Comparison between Neumann and Steklov eigenvalues

Antoine Henrot joint work with Marco Michetti (Nancy-University of Lorraine) and partly Enea Parini (Marseille)

Shape Optimisation and Geometric Spectral Theory, Edinburgh

22 September 2022

Let $\Omega \subset \mathbb{R}^2$ be a plane bounded domain with Lipschitz boundary, we consider Neumann eigenvalues

$$\begin{cases} -\Delta u = \mu u & \text{ in } \Omega \\ \partial_{\nu} u = 0 & \text{ on } \partial \Omega, \end{cases}$$

that we denote by

$$0 = \mu_0(\Omega) \le \mu_1(\Omega) \le \mu_2(\Omega) \le \cdots \to +\infty.$$

and the Steklov eigenvalues

$$\begin{cases} \Delta u = 0 & \text{ in } \Omega \\ \partial_{\nu} u = \sigma u & \text{ on } \partial \Omega, \end{cases}$$

that we denote by

$$0 = \sigma_0(\Omega) \le \sigma_1(\Omega) \le \sigma_2(\Omega) \le \cdots \to +\infty.$$

In Montréal (2018), with A. Girouard and J. Lagacé, we were led to the following question:

QUESTION

Is it true that $|\Omega|\mu_1(\Omega) \ge P(\Omega)\sigma_1(\Omega)$?

 $|\Omega|\mu_1(\Omega)$ (with the area) and $P(\Omega)\sigma_1(\Omega)$ (with the perimeter) are the natural normalization (scale invariant) for these two eigenvalues.

In Montréal (2018), with A. Girouard and J. Lagacé, we were led to the following question:

QUESTION

Is it true that $|\Omega|\mu_1(\Omega) \ge P(\Omega)\sigma_1(\Omega)$?

 $|\Omega|\mu_1(\Omega)$ (with the area) and $P(\Omega)\sigma_1(\Omega)$ (with the perimeter) are the natural normalization (scale invariant) for these two eigenvalues. More generally, we can ask

QUESTION

Are there inequalities that relate $|\Omega|\mu_1(\Omega)$ and $P(\Omega)\sigma_1(\Omega)$??

Despite many favorable examples (discs, rectangles,...), the inequality

```
|\Omega|\mu_1(\Omega) \ge P(\Omega)\sigma_1(\Omega)
```

is false.

Despite many favorable examples (discs, rectangles,...), the inequality

 $|\Omega|\mu_1(\Omega) \ge P(\Omega)\sigma_1(\Omega)$

is false. A counter-example is given by

for ϵ small enough and *L* large enough.

 D. Bucur, A. Henrot, M. Michetti: Asymptotic behaviour of the Steklov problem on dumbbell domains, Communications in PDE (2021), vol. 46, Issue 2 Let us define the following functional:

$$F(\Omega) = rac{\mu_1(\Omega)|\Omega|}{\sigma_1(\Omega)P(\Omega)}.$$

We are interested in minimizing or maximizing the functional $F(\Omega)$, where $\Omega \in S$ and S is a class of admissible subsets of \mathbb{R}^2 .

If we don't put any restriction on the class $\ensuremath{\mathcal{S}}$ the problem is ill posed:

$$\inf \{F(\Omega) : \Omega \subset \mathbb{R}^2 \text{ open and Lipschitz}\} = 0,$$

 $\sup \{F(\Omega) : \Omega \subset \mathbb{R}^2 \text{ open and Lipschitz}\} = +\infty.$

If we don't put any restriction on the class ${\mathcal S}$ the problem is ill posed:

$$\inf\{F(\Omega): \Omega \subset \mathbb{R}^2 \text{ open and Lipschitz}\} = 0,$$

$$\sup\{F(\Omega):\Omega\subset \mathbb{R}^2 ext{ open and Lipschitz}\}=+\infty.$$

These results follow from the following theorem:

THEOREM (D. BUCUR, M. NAHON 2020)

Let $\Omega_1, \Omega_2 \subset \mathbb{R}^2$ be two smooth, conformal open sets. Then there exists a sequence of smooth open sets $(\Omega_{1,\epsilon})_{\epsilon>0}$ with uniformly bounded perimeter satisfying a uniform ϵ -cone condition such that $\lim_{\epsilon \to 0} d_H(\partial \Omega_{1,\epsilon}, \partial \Omega_1) = 0$ and $\lim_{\epsilon \to 0} P(\Omega_{1,\epsilon})\sigma_k(\Omega_{1,\epsilon}) = P(\Omega_2)\sigma_k(\Omega_2)$

We are now interested in the study of the extremum problems in the class of convex plane domains:

$$\inf\{F(\Omega):\Omega\subset\mathbb{R}^2 \text{ convex}\},\$$

 $\sup\{F(\Omega): \Omega \subset \mathbb{R}^2 \text{ convex }\}.$

In the convex setting, since every quantity is continuous for the Hausdorff convergence, the alternative is the following:

We are now interested in the study of the extremum problems in the class of convex plane domains:

$$\inf\{F(\Omega): \Omega \subset \mathbb{R}^2 \text{ convex}\},\$$

 $\sup\{F(\Omega): \Omega \subset \mathbb{R}^2 \text{ convex }\}.$

In the convex setting, since every quantity is continuous for the Hausdorff convergence, the alternative is the following:

- There exists an open convex set that minimize (maximize) the functional F(Ω)
- The minimizing (maximizing) sequence converges to a segment (collapsing sequences).

Let Ω_n be a sequence converging to a segment, we can prove

The idea is to study the asymptotic behavior of $\mu_1(\Omega_n)$ and $\sigma_1(\Omega_n)$ and we are led to eigenvalues of two different Sturm-Liouville problems.

Theorem

There exists an explicit constant C_1 such that, for every convex open set $\Omega \subset \mathbb{R}^2$, the following inequalities hold

$$0.62 \leq \frac{\pi^2}{6\sqrt[3]{18}} \leq F(\Omega) := \frac{\mu_1(\Omega)|\Omega|}{\sigma_1(\Omega)P(\Omega)} \leq C_1 \leq 9.2.$$

Theorem

There exists an explicit constant C_1 such that, for every convex open set $\Omega \subset \mathbb{R}^2$, the following inequalities hold

$$0.62 \leq rac{\pi^2}{6\sqrt[3]{18}} \leq F(\Omega) := rac{\mu_1(\Omega)|\Omega|}{\sigma_1(\Omega)P(\Omega)} \leq C_1 \leq 9.2.$$

Proof of the lower bound: We define the following class of domains $(2 \le \delta \le \pi)$:

$$\mathcal{C}_{\delta} := \{\Omega \subset \mathbb{R}^2 : \Omega \text{ is convex and } P(\Omega) \leq \delta D(\Omega) \}.$$

We separate the set of convex plane domains in two sets C_{δ} and C_{δ}^{c} . We worked separately in the two classes and then we found the optimal δ . Let us introduce, the inradius $r(\Omega)$, the minimal width $w(\Omega)$ and the diameter $D(\Omega)$ of the set Ω . For $\sigma_1(\Omega)$ we use a lower bound found in a classical paper of Kuttler-Sigilitto:

$$\sigma_1(\Omega) \geq rac{\mu_1(\Omega)r(\Omega)}{2(1+\sqrt{\mu_1(\Omega)}D(\Omega))}$$

We combine it with the following inequality (recent joint work with A. Lemenant and I. Lucardesi) $\mu_1(\Omega) \leq \frac{\pi^2 w^2(\Omega)}{|\Omega|^2}$ and the geometric inequality $|\Omega| \leq r(\Omega)P(\Omega)$ to end up with

Let us introduce, the inradius $r(\Omega)$, the minimal width $w(\Omega)$ and the diameter $D(\Omega)$ of the set Ω . For $\sigma_1(\Omega)$ we use a lower bound found in a classical paper of Kuttler-Sigilitto:

$$\sigma_1(\Omega) \geq rac{\mu_1(\Omega)r(\Omega)}{2(1+\sqrt{\mu_1(\Omega)}D(\Omega))}$$

We combine it with the following inequality (recent joint work with A. Lemenant and I. Lucardesi) $\mu_1(\Omega) \leq \frac{\pi^2 w^2(\Omega)}{|\Omega|^2}$ and the geometric inequality $|\Omega| \leq r(\Omega)P(\Omega)$ to end up with

$$F(\Omega) \leq 2\left(1 + rac{\pi w(\Omega) D(\Omega)}{r(\Omega) P(\Omega)}
ight)$$

To conclude, we use the Blaschke–Santaló diagram found by M. A. Hernández Cifre involving the three quantities w, r, D.

Conjecture

We plot the diagram for random convex polygons

Conjecture

For every **convex** and open set $\Omega \subset \mathbb{R}^2$ the following bounds hold

 $1 \leq F(\Omega) \leq 2.$

The inequalities of the conjecture would be sharp.

• If Ω_{ϵ} is a sequence of isoscele triangles collapsing to a segment, then $F(\Omega_{\epsilon}) \rightarrow 2$.

The inequalities of the conjecture would be sharp.

- If Ω_{ϵ} is a sequence of isoscele triangles collapsing to a segment, then $F(\Omega_{\epsilon}) \rightarrow 2$.
- If Ω_{ϵ} is a sequence of rectangles collapsing to a segment, then $F(\Omega_{\epsilon}) \rightarrow 1$.

ANOTHER APPROACH: A L^2 -HOT SPOT PROPERTY

Let u be an eigenfunction associated to $\mu_1(\Omega)$, we introduce

DEFINITION

 Ω satisfies the $L^2\text{-}\mathrm{hot}$ spot property if

$$rac{1}{P(\Omega)} \, \int_{\partial\Omega)} u^2(\sigma) d\sigma \geq rac{1}{|\Omega|} \, \int_{\Omega)} u^2(X) dX$$

Another Approach: A L^2 -hot spot property

Let u be an eigenfunction associated to $\mu_1(\Omega)$, we introduce

DEFINITION

 Ω satisfies the $L^2\text{-}\mathrm{hot}$ spot property if

$$rac{1}{P(\Omega)} \, \int_{\partial \Omega)} u^2(\sigma) d\sigma \geq rac{1}{|\Omega|} \, \int_{\Omega)} u^2(X) dX$$

Assume that Ω satisfies the L^2 -hot spot property and that u also satisfies $\int_{\partial\Omega} u(\sigma) d\sigma = 0$ (this is the case for example if Ω has two orthogonal axis of symmetry) then

$$\sigma_1(\Omega) \leq \frac{\int_{\Omega} |\nabla u|^2}{\int_{\partial \Omega} u^2} \leq \frac{|\Omega|}{P(\Omega)} \frac{\int_{\Omega} |\nabla u|^2}{\int_{\Omega} u^2} = \frac{|\Omega|}{P(\Omega)} \mu_1(\Omega).$$

Conjecture

Any convex domain Ω satisfies the L^2 -hot spot property.

Conjecture

Any convex domain Ω satisfies the L^2 -hot spot property.

We have been able to prove:

Theorem (A.H., M. Michetti, E. Parini)

Let Ω be a convex domain circumscribed to a disk, then Ω satisfies the L^2 -hot spot property.

For the proof, we use the torsion function with Neumann boundary condition of such domains which turns out to be proportional to $x^2 + y^2$.

Thank you for your attention!