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Consider ⌦ ⇢ R2
, a C1

simply connected domain, and let n = (n1, n2)
T
be the

outward pointing normal on @⌦.

The Dirac operator with infinite mass boundary conditions in L2
(⌦,C2

) is de-

fined as,

D⌦ ⌘
✓

0 �2 i @z
�2 i @z̄ 0

◆
.

Here,

dom(D
⌦
) = {u = (u1, u2)

T 2 H
1
(⌦,C2

)|u2 = in u1 on @⌦}.

We have set n = n1 + i n2 and

@z =
1

2
(@1 � i@2) , @z̄ =

1

2
(@1 + i@2) .

The Dirac operator with infinite mass boundary conditions is self-adjoint (E.Stockmeyer

& S.Vugalter, 2019), and (R.B., S.Fournais, E. Stockmeyer, H. Van den Bosch,

2017). Its spectrum is symmetric with respect to the origin, consisting of eigen-

values of finite multiplicity, with,

...  Ek(⌦)  · · ·  �E1(⌦) < 0 < E1(⌦) < . . . Ek(⌦)  . . .
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In 2017, R.B., S.Fournais, E. Stockmeyer, H. Van den Bosch proved the

following geometrical bound,

E1(⌦) �

s
2⇡

|⌦| ,

Where |⌦| is the area of the domain ⌦. By analogy with the Rayleigh-Faber–

Krahn inequality it is natural to conjecture:

Conjecture 1.

E1(⌦) �
r

⇡

|⌦| E1(D),

Where D is the unit disk. There is equality if and only if ⌦ is a disk.

Remark. The eigenstructure of the unit disk is explicit. In fact, E1(D) = k ⌘
1.435 . . . , where k is the first positive root of the equation J0(k) = J1(k). Here

Jn(t) denotes the n–th Bessel function of the first kind. Moreover, using polar

coordinates (⇢, ✓), the first eigenfunction is given by

✓
J0(k ⇢)

i ei✓J1(k ⇢)

◆
.



Our main results  
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Theorem 1 [P. Antunes, RB, T. Ourmières-Bonafos, V. Lotoreichik, 2020]. Let
⌦ ⇢ R2 be a C1 simply connected domain. Then we have

E1(⌦) 
|@⌦|

⇡r2i + |⌦|E1(D),

with equality if and only if ⌦ is a disk.

Here |⌦| is the area, |@⌦| the perimeter and ri the inradius of the domain ⌦.

What we actually prove is
Theorem 2. Let ⌦ ⇢ R2 be a C1 simply connected domain. Then we have

E1(⌦) 
|@⌦|+

p
|@⌦|2 + 8⇡E1(D)(E1(D)� 1)(⇡r2i + |⌦|)

2(⇡r2i + |⌦|)

with equality if and only if ⌦ is a disk.

Theorem 1 follows from Theorem 2 using ⇡r2i  |⌦|  |@⌦|2/(4⇡).
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The proof is obtained by combining a new variational characterization of E1(⌦),
inspired by min-max techniques for operators with gaps introduced by J. Dol-
beault, M. Esteban, and E. Seré, JFA 174 (2000), 208–226, and the classical
proof of Szegő about the first nontrivial Neumann eigenvalue of the Laplacian
in R2 (1954).

Consider the quadratic form

q⌦E,0(u) ⌘ 4

Z

⌦
|@z̄u|2 dx� E2

Z

⌦
|u|2 dx+ E

Z

@⌦
|u|2 ds,

with dom
�
q⌦E,0

�
= C1(⌦̄,C).

For E > 0, q⌦E,0 is bounded below with dense domain and we consider q⌦E the

closure in L2(⌦) of q⌦E,0. Then, we define the first min-max level,

µ⌦(E) = inf
u

q⌦E(u)R
⌦ |u|2 dx

.

where the infimum is taken over dom(q⌦E) \ {0}.
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Theorem 3. E > 0 is the first non–negative eigenvalue of D⌦ if and only if
µ⌦(E) = 0.

Heuristics: Let (u, v)T 2 dom(D⌦) be an eigenfunction with eigenvalue E. In
⌦ the eigenvalue equation reads,

�2i@zv = E u, �2i@z̄u = E v.

Assuming the equations are valid up to the boundary, using the infinite mass
boundary conditions, we get the following boundary condition on u,

n̄@z̄u+
E

2
u = 0, on @⌦.

Now from the equations for u and v we get,

�4@z@z̄u = E2u, in ⌦.

Taking the scalar product with u, integrating by parts, and using the boundary
condition formally gives q⌦E(u). This is the reason for introducing q⌦E .



In order to use the function µ⌦(E) to estimate E1(⌦) we need the following:

Lemma 1. The map µ⌦ : E � 0 ! µ⌦(E) satisfies:
i) µ⌦(E) is a continuous and concave function on R+.
ii) We have µ⌦(0) = 0, and there exists E⌦

⇤ > 0 such that for all (0, E⌦
⇤ ),

µ⌦(E) > 0.
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A simple application: a first geometric (non sharp) upper bound.

Lemma. Let ⌦ ⇢ R2 be C1 and simply connected. Then,

E1(⌦) 
|@⌦|
|⌦| .

Proof. Let E > 0 and u ⌘ 1. By the min-max principle

µ⌦(E)  q⌦E(u)

kuk2L2(⌦)

= E

✓
|@⌦|
|⌦| � E

◆
.

We see that for Ecrit = |@⌦|/|⌦|, µ⌦(Ecrit)  0. Then,

E1(⌦)  Ecrit =
|@⌦|
|⌦| .
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Proof of Theorem 2  

Isoperimetric	Inequalities	for	the	First	Eigenvalue	of	2D	Dirac	Operators																		Benguria	



Geometric Preliminaries  
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Koebe’s estimate.

Let f(z) be a conformal mapping from the unit disc D onto a simply connected
domain ⌦. Then for all z 2 D,

1

4
|f 0(z)|

�
1� |z|2

�
 dist(f(z), @⌦)  |f 0(z)|

�
1� |z|2

�
.

(See, e.g., J.B. Garnett & D. E. Marshall, Harmonic Measure, CUP, 2005,
Theorem 4.3, p. 19).

In particular if f(0) = 0 and f(z) =
P1

n=1 cn z
n, We have

ri  |c1|.



The area formula.
In terms of f one can write the area of the domain ⌦ as follows,

|⌦| = 1

2

I

@⌦
(xdy � ydx) = 1

2i

R
@⌦ !̄ d! = 1

2i

R
|z|=1 f̄ df =

= ⇡
P1

n=1 n|cn|2. (1)

The perimeter.
In terms of the conformal map one also has the perimeter of the domain ⌦,

|@⌦| =
Z 2⇡

0
|f 0(ei✓)| d✓.
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Proof of Theorem 2.
We construct a proper test function for q⌦E transplanting the first eigenfunction
of the Dirac operator on the unit disc D to the domain ⌦ using the conformal
map f . We obtain an upper bound on µ⌦(E), which is a quadratic in E > 0
with coe�cients depending on the geometry of ⌦. Finally we optimize on E.
We do this procedure in 5 steps.
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Step 1: “Choice of trial function”.
Take

u0(x) = J0(E1|x|) 2 H1(D) ⇢ dom
⇣
q
D
E1(D)

⌘
.

Recall that this u0 is the upper spinor of the first eigenfunction of the Dirac
operator on the unit disc. Theorem 3 implies that qDE1(D)(u0) = 0, which can be
written explicitly as,

E1(D)
Z 1

0
J1(E1(D) r)2 r dr � E1(D)

Z 1

0
J0(E1(D) r)2 r dr + J0(E1(D))2 = 0.



Step 2:“Choice of trial function”

For x = (x1, x2) 2 ⌦, consider

v0(x1, x2) = u0(f
�1

(x1 + ix2)) 2 H1(⌦) ⇢ dom(q
⌦
E).

By the min-max principle, we have

µ
⌦
(E)  q

⌦
E(v0)

kv0k2L2(⌦)

=

krv0k2L2(⌦) + Ekv0k2L2(@⌦)

kv0k2L2(⌦)

� E
2
.

Here we used that v0 is real valued to insure that krv0k2L2(⌦) = 4k@z̄v0k2L2(⌦).
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Step 3. “Computation of norms of the trial function”.

Since f is a conformal map, we have

kv0k2L2(⌦) = ku0k2L2(D) = 2⇡E1(D)2
Z 1

0
J1(E1(D) r)2 r dr.

Using the perimeter formula, we also have,

kv0k2L2(@⌦) =

Z 2⇡

0
|v0(f(ei✓))|2 |f 0

(ei✓)| d✓ = J0(E1(D))2 |@⌦|.

Finally, we also have

kv0k2L2(⌦) =

Z 1

0

Z 2⇡

0
u0(r)

2|f 0
(rei✓)|2 r dr d✓

=

Z 1

0
u0(r)

2

0

@
Z 2⇡

0
|
X

n�1

n cnr
n�1ei(n�1)✓|2 d✓

1

A r dr = 2⇡
X

n�1

n|cn|2Mn,

by Parseval’s inequality. Here,

Mn ⌘ n

Z 1

0
J0(E1(Dr)2 r2n�1 dr,

for all n � 1.
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Step 4. “Properties of Bessel functions and their consequences”.

Inserting the computations of the three norms back in the right side of (1) we
have

µ⌦(E)  2⇡E1(D)2
R 1
0 J1(E1(D)r)2r dr
2⇡

P
n�1 n|cn|2Mn

+ E
J0(E1(D))2|@⌦|

2⇡
P

n�1 n|cn|2Mn
� E2.

Next, we prove the following lower bound on Mn:

Mn � n

2n� 1
M1,

For all n � 1. From the definition of Mn and properties of Bessel functions we
have

M1 = J0(E1(D))2,

and

Mn =
1

2
J0(E1(D))2 +

E1(D)
2

Z 1

0
J0(E1(D)r)J1(E1(D)r) r2n dr,

Which follows from the definition of Mn, an integration by parts, and the fact
that J 0

0 = �J1.
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Step 4 (continued)

Mn =
1

2
M1 +

E1(D)
2

Z 1

0
J0(E1(D)r)J1(E1(D)r) r2n dr.

Now, for n � 1, we use that the functions

g(r) ⌘ r2(J0J1)(E1(D)r),

and
h(r) = r2n�2,

are non-decreasing on [0, 1] and by Chebyschev’s inequality (*) for non-decreasing
functions we get

Mn � M1

2
+

M1

2

Z 1

0
r2n�2 dr =

n

2n� 1
M1.

—————————————————————————————————

(*) In this case,

Z 1

0
g(r)h(r) dr �

Z 1

0
g(r) dr

Z 1

0
h(r) dr.
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Step 4 (continued)
Using the lower bound on Mn we get,

L ⌘ 2⇡
X

n�1

n|cn|2Mn � M1

0

@2⇡|c1|2 + 2⇡
X

n�2

n2

2n� 1
|cn|2

1

A ⌘ R

and, successively

R � M1

0

@2⇡|c1|2 + ⇡
X

n�2

n|cn|2
1

A = M1

�
⇡|c1|2 + |⌦|

�
� M1

�
⇡r2i + |⌦|

�
.

Recall that M1 = J0(E1(D))2. There is equality in the above inequalities if and
only if cn = 0, for all n � 2 and if |c1| = ri, i.e., if and only if f(z) = c1 z and
⌦ is a disk centered at 0 with radius ri.
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Step 4 (continued)

Using the above in (1), and recalling that

Z 1

0
J0(E1(D) r)2 r dr = J0(E1(D))2,

we get that,

µ⌦(E)  P (E)

⇡r2i + |⌦| ,

where P (E) is a quadratic polynomial given by

P (E) = �E2(⇡r2i + |⌦|) + E|@⌦|+ 2⇡E1(D) (E1(D)� 1) .
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Step 5. “Conclusion”.

From the exact solution when ⌦ = D we have

E1(D)� 1 �
p
2� 1 > 0.

Thus, the discriminant of P ,

�P = |@⌦|2 + 8⇡E1(D) (E1(D)� 1) (⇡ r2i + |⌦|) � 0.

Therefore, P has two real roots and as P (0) > 0, the only positive root is

Ecrit =
|@⌦|+

p
�P

2(⇡ r2i + |⌦|) .

One gets,

µ⌦
(Ecrit) 

P (Ecrit)

⇡ r2i + |⌦| = 0,

and by Lemma 1 and Theorem 3 we finally get,

E1(⌦)  Ecrit,

and we are done.
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Numerical evidence supporting 
 the RFK conjecture  
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