Upper and lower bounds for

some shape functionals

Giuseppe Buttazzo
Dipartimento di Matematica
Università di Pisa
buttazzo@dm.unipi.it
http://cvgmt.sns.it

"Shape Optimisation and Geometric Spectral Theory"
ICMS, Bayes Centre, Edinburgh
19-23 September 2022

We study two quantities occurring in elliptic PDEs. The first quantity is usually called torsional rigidity and is defined as

$$
T(\Omega)=\int_{\Omega} u d x
$$

where u is the solution of the Poisson equation

$$
-\Delta u=1 \text { in } \Omega, \quad u \in H_{0}^{1}(\Omega) .
$$

In the thermal diffusion model $T(\Omega) /|\Omega|$ is the average temperature (after a long time) of a conducting medium Ω with uniformly distributed heat sources ($f=1$).

The second quantity is the first eigenvalue of the Dirichlet Laplacian

$$
\lambda(\Omega)=\min \left\{\frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega} u^{2} d x}: u \in H_{0}^{1}(\Omega) \backslash\{0\}\right\}
$$

In the thermal diffusion model, by the Fourier analysis,

$$
u(t, x)=\sum_{k \geq 1} e^{-\lambda_{k} t}\left\langle u_{0}, u_{k}\right\rangle u_{k}(x)
$$

so $\lambda(\Omega)$ represents the decay rate in time of the temperature when an initial temperature is given and no heat sources are present.

Under the measure constraint $|\Omega|=m$, the highest $T(\Omega)$ is given by a ball (Saint Venant inequality); similarly, the smallest $\lambda(\Omega)$ is given by a ball (Faber-Krahn inequality). We then want to study if

$$
\lambda(\Omega) \sim T^{-1}(\Omega)
$$

or more generally, for a suitable $q>0$

$$
\lambda(\Omega) \sim T^{-q}(\Omega)
$$

where by $A(\Omega) \sim B(\Omega)$ we mean

$$
0<c_{1} \leq A(\Omega) / B(\Omega) \leq c_{2}<+\infty \quad \text { for all } \Omega
$$

We also aim to study the so-called BlaschkeSantaló diagram for $\lambda(\Omega)$ and $T(\Omega)$. This consists in identifying the subset $E \subset \mathbf{R}^{2}$

$$
E=\{(x, y): x=T(\Omega), y=\lambda(\Omega)\}
$$

where Ω runs among the admissible sets. In this way, minimizing a quantity like

$$
F(T(\Omega), \lambda(\Omega))
$$

is reduced to the optimization problem in \mathbf{R}^{2}

$$
\min \{F(x, y):(x, y) \in E\}
$$

The difficulty consists in the fact that characterizing the set E is hard. Here we only give some bounds by studying the inf and sup of $\lambda(\Omega) T^{q}(\Omega)$ when $|\Omega|=m$.

Since the two quantities scale as:

$$
T(t \Omega)=t^{d+2} T(\Omega), \quad \lambda(t \Omega)=t^{-2} \lambda(\Omega)
$$

we may remove the constraint $|\Omega|=1$ and consider the scaling free shape functional

$$
F_{q}(\Omega)=\frac{\lambda(\Omega) T^{q}(\Omega)}{|\Omega|^{(d q+2 q-2) / d}}
$$

that we consider on various classes of admissible domains.

Research made with

- Michiel van den Berg

University of Bristol, UK

- Aldo Pratelli

Università di Pisa, Italy
generalization to the p-Laplacian made with

- Francesca Prinari

Università di Pisa, Italy

- Luca Briani

Università di Pisa, Italy

Some big names from the past:
George Pólya (1887-1985)
Gábor Szegö (1895-1985)

Endre Makai (1915-1987)

Joseph Hersch (1925-2012)
Hans F. Weinberger (1928-2017)

For the relations between $T(\Omega)$ and $\lambda(\Omega)$:

- Kohler-Jobin ZAMP 1978 (L. Brasco COCV 2014 for the nonlinear case)
- van den Berg, B., Velichkov in Birkhäuser 2015
- van den Berg, Ferone, Nitsch, Trombetti Integral Equations Operator Theory 2016
- Lucardesi, Zucco preprint

The Blaschke-Santaló diagram has been studied for other pairs of quantities:

- for $\lambda_{1}(\Omega)$ and $\lambda_{2}(\Omega)$ by D. Bucur, G.B., I. Figueiredo (SIAM J. Math. Anal. 1999);
- for $\lambda_{1}(\Omega)$ and $\operatorname{Per}(\Omega)$ by I. Ftouhi, J. Lamboley (on HAL);
- for $T(\Omega)$ and $\operatorname{cap}(\Omega)$ by M. van den Berg, G.B. (on arxiv and cvgmt);
- for $T(\Omega)$ and $\operatorname{Per}(\Omega)$ by L. Briani, G.B., F. Prinari (on arxiv and cvgmt).

We start by considering the class of all domains (with $|\Omega|=1$). The crucial thresholds are:

- $q=2 /(d+2)$ in which the minimum of $\lambda(\Omega) T^{q}(\Omega)$ is reached when Ω is a ball (KohlerJobin 1978);
- $q=1$ in which (Pólya inequality)

$$
0<\lambda(\Omega) T(\Omega)<1
$$

Actually, we have sup $\lambda(\Omega) T(\Omega)=1$ and a maximizing sequence is made by finely perforated domains.

The finely perforated domains:
$\varepsilon=$ distance between holes $r_{\varepsilon}=$ radius of a hole $r_{\varepsilon} \sim \varepsilon^{d /(d-2)}$ if $d>2, \quad r_{\varepsilon} \sim e^{-1 / \varepsilon^{2}}$ if $d=2$.

Summarizing: for all domains we have

	General domains Ω	
$0<q \leq 2 /(d+2)$	$\min F_{q}(\Omega)=F_{q}(B)$	$\sup F_{q}(\Omega)=+\infty$
$2 /(d+2)<q<1$	$\inf F_{q}(\Omega)=0$	$\sup F_{q}(\Omega)=+\infty$
$q=1$	$\inf F_{q}(\Omega)=0$	$\sup F_{q}(\Omega)=1$
$q>1$	$\inf F_{q}(\Omega)=0$	$\sup F_{q}(\Omega)<+\infty$

The Blaschke-Santaló diagram with $d=2$, for $x=$ $\lambda(B) / \lambda(\Omega)$ and $y=T(\Omega) / T(B)$ is contained in the colored region.

In the Blaschke-Santaló diagram with $d=2$, the colored region can be reached by domains Ω made by union of disjoint disks.

The full Blaschke-Santaló diagram in the case $d=1$, where $x=\pi^{2} / \lambda(\Omega)$ and $y=12 T(\Omega)$.

The case Ω convex

If we consider only convex domains Ω, the Blaschke-Santaló diagram is clearly smaller. For the dimension $d=2$ the conjecture is

$$
\frac{\pi^{2}}{24} \leq \frac{\lambda(\Omega) T(\Omega)}{|\Omega|} \leq \frac{\pi^{2}}{12} \quad \text { for all } \Omega
$$

where the left side corresponds to Ω a thin triangle and the right side to Ω a thin rectangle.

If the Conjecture for convex domains is true, the Blaschke-Santaló diagram is contained in the colored region.

At present the only available inequalities are the ones of [BFNT2016]: for every $\Omega \subset \mathbf{R}^{2}$ convex

$$
0.2056 \approx \frac{\pi^{2}}{48} \leq \frac{\lambda(\Omega) T(\Omega)}{|\Omega|} \leq 0.9999
$$

instead of the bounds provided by the conjecture, which are

$$
\begin{cases}\pi^{2} / 24 \approx 0.4112 & \text { from below } \\ \pi^{2} / 12 \approx 0.8225 & \text { from above }\end{cases}
$$

In dimensions $d \geq 3$ the conjecture is

$$
\frac{\pi^{2}}{2(d+1)(d+2)} \leq \frac{\lambda(\Omega) T(\Omega)}{|\Omega|} \leq \frac{\pi^{2}}{12}
$$

- the right side asymptotically reached by a thin slab

$$
\Omega_{\varepsilon}=\left\{\left(x^{\prime}, t\right): 0<t<\varepsilon\right\}
$$

with $x^{\prime} \in A_{\varepsilon}$, being A_{ε} a $d-1$ dimensional ball of measure $1 / \varepsilon$

- the left side asymptotically reached by a thin cone based on A_{ε} above and with height $d \varepsilon$.

The convexity assumption on the admissible domains provides a strong extra compactness that allows to prove the existence of optimal domains in the cases:
$\left\{\max \left\{\lambda(\Omega) T^{q}(\Omega): \Omega\right.\right.$ convex, $\left.|\Omega|=1\right\}$ if $q>1$
$\min \left\{\lambda(\Omega) T^{q}(\Omega): \Omega\right.$ convex, $\left.|\Omega|=1\right\}$ if $q<1$.
This is obtained by showing that maximizing (resp. minimizing) sequences Ω_{n} are not too thin, in the sense that

$$
\frac{\operatorname{inradius}\left(\Omega_{n}\right)}{\operatorname{diameter}\left(\Omega_{n}\right)} \geq c_{d, q}
$$

where $c_{d, q}>0$ depends only on d and q.

Summarizing: for convex domains we have

	Convex domains Ω	
$q<1$	$\min F_{q}(\Omega)>0$	$\sup F_{q}(\Omega)=+\infty$
$q=1$	$\inf F_{1}(\Omega)=C_{d}^{-}>0$	$\sup F_{1}(\Omega)=C_{d}^{+}<1$
$q>1$	$\inf F_{q}(\Omega)=0$	$\max F_{q}(\Omega)<+\infty$

The only case in which the conjecture has been proved (van den Berg-B.-Pratelli) is the case of thin domains, that is
$\Omega_{\varepsilon}=\left\{(s, t): s \in A, \varepsilon h_{-}(s)<t<\varepsilon h_{+}(s)\right\}$
where ε is a small positive parameter and h_{-}, h_{+}are two given functions ($h=h_{+}-h_{-}$ is the local thickness function).

By using the asymptotics (as $\varepsilon \rightarrow 0$):

$$
\begin{aligned}
& \lambda\left(\Omega_{\varepsilon}\right) \approx \frac{\varepsilon^{-2} \pi^{2}}{\|h\|_{L^{\infty}}^{2}} \quad \text { [Borisov-Freitas 2010] } \\
& T\left(\Omega_{\varepsilon}\right) \approx \frac{\varepsilon^{3}}{12} \int h^{3}(s) d s \quad\left|\Omega_{\varepsilon}\right| \approx \varepsilon \int h(s) d s
\end{aligned}
$$

the problem is reduced to the optimization of a quantity depending on h :

$$
\frac{\lambda\left(\Omega_{\varepsilon}\right) T\left(\Omega_{\varepsilon}\right)}{\left|\Omega_{\varepsilon}\right|} \approx \frac{\pi^{2}}{12} \frac{\int h^{3}(s) d s}{\|h\|_{L^{\infty}}^{2} \int h d s} .
$$

The proof then uses the convexity of Ω_{ε} (concavity of h) and a kind of reverse Hölder inequality.

Plot of 100 experimental domains (left), union of disks (right).

We can show that the Blaschke-Santaló diagram is the region between two graphs:
the function $y=x^{(d+2) / 2}$ from below (KohlerJobin bound);
a suitable function $y=h(x)$ from above, where $h:[0,1] \rightarrow[0,1]$ is increasing and with

$$
\begin{gathered}
x^{(d+2) / 2}\left(\left[x^{-d / 2}\right]+\left(x^{-d / 2}-\left[x^{-d / 2}\right]\right)^{(d+2) / d}\right) \\
\leq h(x) \leq \frac{x d(d+2)^{2}}{2 x d+(d+2) \lambda(B)}
\end{gathered}
$$

This is obtained by using the so-called Continuous Steiner Symmetrization, developed by F. Brock (1995). This consists in deforming a set Ω obtaining a family Ω_{t} with $t \in[0,1]$, with the properties:

$$
\Omega_{0}=\Omega, \quad \Omega_{1}=B, \quad\left|\Omega_{t}\right|=|\Omega| \forall t
$$

$\lambda\left(\Omega_{t}\right)$ decreasing, $\quad T\left(\Omega_{t}\right)$ increasing.
Unfortunately, the map $t \mapsto\left(\lambda\left(\Omega_{t}\right), T\left(\Omega_{t}\right)\right)$ is not continuous in general (only if Ω is convex) because this phenomenon may occur.

Discontinuities occur when an internal "fracture" appears.

It would be very interesting to obtain a deformation $t \mapsto \Omega_{t}$ really continuous, that we (A. Pratelli and I) believe possible. Nevertheless, we can show that this is true for a dense family of sets, namely for every polyhedral domain Ω.

This is enough to conclude that the BlaschkeSantaló diagram E is the region between two graphs, because we can prove that:
$\left\{\begin{array}{l}E \text { is convex horizontally } \\ E \text { is convex vertically }\end{array}\right.$
$(0,1)$

$(0,0)$

Horizontal and vertical convexity of the Blaschke-Santaló diagram.

Open questions

- characterize sup $\lambda(\Omega) T^{q}(\Omega)$ when $q>1$; $|\Omega|=1$
- prove (or disprove) the conjecture for convex sets;
- simply connected domains or star-shaped domains? The bounds may change;
- full Blaschke-Santaló diagram;
- p-Laplacian instead of Laplacian?
- efficient experiments (random domains?).

The case $p=\infty$. We have as $p \rightarrow \infty$

$$
\left\{\begin{array}{l}
\left(T_{p}(\Omega)\right)^{1 / p} \rightarrow \int_{\Omega} \operatorname{dist}_{\partial \Omega} d x \\
\left(\lambda_{p}(\Omega)\right)^{1 / p} \rightarrow\left\|\operatorname{dist}_{\partial \Omega}\right\|_{\infty}^{-1}
\end{array}\right.
$$

so that for the limit shape functional we have
$\left(\frac{\lambda_{p}(\Omega) T_{p}(\Omega)}{|\Omega|^{p-1}}\right)^{1 / p} \rightarrow \frac{\int_{\Omega} \operatorname{dist}_{\partial \Omega} d x}{|\Omega|| | \operatorname{dist}_{\partial \Omega} \|_{\infty}}=F_{\infty}(\Omega)$.
Problem Is it true that (when $d=2$)
$\sup _{\Omega} F_{\infty}(\Omega)=\frac{1}{|E|} \int_{E}|x| d x=\frac{1}{3}+\frac{\log 3}{4} \approx 0.608$
where E is the regular unitary exagon?

A planar domain that should asymptotically give the supremum of F_{∞}.

