Level Sets of Eigenfunctions and Harmonic Functions

David Jerison (MIT)

Edinburgh, September 2022

Hot Spots Conjecture (Rauch 1974)

If $\Omega \subset \mathbb{R}^n$ is convex, and ψ_1 is the first non-trivial Neumann eigenfunction, then $\nabla \psi_1(x) \neq 0$ for all $x \in \Omega$.

Hot Spots Conjecture (Rauch 1974)

If $\Omega \subset \mathbb{R}^n$ is convex, and ψ_1 is the first non-trivial Neumann eigenfunction, then $\nabla \psi_1(x) \neq 0$ for all $x \in \Omega$.

How do level sets of (stable) solutions to $\Delta u = f(u)$ fit together?

Dirichlet Eigenfunctions

Rectangle: $\Psi(x) = \prod_{j=1}^{n} \sin(k_j x_j), \quad \Omega = [0, \pi/k_1] \times [0, \pi/k_2] \times \cdots$

$$\frac{\nabla^2 \Psi(x)}{\Psi(x)} \equiv \begin{pmatrix} -k_1^2 & 0 & \cdots & 0\\ 0 & -k_2^2 & \cdots & 0\\ \vdots & \cdots & \cdots & 0\\ 0 & \cdots & 0 & -k_n^2 \end{pmatrix}$$

Dirichlet Eigenfunctions

Rectangle: $\Psi(x) = \prod_{j=1}^{n} \sin(k_j x_j), \quad \Omega = [0, \pi/k_1] \times [0, \pi/k_2] \times \cdots$

$$\frac{\nabla^2 \Psi(x)}{\Psi(x)} \equiv \begin{pmatrix} -k_1^2 & 0 & \cdots & 0\\ 0 & -k_2^2 & \cdots & 0\\ \vdots & \cdots & \cdots & 0\\ 0 & \cdots & 0 & -k_n^2 \end{pmatrix}$$

Hessian Conjecture (1994)

If $\Omega \subset \mathbb{R}^n$ is convex, then the first Dirichlet eigenfunction ψ_0 satisfies

$$rac{
abla^2 \psi_0(x)}{\psi_0(x)} pprox ext{ constant}$$

for $\psi_0(x) > \frac{1}{2} \max \psi_0$.

Harmonic Functions

Polya-Szegö Capacitary Conjecture (1950) For $n \ge 3$, the extremal for convex $\Omega \subset \mathbb{R}^n$ of

$$\inf_{\Omega} \ \frac{\operatorname{cap}(\Omega)^{1/(n-2)}}{\sigma(\partial\Omega)^{1/(n-1)}} \quad \text{is a flat disk.}$$

Recall, the equilibrium potential *u* for Ω in \mathbb{R}^n is the harmonic function in $\mathbb{R}^n \setminus \Omega$ satisfying

 $u = 1 \quad \text{on } \partial\Omega; \quad u(x) \to 0 \quad \text{as} \quad x \to \infty;$ $u(x) = \operatorname{cap}(\Omega) c_n |x|^{2-n} + O(|x|^{1-n}) \quad \text{as} \quad x \to \infty.$

Harmonic Functions

Polya-Szegö Capacitary Conjecture (1950) For $n \ge 3$, the extremal for convex $\Omega \subset \mathbb{R}^n$ of

$$\inf_{\Omega} \ \frac{\operatorname{cap}(\Omega)^{1/(n-2)}}{\sigma(\partial\Omega)^{1/(n-1)}} \quad \text{is a flat disk.}$$

Recall, the equilibrium potential *u* for Ω in \mathbb{R}^n is the harmonic function in $\mathbb{R}^n \setminus \Omega$ satisfying

$$u = 1 \quad \text{on } \partial\Omega; \quad u(x) \to 0 \quad \text{as} \quad x \to \infty;$$
$$u(x) = \operatorname{cap}(\Omega) c_n |x|^{2-n} + O(|x|^{1-n}) \quad \text{as} \quad x \to \infty$$

The common feature of these three conjectures is that they involve convex level sets of equations of the form $\Delta u = f(u)$. So far, a rather superficial connection.

Klartag 2019: The nodal set $M_0 = \{\psi = 0\}$ is stationary for a weighted area measure $|\nabla \psi| d\sigma$ just as minimal surfaces are stationary for area $d\sigma$.

Klartag 2019: The nodal set $M_0 = \{\psi = 0\}$ is stationary for a weighted area measure $|\nabla \psi| d\sigma$ just as minimal surfaces are stationary for area $d\sigma$.

In fact (DJ) The level set flow

 $dx/d\tau = (1/|\nabla \psi|)$ **N**, $M_{\tau} := \{\psi(x) = \tau\}$

decreases flux $|\nabla \psi| d\sigma$ fastest.

Klartag 2019: The nodal set $M_0 = \{\psi = 0\}$ is stationary for a weighted area measure $|\nabla \psi| d\sigma$ just as minimal surfaces are stationary for area $d\sigma$.

In fact (DJ) The level set flow

 $dx/d\tau = (1/|\nabla \psi|)\mathbf{N}, \quad M_{\tau} := \{\psi(x) = \tau\}$

decreases flux $|\nabla \psi| d\sigma$ fastest.

Proof:
$$\frac{d}{dt} \int_{M_{\tau}+tv\mathbf{N}} |\nabla \psi|, d\sigma \Big|_{t=0} = -\lambda \tau \int_{M_{\tau}} v \, d\sigma$$

Moreover, max $\int v \, d\sigma$ constrained by $\int v^2 |\nabla \psi| \, d\sigma = 1$ is realized by
 $v = c \frac{1}{|\nabla \psi|}$

Klartag 2019: The nodal set $M_0 = \{\psi = 0\}$ is stationary for a weighted area measure $|\nabla \psi| d\sigma$ just as minimal surfaces are stationary for area $d\sigma$.

In fact (DJ) The level set flow

 $dx/d\tau = (1/|\nabla \psi|)\mathbf{N}, \quad M_{\tau} := \{\psi(x) = \tau\}$

decreases flux $|\nabla \psi| d\sigma$ fastest.

Proof:
$$\frac{d}{dt} \int_{M_{\tau}+tv\mathbf{N}} |\nabla \psi|, d\sigma \Big|_{t=0} = -\lambda \tau \int_{M_{\tau}} v \, d\sigma$$

Moreover, max $\int v \, d\sigma$ constrained by $\int v^2 |\nabla \psi| \, d\sigma = 1$ is realized by
 $v = c \frac{1}{|\nabla \psi|}$

Mean curvature flow $dx/dt = H\mathbf{N}$ decreases area fastest, so $1/|\nabla \psi| \iff H$

Analogy with mean curvature and Ricci flow

High hopes for the analogy with MCF and Ricci flow:

- Level sets resemble shrinkers.
- Hamilton's Harnack inequalites, $H(x_1, t_1) \approx H(x_2, t_2)$, might prevent $|\nabla \psi_1|$ from vanishing.
- Hamilton's curvature pinching estimates could stabilize the Hessian of ψ₀.
- Perelman's non-collapsing and monotonicity could guarantee "most" level sets of ψ₁ are convex.

Analogy with mean curvature and Ricci flow

High hopes for the analogy with MCF and Ricci flow:

- Level sets resemble shrinkers.
- Hamilton's Harnack inequalites, $H(x_1, t_1) \approx H(x_2, t_2)$, might prevent $|\nabla \psi_1|$ from vanishing.
- Hamilton's curvature pinching estimates could stabilize the Hessian of ψ₀.
- Perelman's non-collapsing and monotonicity could guarantee "most" level sets of ψ₁ are convex.

But what does this have to do with Polya-Szegö?

Hamilton's approach is to study $\partial_t g_{ij}$, $\partial_t h_{ij}$, Δh_{ij} and other tensors. Key ingredient: his differential inequalities are sharp, and their form is dictated solitons, for which they are equalities.

Our solitons will be confocal ellipsoids, the family of examples motivating the Polya-Szegö Conjecture.

Confocal Ellipsoids

Confocal ellipsoids are defined for $-a_1^2 \le -a_2^2 \le \cdots \le -a_n^2 < s$ by

$$\partial \Omega_s := \left\{ x \in \mathbb{R}^n : \sum_{j=1}^n \frac{x_j^2}{a_j^2 + s} = 1 \right\}.$$

The equilibrium potential *U* with these levels sets is

$$U(x) = \Phi(s), \qquad \Phi'(s) = \frac{1}{\sqrt{(s+a_1^2)(s+a_2^2)\cdots(s+a_n^2)}}$$

Confocal ellipsoids are defined for $-a_1^2 \le -a_2^2 \le \cdots \le -a_n^2 < s$ by

$$\partial \Omega_s := \left\{ x \in \mathbb{R}^n : \sum_{j=1}^n \frac{x_j^2}{a_j^2 + s} = 1 \right\}.$$

The equilibrium potential *U* with these levels sets is

$$U(x) = \Phi(s), \qquad \Phi'(s) = \frac{1}{\sqrt{(s + a_1^2)(s + a_2^2) \cdots (s + a_n^2)}}$$

FIRST STEP: For $\Delta u = 0$,

Find geometric invariants of $M_{\tau} = \{x : u(x) = \tau\}$ that are zero for the solitons *U*.

Classical Geometry and Affine Geometry

Classical geometry of hypersurfaces In \mathbb{R}^n , $\partial_j = (\partial/\partial x_j$ is covariant constant:

$$\nabla_{\partial_i}(a\partial_j) = (\partial_i a)\partial_j$$

The Levi-Civita connection D^{LC} and 2nd fundamental form A on M are defined by writing $\nabla_X Y$ in tangential and normal components:

$$\nabla_X Y = D_X^{LC} Y + A(X, Y) \mathbf{N} \quad (X, Y \in TM)$$

Classical Geometry and Affine Geometry

Classical geometry of hypersurfaces In \mathbb{R}^n , $\partial_j = (\partial/\partial x_j \text{ is covariant constant:}$

 $\nabla_{\partial_i}(a\partial_j) = (\partial_i a)\partial_j$

The Levi-Civita connection D^{LC} and 2nd fundamental form A on M are defined by writing $\nabla_X Y$ in tangential and normal components:

$$\nabla_X Y = D_X^{LC} Y + A(X, Y) \mathbf{N} \quad (X, Y \in TM)$$

Affine geometry of hypersurfaces The affine normal μ is a transverse SL_n invariant vector.

$$\nabla_X Y = D_X^{\mu} Y + A^{\mu}(X, Y) \mu \quad (X, Y \in TM)$$

We introduce the harmonic normal defined by

 $\nu = |\nabla u|\mathbf{N} - \nabla^A |\nabla u|$

with $\nabla^A f$ defined by $A(\nabla^A f, Y) = Y f$. (On ellipsoids, ν is the radial vector.) We introduce the harmonic normal defined by

 $\nu = |\nabla u|\mathbf{N} - \nabla^A |\nabla u|$

with $\nabla^A f$ defined by $A(\nabla^A f, Y) = Y f$. (On ellipsoids, ν is the radial vector.)

We define a "harmonic" connection *D* and quadratic form *L* on the level surface $M_{\tau} = \{u = \tau\}$ by

$$\nabla_X Y = \mathbf{D}_X Y + \mathbf{L}(X, Y) \mathbf{\nu} \quad (X, Y \in TM_{\tau})$$

We introduce the harmonic normal defined by

 $\nu = |\nabla u|\mathbf{N} - \nabla^A |\nabla u|$

with $\nabla^A f$ defined by $A(\nabla^A f, Y) = Y f$. (On ellipsoids, ν is the radial vector.)

We define a "harmonic" connection *D* and quadratic form *L* on the level surface $M_{\tau} = \{u = \tau\}$ by

$$\nabla_X Y = \mathbf{D}_X Y + \mathbf{L}(X, Y) \mathbf{\nu} \quad (X, Y \in TM_{\tau})$$

(The flux $|\nabla u| d\sigma$ is covariant constant with respect to the connection *D* on the surface M_{τ} .)

Following the analogy with affine geometry, we differentiate the basic invariants:

Cubic Form: $F(X, Y, Z) = (D_X L)(Y, Z)$.

Shape Operator: $S(X) = -\nabla_X \nu$ $(S: TM_{\tau} \to TM_{\tau}).$

The shape operator is symmetric with respect to *L*, so we can define another natural quadratic form

 $\tilde{L}(X,Y) = L(S(X),Y) = L(X,S(Y)).$

Following the analogy with affine geometry, we differentiate the basic invariants:

Cubic Form: $F(X, Y, Z) = (D_X L)(Y, Z)$.

Shape Operator: $S(X) = -\nabla_X \nu$ $(S: TM_\tau \to TM_\tau)$.

The shape operator is symmetric with respect to *L*, so we can define another natural quadratic form

$$\tilde{L}(X,Y) = L(S(X),Y) = L(X,S(Y)).$$

The properties that indicate that this is the natural choice are

- 1. $F \equiv 0$ if an only if *M* is a quadric.
- 2. In the case u = U, \tilde{L} is the metric on the unit sphere for all τ .

Since $\partial_{\tau} \tilde{L} = 0$ for confocal ellipsoids, we also have, for example,

 $\partial_{\tau}^2 \widetilde{\text{Riem}} = 0,$

with $\widetilde{\text{Riem}}$ the Riemann curvature tensor of \tilde{L} .

Hamilton's mean curvature and Ricci flow differential inequalities are based on the heat operator, $\partial_t - \Delta_t$, for the intrinsic Laplacian Δ_t on the evolving manifold M_t . We expect ours to be based on the ordinary Laplace operator Δ . For any harmonic function u with $\nabla u \neq 0$, the Laplace operator can be written using the coordinate $u = \tau$ and the intrinsic Laplacian Δ_τ on $\{u = \tau\}$ as

$$\Delta = |\nabla u|^2 \partial_\tau^2 + \Delta_\tau.$$