Level Sets of Eigenfunctions and Harmonic Functions

David Jerison (MIT)

Edinburgh, September 2022

Neumann Eigenfunctions

Hot Spots Conjecture (Rauch 1974)
If $\Omega \subset \mathbb{R}^{n}$ is convex, and ψ_{1} is the first non-trivial Neumann eigenfunction, then $\nabla \psi_{1}(x) \neq 0$ for all $x \in \Omega$.

Neumann Eigenfunctions

Hot Spots Conjecture (Rauch 1974)
If $\Omega \subset \mathbb{R}^{n}$ is convex, and ψ_{1} is the first non-trivial Neumann eigenfunction, then $\nabla \psi_{1}(x) \neq 0$ for all $x \in \Omega$.

How do level sets of (stable) solutions to $\Delta u=f(u)$ fit together?

Dirichlet Eigenfunctions

Rectangle: $\Psi(x)=\prod_{j=1}^{n} \sin \left(k_{j} x_{j}\right), \quad \Omega=\left[0, \pi / k_{1}\right] \times\left[0, \pi / k_{2}\right] \times \cdots$

$$
\frac{\nabla^{2} \Psi(x)}{\Psi(x)} \equiv\left(\begin{array}{cccc}
-k_{1}^{2} & 0 & \cdots & 0 \\
0 & -k_{2}^{2} & \cdots & 0 \\
: & \cdots & \cdots & 0 \\
0 & \cdots & 0 & -k_{n}^{2}
\end{array}\right)
$$

Dirichlet Eigenfunctions

Rectangle: $\Psi(x)=\prod_{j=1}^{n} \sin \left(k_{j} x_{j}\right), \quad \Omega=\left[0, \pi / k_{1}\right] \times\left[0, \pi / k_{2}\right] \times \cdots$

$$
\frac{\nabla^{2} \Psi(x)}{\Psi(x)} \equiv\left(\begin{array}{cccc}
-k_{1}^{2} & 0 & \cdots & 0 \\
0 & -k_{2}^{2} & \cdots & 0 \\
: & \cdots & \cdots & 0 \\
0 & \cdots & 0 & -k_{n}^{2}
\end{array}\right)
$$

Hessian Conjecture (1994)
If $\Omega \subset \mathbb{R}^{n}$ is convex, then the first Dirichlet eigenfunction ψ_{0} satisfies

$$
\frac{\nabla^{2} \psi_{0}(x)}{\psi_{0}(x)} \approx \text { constant }
$$

for $\psi_{0}(x)>\frac{1}{2} \max \psi_{0}$.

Harmonic Functions

Polya-Szegö Capacitary Conjecture (1950) For $n \geq 3$, the extremal for convex $\Omega \subset \mathbb{R}^{n}$ of

$$
\inf _{\Omega} \frac{\operatorname{cap}(\Omega)^{1 /(n-2)}}{\sigma(\partial \Omega)^{1 /(n-1)}} \quad \text { is a flat disk. }
$$

Recall, the equilibrium potential u for Ω in \mathbb{R}^{n} is the harmonic function in $\mathbb{R}^{n} \backslash \Omega$ satisfying

$$
\begin{gathered}
u=1 \quad \text { on } \partial \Omega ; \quad u(x) \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty ; \\
u(x)=\operatorname{cap}(\Omega) c_{n}|x|^{2-n}+O\left(|x|^{1-n}\right) \quad \text { as } \quad x \rightarrow \infty .
\end{gathered}
$$

Harmonic Functions

Polya-Szegö Capacitary Conjecture (1950) For $n \geq 3$, the extremal for convex $\Omega \subset \mathbb{R}^{n}$ of

$$
\inf _{\Omega} \frac{\operatorname{cap}(\Omega)^{1 /(n-2)}}{\sigma(\partial \Omega)^{1 /(n-1)}} \quad \text { is a flat disk. }
$$

Recall, the equilibrium potential u for Ω in \mathbb{R}^{n} is the harmonic function in $\mathbb{R}^{n} \backslash \Omega$ satisfying

$$
\begin{gathered}
u=1 \quad \text { on } \partial \Omega ; \quad u(x) \rightarrow 0 \quad \text { as } \quad x \rightarrow \infty ; \\
u(x)=\operatorname{cap}(\Omega) c_{n}|x|^{2-n}+O\left(|x|^{1-n}\right) \quad \text { as } \quad x \rightarrow \infty .
\end{gathered}
$$

The common feature of these three conjectures is that they involve convex level sets of equations of the form $\Delta u=f(u)$. So far, a rather superficial connection.

A variational principle for level sets

Klartag 2019: The nodal set $M_{0}=\{\psi=0\}$ is stationary for a weighted area measure $|\nabla \psi| d \sigma$ just as minimal surfaces are stationary for area $d \sigma$.

A variational principle for level sets

Klartag 2019: The nodal set $M_{0}=\{\psi=0\}$ is stationary for a weighted area measure $|\nabla \psi| d \sigma$ just as minimal surfaces are stationary for area $d \sigma$.

In fact (DJ) The level set flow

$$
d x / d \tau=(1 /|\nabla \psi|) \mathbf{N}, \quad M_{\tau}:=\{\psi(x)=\tau\}
$$

decreases flux $|\nabla \psi| d \sigma$ fastest.

A variational principle for level sets

Klartag 2019: The nodal set $M_{0}=\{\psi=0\}$ is stationary for a weighted area measure $|\nabla \psi| d \sigma$ just as minimal surfaces are stationary for area $d \sigma$.

In fact (DJ) The level set flow

$$
d x / d \tau=(1 /|\nabla \psi|) \mathbf{N}, \quad M_{\tau}:=\{\psi(x)=\tau\}
$$

decreases flux $|\nabla \psi| d \sigma$ fastest.
Proof: $\quad \frac{d}{d t} \int_{M_{\tau}+t v \mathbf{N}}|\nabla \psi|,\left.d \sigma\right|_{t=0}=-\lambda \tau \int_{M_{\tau}} v d \sigma$
Moreover, $\max \int v d \sigma$ constrained by $\int v^{2}|\nabla \psi| d \sigma=1$ is realized by

$$
v=c \frac{1}{|\nabla \psi|}
$$

A variational principle for level sets

Klartag 2019: The nodal set $M_{0}=\{\psi=0\}$ is stationary for a weighted area measure $|\nabla \psi| d \sigma$ just as minimal surfaces are stationary for area $d \sigma$.

In fact (DJ) The level set flow

$$
d x / d \tau=(1 /|\nabla \psi|) \mathbf{N}, \quad M_{\tau}:=\{\psi(x)=\tau\}
$$

decreases flux $|\nabla \psi| d \sigma$ fastest.
Proof: $\quad \frac{d}{d t} \int_{M_{\tau}+t v \mathbf{N}}|\nabla \psi|,\left.d \sigma\right|_{t=0}=-\lambda \tau \int_{M_{\tau}} v d \sigma$
Moreover, max $\int v d \sigma$ constrained by $\int v^{2}|\nabla \psi| d \sigma=1$ is realized by

$$
v=c \frac{1}{|\nabla \psi|}
$$

Mean curvature flow $d x / d t=H \mathbf{N}$ decreases area fastest, so

$$
1 /|\nabla \psi| \quad \longleftrightarrow H
$$

Analogy with mean curvature and Ricci flow

High hopes for the analogy with MCF and Ricci flow:

- Level sets resemble shrinkers.
- Hamilton's Harnack inequalites, $H\left(x_{1}, t_{1}\right) \approx H\left(x_{2}, t_{2}\right)$, might prevent $\left|\nabla \psi_{1}\right|$ from vanishing.
- Hamilton's curvature pinching estimates could stabilize the Hessian of ψ_{0}.
- Perelman's non-collapsing and monotonicity could guarantee "most" level sets of ψ_{1} are convex.

Analogy with mean curvature and Ricci flow

High hopes for the analogy with MCF and Ricci flow:

- Level sets resemble shrinkers.
- Hamilton's Harnack inequalites, $H\left(x_{1}, t_{1}\right) \approx H\left(x_{2}, t_{2}\right)$, might prevent $\left|\nabla \psi_{1}\right|$ from vanishing.
- Hamilton's curvature pinching estimates could stabilize the Hessian of ψ_{0}.
- Perelman's non-collapsing and monotonicity could guarantee "most" level sets of ψ_{1} are convex.

But what does this have to do with Polya-Szegö?
Hamilton's approach is to study $\partial_{t} g_{i j}, \partial_{t} h_{i j}, \Delta h_{i j}$ and other tensors. Key ingredient: his differential inequalities are sharp, and their form is dictated solitons, for which they are equalities.

Our solitons will be confocal ellipsoids, the family of examples motivating the Polya-Szegö Conjecture.

Confocal Ellipsoids

Confocal ellipsoids are defined for $-a_{1}^{2} \leq-a_{2}^{2} \leq \cdots \leq-a_{n}^{2}<s$ by

$$
\partial \Omega_{s}:=\left\{x \in \mathbb{R}^{n}: \sum_{j=1}^{n} \frac{x_{j}^{2}}{a_{j}^{2}+s}=1\right\} .
$$

The equilibrium potential U with these levels sets is

$$
U(x)=\Phi(s), \quad \Phi^{\prime}(s)=\frac{1}{\sqrt{\left(s+a_{1}^{2}\right)\left(s+a_{2}^{2}\right) \cdots\left(s+a_{n}^{2}\right)}}
$$

Confocal Ellipsoids

Confocal ellipsoids are defined for $-a_{1}^{2} \leq-a_{2}^{2} \leq \cdots \leq-a_{n}^{2}<s$ by

$$
\partial \Omega_{s}:=\left\{x \in \mathbb{R}^{n}: \sum_{j=1}^{n} \frac{x_{j}^{2}}{a_{j}^{2}+s}=1\right\} .
$$

The equilibrium potential U with these levels sets is

$$
U(x)=\Phi(s), \quad \Phi^{\prime}(s)=\frac{1}{\sqrt{\left(s+a_{1}^{2}\right)\left(s+a_{2}^{2}\right) \cdots\left(s+a_{n}^{2}\right)}}
$$

FIRST STEP: For $\Delta u=0$,
Find geometric invariants of $M_{\tau}=\{x: u(x)=\tau\}$ that are zero for the solitons U.

Classical Geometry and Affine Geometry

Classical geometry of hypersurfaces
In $\mathbb{R}^{n}, \partial_{j}=\left(\partial / \partial x_{j}\right.$ is covariant constant:

$$
\nabla_{\partial_{i}}\left(a \partial_{j}\right)=\left(\partial_{i} a\right) \partial_{j}
$$

The Levi-Civita connection $D^{L C}$ and 2nd fundamental form A on M are defined by writing $\nabla_{X} Y$ in tangential and normal components:

$$
\nabla_{X} Y=D_{X}^{L C} Y+A(X, Y) \mathbf{N} \quad(X, Y \in T M)
$$

Classical Geometry and Affine Geometry

Classical geometry of hypersurfaces
In $\mathbb{R}^{n}, \partial_{j}=\left(\partial / \partial x_{j}\right.$ is covariant constant:

$$
\nabla_{\partial_{i}}\left(a \partial_{j}\right)=\left(\partial_{i} a\right) \partial_{j}
$$

The Levi-Civita connection $D^{L C}$ and 2nd fundamental form A on M are defined by writing $\nabla_{X} Y$ in tangential and normal components:

$$
\nabla_{X} Y=D_{X}^{L C} Y+A(X, Y) \mathbf{N} \quad(X, Y \in T M)
$$

Affine geometry of hypersurfaces
The affine normal μ is a transverse $S L_{n}$ invariant vector.

$$
\nabla_{X} Y=D_{X}^{\mu} Y+A^{\mu}(X, Y) \mu \quad(X, Y \in T M)
$$

Harmonic Level Set Geometry

We introduce the harmonic normal defined by

$$
v=|\nabla u| \mathbf{N}-\nabla^{A}|\nabla u|
$$

with $\nabla^{A} f$ defined by $A\left(\nabla^{A} f, Y\right)=Y f$. (On ellipsoids, v is the radial vector.)

Harmonic Level Set Geometry

We introduce the harmonic normal defined by

$$
v=|\nabla u| \mathbf{N}-\nabla^{A}|\nabla u|
$$

with $\nabla^{A} f$ defined by $A\left(\nabla^{A} f, Y\right)=Y f$.
(On ellipsoids, v is the radial vector.)
We define a "harmonic" connection D and quadratic form L on the level surface $M_{\tau}=\{u=\tau\}$ by

$$
\nabla_{X} Y=D_{X} Y+L(X, Y) v \quad\left(X, Y \in T M_{\tau}\right)
$$

Harmonic Level Set Geometry

We introduce the harmonic normal defined by

$$
v=|\nabla u| \mathbf{N}-\nabla^{A}|\nabla u|
$$

with $\nabla^{A} f$ defined by $A\left(\nabla^{A} f, Y\right)=Y f$.
(On ellipsoids, v is the radial vector.)
We define a "harmonic" connection D and quadratic form L on the level surface $M_{\tau}=\{u=\tau\}$ by

$$
\nabla_{X} Y=D_{X} Y+L(X, Y) v \quad\left(X, Y \in T M_{\tau}\right)
$$

(The flux $|\nabla u| d \sigma$ is covariant constant with respect to the connection D on the surface M_{τ}.)

Higher Harmonic Invariants

Following the analogy with affine geometry, we differentiate the basic invariants:

Cubic Form: $\quad F(X, Y, Z)=\left(D_{X} L\right)(Y, Z)$.
Shape Operator: $\quad S(X)=-\nabla_{X} v \quad\left(S: T M_{\tau} \rightarrow T M_{\tau}\right)$.
The shape operator is symmetric with respect to L, so we can define another natural quadratic form

$$
\tilde{L}(X, Y)=L(S(X), Y)=L(X, S(Y))
$$

Higher Harmonic Invariants

Following the analogy with affine geometry, we differentiate the basic invariants:

Cubic Form: $\quad F(X, Y, Z)=\left(D_{X} L\right)(Y, Z)$.
Shape Operator: $\quad S(X)=-\nabla_{X} v \quad\left(S: T M_{\tau} \rightarrow T M_{\tau}\right)$.
The shape operator is symmetric with respect to L, so we can define another natural quadratic form

$$
\tilde{L}(X, Y)=L(S(X), Y)=L(X, S(Y))
$$

The properties that indicate that this is the natural choice are

1. $F \equiv 0$ if an only if M is a quadric.
2. In the case $u=U$, \tilde{L} is the metric on the unit sphere for all τ.

What's Next?

Since $\partial_{\tau} \tilde{L}=0$ for confocal ellipsoids, we also have, for example,

$$
\partial_{\tau}^{2} \widetilde{\operatorname{Riem}}=0,
$$

with $\widetilde{\text { Riem }}$ the Riemann curvature tensor of \tilde{L}.

Hamilton's mean curvature and Ricci flow differential inequalities are based on the heat operator, $\partial_{t}-\Delta_{t}$, for the intrinsic Laplacian Δ_{t} on the evolving manifold M_{t}. We expect ours to be based on the ordinary Laplace operator Δ. For any harmonic function u with $\nabla u \neq 0$, the Laplace operator can be written using the coordinate $u=\tau$ and the intrinsic Laplacian Δ_{τ} on $\{u=\tau\}$ as

$$
\Delta=|\nabla u|^{2} \partial_{\tau}^{2}+\Delta_{\tau} .
$$

