Maximization of Neumann eigenvalues

Dorin Bucur
joint works with
A. Henrot, E. Martinet, M. Nahon, E. Oudet, R. Laugesen

Shape Optimisation and Geometric Spectral Theory ICMS Edinbuyrgh, September 20, 2022

Neumann eigenvalues

$\Omega \subseteq \mathbb{R}^{N}$, open, bounded, Lipschitz

$$
\begin{gathered}
\left\{\begin{aligned}
-\Delta u & =\mu u \text { in } \Omega \\
\frac{\partial u}{\partial n} & 0 \partial \Omega
\end{aligned}\right. \\
0=\mu_{0} \leq \mu_{1} \leq \mu_{2} \leq \ldots \leq \mu_{k} \leq \rightarrow+\infty
\end{gathered}
$$

are the first k-eigenvalues of the Neumann Laplacian,

$$
\mu_{k}(\Omega)=\min _{S \in \mathscr{S}_{k+1}} \max _{u \in S \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{2} d x}{\int_{\Omega} u^{2} d x}
$$

where \mathscr{S}_{k} is the family of all subspaces of dimension k in $H^{1}(\Omega)$.
Problem

$$
\max \left\{\mu_{k}(\Omega): \Omega \subseteq \mathbb{R}^{N},|\Omega|=m\right\}
$$

Equivalently

$$
\max _{\Omega \subseteq \mathbb{R}^{N}}|\Omega|^{\frac{2}{N}} \mu_{k}(\Omega)
$$

- Existence of a solution: optimal domain
- Qualitative properties of the optimal domain: regularity of the boundary, symmetry, topological properties
- Identify the optimal shape: analytically (is it the ball ?), otherwise numerical approximations

Related to the Pólya conjecture

$$
\forall k \in \mathbb{N}, \quad \mu_{k}(\Omega) \leq \frac{4 \pi^{2} k^{\frac{2}{N}}}{\left(\omega_{N}|\Omega|\right)^{\frac{2}{N}}}
$$

Numerical computations for Neumann eigenvalues

Figure: P. Antunes, E. Oudet, Numerical results for extremal problem for eigenvalues of the Laplacian. Shape optimization and spectral theory, 398?411, De Gruyter Open, Warsaw, 2017 (previous computations by Antunes-Freitas 2012, Berger 2015)

- Szegö 1954: the disc maximizes $|\Omega| \mu_{1}(\Omega)$, in \mathbb{R}^{2} among smooth simply connected sets
- Weinberger 1956: the ball maximizes $|\Omega|^{\frac{2}{N}} \mu_{1}(\Omega)$, in \mathbb{R}^{N}
- Girouard, Nadirashvili, Polterovich 2008: the union of two equal disjoint discs maximizes $|\Omega| \mu_{2}(\Omega)$, in \mathbb{R}^{2} among smooth simply connected sets.
- Polyquin and Roy-Fortin 2010, μ_{22} is not maximized by a ball or union of balls.
- B., Henrot 2019: the union of two equal disjoint balls maximizes $|\Omega|^{\frac{2}{N}} \mu_{2}(\Omega)$, in \mathbb{R}^{N} among Lipschitz sets and more.
- Freitas, Laugesen 2020: a different topological argument for μ_{2}.

Let $\rho: \mathbb{R}^{N} \rightarrow[0,1], \rho \in L^{1}\left(\mathbb{R}^{N}\right)$.
For every $k \geq 1$, we define

$$
\tilde{\mu}_{k}(\rho):=\inf _{S \in \mathscr{\mathscr { L }}_{k}} \max _{u \in S} \frac{\int_{\mathbb{R}^{N}} \rho|\nabla u|^{2} d x}{\int_{\mathbb{R}^{N}} \rho u^{2} d x},
$$

where \mathscr{L}_{k} is the family of all subspaces of dimension k in

$$
\begin{equation*}
\left\{u \cdot 1_{\{\rho(x)>0\}}: u \in C_{c}^{\infty}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}} \rho u d x=0\right\} . \tag{1}
\end{equation*}
$$

If Ω is bounded and Lipschitz then for

$$
\rho=1_{\Omega}
$$

we have

$$
\forall k \in \mathbb{N}, \tilde{\mu}_{k}(\rho)=\mu_{k}(\Omega) .
$$

> Theorem (B., Henrot 2019)
> Let $\rho: \mathbb{R}^{N} \rightarrow[0,1], \rho \in L^{1}\left(\mathbb{R}^{N}\right)$. Then
> - $\mu_{1}(\rho)\left(\int_{\mathbb{R}^{N}} \rho d x\right)^{\frac{2}{N}} \leq\left|B_{1}\right|^{\frac{2}{N}} \mu_{1}\left(B_{1}\right)$
> - $\mu_{2}(\rho)\left(\int_{\mathbb{R}^{N}} \rho d x\right)^{\frac{2}{N}} \leq 2^{\frac{2}{N}}\left|B_{1}\right|^{\frac{2}{N}} \mu_{1}\left(B_{1}\right)$

Main (intuitive) conclusion: if an inequality is proved by mass transplantation for open, Lipschitz sets, then it occurs for densities.

- Does problem

$$
\sup \left\{\mu_{k}(\rho): \rho: \mathbb{R}^{N} \rightarrow[0,1], \int_{\mathbb{R}^{N}} \rho d x=m\right\}
$$

or its scale invariant version

$$
\mu_{k}^{*}:=\sup \left\{\left(\int_{\mathbb{R}^{N}} \rho d x\right)^{\frac{2}{N}} \mu_{k}(\rho): \rho: \mathbb{R}^{N} \rightarrow[0,1]\right\}
$$

have a solution for every k ?

- What is the geometry of the optimal densities?
- Does the Pólya conjecture hold for densities? I mean: is there any chance for this assertion to hold?

Existence of an optimal density

Take a maximizing sequence $\left(\rho_{n}\right)_{n}$. For a subqsequence we have

$$
\rho_{n} \rightharpoonup \rho \text { weakly }-* \text { in } L^{\infty}\left(\mathbb{R}^{N}\right) .
$$

Moreover

$$
\mu_{k}(\rho) \geq \limsup _{n \rightarrow \infty} \mu_{k}\left(\rho_{n}\right)!
$$

But the constraint is not preserved !!!
We do not have, in general, $\int_{\mathbb{R}^{N}} \rho d x=m$, since

$$
1 \notin L^{1}\left(\mathbb{R}^{N}\right)
$$

Surgery not possible...

Concentration compactness principle for $\left(\rho_{n}\right)_{n}$.

- Compactness. There exists a subseqence $\left(\rho_{n_{j}}\right)_{j}$ and a sequence of vectors $y_{n_{j}} \in \mathbb{R}^{N}$ such that

$$
\rho_{n_{j}}\left(y_{n_{j}}+\cdot\right) \rightharpoonup \rho, \text { weakly-* in } L^{\infty}\left(\mathbb{R}^{N}\right)
$$

and $\int_{\mathbb{R}^{N}} \rho d x=m$. This is good!

- Vanishing. For every $R>0$, we have that

$$
\sup _{y \in \mathbb{R}^{N}} \int_{B(y, R)} \rho_{n} d x \rightarrow 0, \text { when } n \rightarrow \infty
$$

- Dichotomy. There exists a subseqence $\left(\rho_{n_{j}}\right)_{j}$ and a sequence of vectors $y_{n_{j}} \in \mathbb{R}^{N}$ such that

$$
\rho_{n_{j}}\left(y_{n_{j}}+\cdot\right) \rightharpoonup \rho, \text { weakly-* in } L^{\infty}\left(\mathbb{R}^{N}\right)
$$

and $0<\int_{\mathbb{R}^{N}} \rho d x<m$ (and is maximal).

Lemma

Let $\rho \in L^{1}\left(\mathbb{R}^{N},[0,1]\right), \int_{\mathbb{R}^{N}} \rho d x=m$, such that $\mu_{k}(\rho)>0$. There exists a ball $B_{x, R^{*}}$ with

$$
R^{*}=\sqrt{\frac{4(k+1)}{c_{N} \mu_{k}(\rho)}}
$$

such that

$$
\int_{B_{x, R^{*}}} \rho d x \geq \frac{c_{N} m}{k+1} .
$$

Consequence: no vanishing!

Lemma

Let $\rho \in L^{1}\left(\mathbb{R}^{N},[0,1]\right), \int_{\mathbb{R}^{N}} \rho d x=m$, such that $\rho=\rho_{0}+\rho_{1}+\cdots+\rho_{j}$ and let $R>0$. Assume that

$$
\forall 1 \leq I \neq i \leq j, \operatorname{dist}\left(\left\{\rho_{I}>0\right\},\left\{\rho_{i}>0\right\}\right) \geq 3 R
$$

Moreover, assume $\forall 1 \leq I \leq j, m_{l}=\int \rho_{l} d x>0$ and denote $m_{0}=\int \rho_{0} d x$. Then, for every $I \in 1, \ldots, j$, there exists $R_{l}^{*}>0$ and $x_{l} \in \mathbb{R}^{N}$ satisfying

$$
\begin{equation*}
\frac{1}{R_{l}^{*}} \geq\left[\frac{1}{2}\left(\frac{\mu_{k}(\rho) c_{N} m_{l}}{(k+1)\left(m_{l}+m_{0}\right)}\right)^{\frac{1}{2}}-\frac{1}{2 R}\right]^{+} \tag{2}
\end{equation*}
$$

and

$$
\int_{B_{x_{1}, R_{l}^{*}}} \rho_{l} \geq \frac{c_{N} m_{l}}{k+1}
$$

Consequence: there exists at mots k concentration of masses.

Theorem (B.-Martinet-Oudet 2022)

The following problem

$$
\max \left\{\mu_{k}(\rho): 0 \leq \rho \leq 1, \int_{\mathbb{R}^{N}} \rho d x=m\right\}
$$

has a solution (as a collection of at most k densities).

- Key question: is it true that the optimal $\rho=1_{\Omega}$ for some characteristic function?

In general, regularity not possible here...

Assume $\Omega=$ union of intervals.
Then $\max \mu_{k}(\Omega)|\Omega|^{2}$ is maximal on a union of k equal intervals, possibly joining at their extremities.

What about

$$
\max _{\rho} \mu_{k}(\rho)\left(\int_{\mathbb{R}} \rho d x\right)^{2} ?
$$

Theorem (B.M.O. 2022)

$\ln \mathbb{R}, \forall k \in \mathbb{N}$

$$
\mu_{k}(\rho)\left(\int_{\mathbb{R}} \rho d x\right)^{2} \leq \pi^{2} k^{2}
$$

Equality is attained for ρ being the characteristic function associated to the union of at most k open, pairwise disjoint segments of total length equal to $m:=\int_{\mathbb{R}} \rho d x$, each one with length an entire multiple of $\frac{m}{k}$.

Corollary (Sturm-Liouville eigenvalues)

Let $(\alpha, \beta) \subseteq \mathbb{R}$ be an interval and $\rho_{1}, \rho_{2}:[\alpha, \beta] \rightarrow \mathbb{R}$ be positive C^{1} functions. We consider the eigenvalue problem

$$
\left\{\begin{array}{r}
-\left(\rho_{1} u^{\prime}\right)^{\prime}=\mu_{k} \rho_{2} u \text { on }(\alpha, \beta) \\
u^{\prime}(\alpha)=u^{\prime}(\beta)=0
\end{array}\right.
$$

Then

$$
\forall k \geq 0, \mu_{k} \leq \frac{\left\|\rho_{2}\right\|_{\infty}}{\left\|\rho_{1}\right\|_{\infty}} \frac{\pi^{2} k^{2}}{\min \left(\frac{\int_{\alpha}^{\beta} \rho_{1}}{\left\|\rho_{1}\right\|_{\infty}}, \frac{\int_{\alpha}^{\beta} \rho_{2}}{\left\|\rho_{2}\right\|_{\infty}}\right)^{2}}
$$

Pólya conjeture

- It holds in \mathbb{R}^{1}

$$
\forall k \in \mathbb{N}, \mu_{k}(\rho) \leq \frac{\pi^{2} k^{2}}{\left(\int_{\mathbb{R}} \rho d x\right)^{2}}
$$

- Kröger inequalities 1992 in \mathbb{R}^{N}

$$
\mu_{k}(\Omega) \leq 4 \pi^{2}\left(\frac{(N+2) k}{2 \omega_{N}} \frac{1}{|\Omega|}\right)^{2 / N}
$$

Theorem (B.M.O. 2022)

Let $N \geq 2, \rho \in L^{1}\left(\mathbb{R}^{N},[0,1]\right), \rho \not \equiv 0$. Then

$$
\forall k \in \mathbb{N}, \quad \mu_{k}(\rho) \leq 4 \pi^{2}\left(\frac{(N+2) k}{2 \omega_{N}} \frac{1}{\|\rho\|_{1}}\right)^{2 / N}
$$

where ω_{N} is the volume of the unit ball of \mathbb{R}^{N}.
Previous results obtained by Colbois, El Soufi, Savo 2015 with generic constant.

Figure: P. Antunes, E. Oudet, Numerical results for extremal problem for eigenvalues of the Laplacian. Shape optimization and spectral theory, 398?411, De Gruyter Open, Warsaw, 2017 (previous computations by Antunes-Freitas 2012, Berger 2015)

Figure: Approximation of the first eight optimal densities, D. Bucur, E. Martinet, E. Oudet, Maximization of Neumann eigenvalues, Arxiv arXiv:arXiv:2204.11472v2, 2022.

	μ_{1}	μ_{2}	μ_{3}	μ_{4}	μ_{5}	μ_{6}	μ_{7}	μ_{8}
Multiplicity	2	2	3	3	3	4	4	4
Optimal densities	10.65	21.28	32.92	43.90	54.47	67.25	77.96	89.47
Optimal shapes, Antunes-Freitas [2]			32.79	43.43	54.08	67.04	77.68	89.22
Union of discs	10.65	21.30	31.95	42.60	53.25	63.90	74.55	88.85

For $\Omega \subseteq \mathbb{S}^{n}$,

$$
\left\{\begin{array}{l}
-\Delta_{\mathbb{S} n} u=\mu_{k}(\Omega) u \text { in } \Omega, \\
\frac{\partial u}{\partial n}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Theorem (Ashbaugh-Benguria 1995)

Let $m \leq \frac{\left|\mathbb{S}^{n}\right|}{2}$. If $\Omega \subseteq \mathbb{S}^{n} \cap\left\{x_{1} \geq 0\right\}$ (i.e. in a hemisphere) and $|\Omega|=m$, then

$$
\mu_{1}(\Omega) \leq \mu_{1}\left(B^{m}\right) .
$$

Can one remove the hemisphere inclusion condition?
Can one consider $\left|\mathbb{S}^{n}\right|>m>\frac{\left|\mathbb{S}^{n}\right|}{2}$?
Numerical computations by Eloi Martinet...
... and intriguing answers.

Theorem (B., Martinet, Nahon, 2022)
Let $0<m<\left|\mathbb{S}^{n}\right|$. If $\Omega \subseteq \mathbb{S}^{n}$ and $|\Omega|=m$, then

$$
\mu_{2}(\Omega) \leq \mu_{1}\left(B^{\frac{m}{2}}\right) .
$$

Or, more general

$$
\sum_{k=2}^{n} \frac{1}{\mu_{k}(\Omega)} \geq \frac{n-1}{\mu_{1}\left(B^{m / 2}\right)}
$$

Main observation : no mass or hemisphere constraint...

Theorem (B., Martinet, Nahon, 2022)
Let $m \leq \frac{\mathbb{S}^{n} \mid}{2}$. If $\Omega \subseteq \mathbb{S}^{n} \backslash B^{m}$ (i.e. in a complement of a geodesic ball of mass m) and $|\Omega|=m$, then

$$
\mu_{1}(\Omega) \leq \mu_{1}\left(B^{m}\right) .
$$

And also true for densities.

Can one remove the inclusion condition ?

Figure: Approximation of the first eight optimal densities, D. Bucur, E. Martinet, M. Nahon, Sharp inequalities for Neumann eigenvalues on the sphere, Arxiv arXiv:2208.11413v1, 2022.

What about $m>\frac{\left|\mathbb{S}^{n}\right|}{2}$?

The maximality of the spherical shell is false:

- Numerical computations by Martinet.
- Analytical proof by B., Laugesen, Martinet, Nahon (ongoing work).

Thank you for your attention!

