Maximization of Neumann eigenvalues

Dorin Bucur joint works with A. Henrot, E. Martinet, M. Nahon, E. Oudet, R. Laugesen

Shape Optimisation and Geometric Spectral Theory ICMS Edinbuyrgh, September 20, 2022 $\Omega \subseteq \mathbb{R}^{\textit{N}}$, open, bounded, Lipschitz

$$\begin{cases} -\Delta u = \mu u \text{ in } \Omega \\ \frac{\partial u}{\partial n} = 0 \ \partial \Omega \end{cases}$$

$$0 = \mu_0 \leq \mu_1 \leq \mu_2 \leq \ldots \leq \mu_k \leq \rightarrow +\infty$$

are the first k-eigenvalues of the Neumann Laplacian,

$$\mu_k(\Omega) = \min_{S \in \mathscr{S}_{k+1}} \max_{u \in S \setminus \{0\}} \frac{\int_{\Omega} |\nabla u|^2 dx}{\int_{\Omega} u^2 dx},$$

where \mathscr{S}_k is the family of all subspaces of dimension k in $H^1(\Omega)$.

Problem

$$\max\{\mu_k(\Omega):\Omega\subseteq\mathbb{R}^N, |\Omega|=m\}.$$

Equivalently

$$\max_{\Omega\subseteq\mathbb{R}^N} |\Omega|^{\frac{2}{N}} \mu_k(\Omega).$$

- Existence of a solution: optimal domain
- Qualitative properties of the optimal domain: regularity of the boundary, symmetry, topological properties
- Identify the optimal shape: analytically (is it the ball ?), otherwise numerical approximations

Related to the Pólya conjecture

$$orall k \in \mathbb{N}, \hspace{0.1in} \mu_k(\Omega) \leq rac{4\pi^2 k^{rac{2}{N}}}{(\omega_N |\Omega|)^{rac{2}{N}}}.$$

Numerical computations for Neumann eigenvalues

Figure: P. Antunes, E. Oudet, Numerical results for extremal problem for eigenvalues of the Laplacian. Shape optimization and spectral theory, 398?411, De Gruyter Open, Warsaw, 2017 (previous computations by Antunes-Freitas 2012, Berger 2015)

- Szegö 1954: the disc maximizes $|\Omega|\mu_1(\Omega),$ in \mathbb{R}^2 among smooth simply connected sets
- Weinberger 1956: the ball maximizes $|\Omega|^{\frac{2}{N}} \mu_1(\Omega)$, in \mathbb{R}^N
- Girouard, Nadirashvili, Polterovich 2008: the union of two equal disjoint discs maximizes $|\Omega|\mu_2(\Omega)$, in \mathbb{R}^2 among smooth simply connected sets.
- Polyquin and Roy-Fortin 2010, μ_{22} is not maximized by a ball or union of balls.
- B., Henrot 2019: the union of two equal disjoint balls maximizes $|\Omega|^{\frac{2}{N}} \mu_2(\Omega)$, in \mathbb{R}^N among Lipschitz sets and more.
- Freitas, Laugesen 2020: a different topological argument for μ_2 .

Let $ho:\mathbb{R}^N o [0,1]$, $ho\in L^1(\mathbb{R}^N)$.

For every $k \ge 1$, we define

$$\widetilde{\mu}_k(\rho) := \inf_{S \in \mathscr{L}_k} \max_{u \in S} \frac{\int_{\mathbb{R}^N} \rho |\nabla u|^2 dx}{\int_{\mathbb{R}^N} \rho u^2 dx},$$

where \mathscr{L}_k is the family of all subspaces of dimension k in

$$\{u \cdot 1_{\{\rho(x) > 0\}} : u \in C_c^{\infty}(\mathbb{R}^N), \int_{\mathbb{R}^N} \rho \, u dx = 0\}.$$
(1)

If $\boldsymbol{\Omega}$ is bounded and Lipschitz then for

 $ho=1_\Omega$

we have

$$\forall k \in \mathbb{N}, \ \tilde{\mu}_k(\rho) = \mu_k(\Omega).$$

Theorem (B., Henrot 2019)

Let
$$\rho : \mathbb{R}^{N} \to [0,1]$$
, $\rho \in L^{1}(\mathbb{R}^{N})$. Then
• $\mu_{1}(\rho)(\int_{\mathbb{R}^{N}} \rho \, dx)^{\frac{2}{N}} \le |B_{1}|^{\frac{2}{N}} \mu_{1}(B_{1})$
• $\mu_{2}(\rho)(\int_{\mathbb{R}^{N}} \rho \, dx)^{\frac{2}{N}} \le 2^{\frac{2}{N}} |B_{1}|^{\frac{2}{N}} \mu_{1}(B_{1})$

Main (intuitive) conclusion: if an inequality is proved by mass transplantation for open, Lipschitz sets, then it occurs for densities.

Does problem

$$\sup\{\mu_k(
ho):
ho:\mathbb{R}^N o [0,1],\int_{\mathbb{R}^N}
ho\,dx=m\},$$

or its scale invariant version

$$\mu_k^* := \sup\{\left(\int_{\mathbb{R}^N} \rho \, dx\right)^{\frac{2}{N}} \mu_k(\rho) : \rho : \mathbb{R}^N \to [0,1]\},$$

have a solution for every k?

- What is the geometry of the optimal densities?
- Does the Pólya conjecture hold for densities? I mean: is there any chance for this assertion to hold?

Take a maximizing sequence $(\rho_n)_n$. For a subqsequence we have

$$\rho_n \rightharpoonup \rho \quad \text{weakly} - * \text{in } L^{\infty}(\mathbb{R}^N).$$

Moreover

$$\mu_k(\rho) \geq \limsup_{n \to \infty} \mu_k(\rho_n)!$$

But the constraint is not preserved !!!

We do not have, in general,
$$\int_{\mathbb{R}^N}
ho \, dx = m$$
, since $1
ot \in L^1(\mathbb{R}^N).$

Surgery not possible...

• Compactness. There exists a subsequnce $(\rho_{n_j})_j$ and a sequence of vectors $y_{n_j} \in \mathbb{R}^N$ such that

$$\rho_{n_j}(y_{n_j}+\cdot)
ightarrow
ho$$
, weakly-* in $L^{\infty}(\mathbb{R}^N)$

and $\int_{\mathbb{R}^N} \rho dx = m$. This is good !

• Vanishing. For every R > 0, we have that

$$\sup_{y\in\mathbb{R}^N}\int_{B(y,R)}\rho_ndx\to 0, \text{ when } n\to\infty.$$

• Dichotomy. There exists a subsequence $(\rho_{n_j})_j$ and a sequence of vectors $y_{n_i} \in \mathbb{R}^N$ such that

$$ho_{n_j}(y_{n_j}+\cdot)
ightarrow
ho$$
, weakly-* in $L^{\infty}(\mathbb{R}^N)$

and $0 < \int_{\mathbb{R}^N} \rho \, dx < m$ (and is maximal).

Lemma

Let
$$\rho \in L^1(\mathbb{R}^N, [0, 1])$$
, $\int_{\mathbb{R}^N} \rho dx = m$, such that $\mu_k(\rho) > 0$. There exists a ball
 B_{x,R^*} with
 $R^* = \sqrt{\frac{4(k+1)}{c_N \mu_k(\rho)}}$
such that
 $\int_{B_{x,R^*}} \rho dx \ge \frac{c_N m}{k+1}$.

Consequence: no vanishing!

Lemma

Let $\rho \in L^1(\mathbb{R}^N, [0,1])$, $\int_{\mathbb{R}^N} \rho dx = m$, such that $\rho = \rho_0 + \rho_1 + \dots + \rho_j$ and let R > 0. Assume that

 $\forall 1 \leq l \neq i \leq j, \ dist(\{\rho_l > 0\}, \{\rho_i > 0\}) \geq 3R.$

Moreover, assume $\forall 1 \leq l \leq j$, $m_l = \int \rho_l dx > 0$ and denote $m_0 = \int \rho_0 dx$. Then, for every $l \in 1,...,j$, there exists $R_l^* > 0$ and $x_l \in \mathbb{R}^N$ satisfying

$$\frac{1}{R_l^*} \ge \left[\frac{1}{2} \left(\frac{\mu_k(\rho)c_N m_l}{(k+1)(m_l+m_0)}\right)^{\frac{1}{2}} - \frac{1}{2R}\right]^+$$
(2)

and

$$\int_{B_{x_I,R_I^*}} \rho_I \geq \frac{c_N m_I}{k+1}.$$

Consequence: there exists at mots k concentration of masses.

Theorem (B.-Martinet-Oudet 2022)

The following problem

$$\max\{\mu_k(\rho): 0 \le \rho \le 1, \int_{\mathbb{R}^N} \rho \, dx = m\}$$

has a solution (as a collection of at most k densities).

• Key question : is it true that the optimal $\rho=1_\Omega$ for some characteristic function ?

In general, regularity not possible here...

Assume $\Omega =$ union of intervals.

Then $\max \mu_k(\Omega)|\Omega|^2$ is maximal on a union of k equal intervals, possibly joining at their extremities.

What about

 $\max_{\rho} \mu_k(\rho) \left(\int_{\mathbb{R}} \rho \, dx \right)^2 ?$

One dimension of the space

Theorem (B.M.O. 2022)

In \mathbb{R} , $\forall k \in \mathbb{N}$

$$\mu_k(\rho)\Big(\int_{\mathbb{R}}\rho\,dx\Big)^2\leq\pi^2k^2.$$

Equality is attained for ρ being the characteristic function associated to the union of at most k open, pairwise disjoint segments of total length equal to $m := \int_{\mathbb{R}} \rho dx$, each one with length an entire multiple of $\frac{m}{k}$.

Corollary (Sturm-Liouville eigenvalues)

Let $(\alpha,\beta) \subseteq \mathbb{R}$ be an interval and $\rho_1,\rho_2: [\alpha,\beta] \to \mathbb{R}$ be positive C^1 functions. We consider the eigenvalue problem

$$\begin{cases} -(\rho_1 u')' = \mu_k \rho_2 u \text{ on } (\alpha, \beta) \\ u'(\alpha) = u'(\beta) = 0 \end{cases}$$

Then

$$\forall k \ge 0, \ \mu_k \le \frac{\|\rho_2\|_{\infty}}{\|\rho_1\|_{\infty}} \frac{\pi^2 k^2}{\min(\frac{\int_{\alpha}^{\beta} \rho_1}{\|\rho_1\|_{\infty}}, \frac{\int_{\alpha}^{\beta} \rho_2}{\|\rho_2\|_{\infty}})^2}$$

• It holds in \mathbb{R}^1

$$\forall k \in \mathbb{N}, \ \mu_k(\rho) \leq \frac{\pi^2 k^2}{\left(\int_{\mathbb{R}} \rho \, dx\right)^2}.$$

• Kröger inequalities 1992 in \mathbb{R}^N

$$\mu_k(\Omega) \leq 4\pi^2 \left(rac{(N+2)k}{2\omega_N}rac{1}{|\Omega|}
ight)^{2/N}$$

Theorem (B.M.O. 2022)

Let $N\geq 2$, $ho\in L^1(\mathbb{R}^N,[0,1])$, $ho
ot\equiv 0$. Then

$$\forall k \in \mathbb{N}, \ \mu_k(\rho) \leq 4\pi^2 \left(\frac{(N+2)k}{2\omega_N} \frac{1}{||\rho||_1} \right)^{2/N},$$

where ω_N is the volume of the unit ball of \mathbb{R}^N .

Previous results obtained by Colbois, El Soufi, Savo 2015 with generic constant.

Figure: P. Antunes, E. Oudet, *Numerical results for extremal problem for eigenvalues of the Laplacian. Shape optimization and spectral theory*, 398?411, De Gruyter Open, Warsaw, 2017 (previous computations by Antunes-Freitas 2012, Berger 2015)

Numerical approximation

Figure: Approximation of the first eight optimal densities, D. Bucur, E. Martinet, E. Oudet, *Maximization of Neumann eigenvalues*, Arxiv arXiv:arXiv:2204.11472v2, 2022.

	μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_7	μ_8
Multiplicity	2	2	3	3	3	4	4	4
Optimal densities	10.65	21.28	32.92	43.90	54.47	67.25	77.96	89.47
Optimal shapes, Antunes-Freitas [2]			32.79	43.43	54.08	67.04	77.68	89.22
Union of discs	10.65	21.30	31.95	42.60	53.25	63.90	74.55	88.85

What happens on the Euclidean sphere $\mathbb{S}^n \subseteq \mathbb{R}^{n+1}$

For
$$\Omega \subseteq \mathbb{S}^n$$
,
$$\begin{cases} -\Delta_{\mathbb{S}^n} u = \mu_k(\Omega) u \text{ in } \Omega, \\ \frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega. \end{cases}$$

Theorem (Ashbaugh-Benguria 1995)

Let $m \leq \frac{|\mathbb{S}^n|}{2}$. If $\Omega \subseteq \mathbb{S}^n \cap \{x_1 \geq 0\}$ (i.e. in a hemisphere) and $|\Omega| = m$, then $\mu_1(\Omega) \leq \mu_1(B^m)$.

Can one remove the hemisphere inclusion condition ? Can one consider $|S^n| > m > \frac{|S^n|}{2}$?

Numerical computations by Eloi Martinet...

... and intriguing answers.

Theorem (B., Martinet, Nahon, 2022) Let $0 < m < |\mathbb{S}^n|$. If $\Omega \subseteq \mathbb{S}^n$ and $|\Omega| = m$, then $\mu_2(\Omega) \le \mu_1(B^{\frac{m}{2}})$.

Or, more general

$$\sum_{k=2}^{n} \frac{1}{\mu_k(\Omega)} \geq \frac{n-1}{\mu_1(B^{m/2})}.$$

Main observation : no mass or hemisphere constraint...

Theorem (B., Martinet, Nahon, 2022)

Let $m \leq \frac{|\mathbb{S}^n|}{2}$. If $\Omega \subseteq \mathbb{S}^n \setminus B^m$ (i.e. in a complement of a geodesic ball of mass m) and $|\Omega| = m$, then

 $\mu_1(\Omega) \leq \mu_1(B^m).$

And also true for densities.

Can one remove the inclusion condition ?

Figure: Approximation of the first eight optimal densities, D. Bucur, E. Martinet, M. Nahon, *Sharp inequalities for Neumann eigenvalues on the sphere*, Arxiv arXiv:2208.11413v1, 2022.

What about $m > \frac{|S^n|}{2}$?

The maximality of the spherical shell is false:

- Numerical computations by Martinet.
- Analytical proof by B., Laugesen, Martinet, Nahon (ongoing work).

Thank you for your attention!

26/26