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Neumann Eigenfunctions

Hot Spots Conjecture (Rauch 1974)
If O C R" is convex, and ¢ is the first non-trivial Neumann
eigenfunction, then Vi (x) # 0 for all x € Q.
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How do level sets of (stable) solutions to Au = f(u) fit together?
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Dirichlet Eigenfunctions
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Hessian Conjecture (1994)
If OO C R" is convex, then the first Dirichlet eigenfunction 1y satisfies
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Harmonic Functions

Polya-Szego Capacitary Conjecture (1950)
For n > 3, the extremal for convex () C R" of
1/(n-2)
in cap(Q)
Q U-(aQ)l/(nfl)
Recall, the equilibrium potential u for () in IR" is the harmonic
function in R" \ () satisfying

is a flat disk.

u=1 ondQ; u(x) =0 as x— oo;

u(x) = cap(Q) cu|x[* "+ O(Jx[*™™) as x — oo.



Harmonic Functions

Polya-Szego Capacitary Conjecture (1950)
For n > 3, the extremal for convex () C R" of
1/(n-2)
in cap(Q)
Q 0-(80)1/(1171)
Recall, the equilibrium potential u for () in IR" is the harmonic
function in R" \ () satisfying

is a flat disk.

u=1 ondQ; u(x) =0 as x— oo;

u(x) = cap(Q) cu|x[* "+ O(Jx[*™™) as x — oo.

The common feature of these three conjectures is that they involve
convex level sets of equations of the form Au = f(u). So far, a rather
superficial connection.



A variational principle for level sets

Klartag 2019: The nodal set My = {¢ = 0} is stationary for a
weighted area measure |Vi|do just as minimal surfaces are
stationary for area do.



A variational principle for level sets

Klartag 2019: The nodal set My = {¢ = 0} is stationary for a
weighted area measure |Vi|do just as minimal surfaces are
stationary for area do.

In fact (DJ) The level set flow
dx/dt = (1/|V¢|)N, M := {¢p(x) =1}
decreases flux |Vip|do fastest.



A variational principle for level sets

Klartag 2019: The nodal set My = {¢ = 0} is stationary for a
weighted area measure |Vi|do just as minimal surfaces are
stationary for area do.

In fact (DJ) The level set flow
dx/dt = (1/|V¢|)N, M := {¢p(x) =1}

decreases flux |Vip|do fastest.

d
Proof: — V|, do
roo at JMe+toN vyl

= —AT/ vdo
t=0 My

Moreover, max / vdo constrained by / 0| V| do = 1 is realized by

1

V=Cro
V|



A variational principle for level sets

Klartag 2019: The nodal set My = {¢ = 0} is stationary for a
weighted area measure |Vi|do just as minimal surfaces are
stationary for area do.

In fact (DJ) The level set flow
dx/dt = (1/|V¢|)N, M := {¢p(x) =1}

decreases flux |Vip|do fastest.

d
Proof: — V|, do
roo at JMe+toN vyl

= —AT/ vdo
t=0 My
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Mean curvature flow dx/dt = HN decreases area fastest, so

1/|Vy| «— H



Analogy with mean curvature and Ricci flow

High hopes for the analogy with MCF and Ricci flow:

= Level sets resemble shrinkers.

= Hamilton’s Harnack inequalites, H(x1, 1) ~ H(x,t;), might
prevent | Vi, | from vanishing.

= Hamilton’s curvature pinching estimates could stabilize the
Hessian of .

= Perelman’s non-collapsing and monotonicity could guarantee
“most” level sets of §; are convex.
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High hopes for the analogy with MCF and Ricci flow:

= Level sets resemble shrinkers.

= Hamilton’s Harnack inequalites, H(x1, 1) ~ H(x,t;), might
prevent |V | from vanishing.

= Hamilton’s curvature pinching estimates could stabilize the
Hessian of .

= Perelman’s non-collapsing and monotonicity could guarantee
“most” level sets of §; are convex.

But what does this have to do with Polya-Szego?

Hamilton’s approach is to study oy Sijs athi]-, Ah,-j and other tensors.
Key ingredient: his differential inequalities are sharp, and their form
is dictated solitons, for which they are equalities.

Our solitons will be confocal ellipsoids, the family of examples
motivating the Polya-Szeg6 Conjecture.



Confocal Ellipsoids

Confocal ellipsoids are defined for —a% < —a% <... < —a% < sby
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Confocal Ellipsoids

Confocal ellipsoids are defined for —a3 < —a3 < --- < —a% <sby
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The equilibrium potential U with these levels sets is
1
JE+d) s +a3) - (s+a})

FIRST STEP: For Au =0,

Find geometric invariants of My = {x : u(x) = 7} that are zero for the
solitons U.



Classical Geometry and Affine Geometry

Classical geometry of hypersurfaces

In R", 8]- = (a9/ ax]- is covariant constant:
Val. (aa]) = (ala)a]

The Levi-Civita connection DL€ and 2nd fundamental form A on M
are defined by writing VxY in tangential and normal components:

VxY =DEY+HAX,Y)N (X, Y€ TM)



Classical Geometry and Affine Geometry

Classical geometry of hypersurfaces

In R", 8]- = (a9/ ax]- is covariant constant:
Val. (aa]) = (ala)a]

The Levi-Civita connection DL€ and 2nd fundamental form A on M
are defined by writing VxY in tangential and normal components:

VxY =DEY+HAX,Y)N (X, Y€ TM)

Affine geometry of hypersurfaces
The affine normal y is a transverse SL, invariant vector.

VxY =DLY+AHX,Y)u (X, Y € TM)
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Harmonic Level Set Geometry

We introduce the harmonic normal defined by
v = |VulN - V4| Vu|

with VAf defined by A(V4f,Y) = Yf.
(On ellipsoids, v is the radial vector.)

We define a “harmonic” connection D and quadratic form L on the
level surface M = {u = 7} by

VxY =DxY+L(X,Y)v (X, Y€ TM,)

(The flux |Vu|do is covariant constant with respect to the

connection D on the surface M.)



Higher Harmonic Invariants

Following the analogy with affine geometry, we differentiate the
basic invariants:

Cubic Form: F(X,Y,Z) = (DxL)(Y,Z).

Shape Operator: S(X) = —Vxv (S:TM; — TMx).

The shape operator is symmetric with respect to L, so we can define
another natural quadratic form

L(X,Y) = L(S(X),Y) = L(X, S(Y)).
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Following the analogy with affine geometry, we differentiate the
basic invariants:

Cubic Form: F(X,Y,Z) = (DxL)(Y,Z).

Shape Operator: S(X) = —Vxv (S:TM; — TMx).

The shape operator is symmetric with respect to L, so we can define
another natural quadratic form

L(X,Y) = L(S(X),Y) = L(X, S(Y)).

The properties that indicate that this is the natural choice are
1. F = 0if an only if M is a quadric.
2. In the case u = U, L is the metric on the unit sphere for all 7.



What's Next?

Since 9L = 0 for confocal ellipsoids, we also have, for example,
92Riem = 0,

with RTEB the Riemann curvature tensor of L.

Hamilton’s mean curvature and Ricci flow differential inequalities
are based on the heat operator, d; — Ay, for the intrinsic Laplacian A;
on the evolving manifold M;. We expect ours to be based on the
ordinary Laplace operator A. For any harmonic function u with

Vu # 0, the Laplace operator can be written using the coordinate

u = T and the intrinsic Laplacian A on {u = 7} as

A = |Vu|*d + A



