C^{0}(Q)$ denote the subspace of polynomials of degree $\leq k$. Then

$$
d_{C^{0}}\left(f, \mathcal{P}_{k-1}(Q)\right) \leq C_{n, k, p}(\operatorname{Vol}(Q))^{\frac{k}{n}-\frac{1}{p}}\|f\|_{W^{k, p}(Q)}
$$

- Multiscale dyadic partition into small cubes until functions are well aproximated by polynomials.
- Nice behavior of N_{δ} under unions and stability theorem.

Thank you for your attention!

