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Notation

Let Ω ⊂ R2 be a plane bounded domain with Lipschitz boundary,
we consider Neumann eigenvalues{

−∆u = µu in Ω

∂νu = 0 on ∂Ω,

that we denote by

0 = µ0(Ω) ≤ µ1(Ω) ≤ µ2(Ω) ≤ · · · → +∞.

and the Steklov eigenvalues{
∆u = 0 in Ω

∂νu = σu on ∂Ω,

that we denote by

0 = σ0(Ω) ≤ σ1(Ω) ≤ σ2(Ω) ≤ · · · → +∞.



The initial question

In Montréal (2018), with A. Girouard and J. Lagacé, we were led to
the following question:

Question

Is it true that |Ω|µ1(Ω) ≥ P(Ω)σ1(Ω)?

|Ω|µ1(Ω) (with the area) and P(Ω)σ1(Ω) (with the perimeter) are
the natural normalization (scale invariant) for these two eigenvalues.

More generally, we can ask

Question

Are there inequalities that relate |Ω|µ1(Ω) and P(Ω)σ1(Ω)??
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A first answer

Despite many favorable examples (discs, rectangles,...), the
inequality

|Ω|µ1(Ω) ≥ P(Ω)σ1(Ω)

is false.

A counter-example is given by

ε
D1 D2

L

for ϵ small enough and L large enough.
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A shape functional

Let us define the following functional:

F (Ω) =
µ1(Ω)|Ω|
σ1(Ω)P(Ω)

.

We are interested in minimizing or maximizing the functional F (Ω),
where Ω ∈ S and S is a class of admissible subsets of R2.



The general case

If we don’t put any restriction on the class S the problem is ill
posed:

inf{F (Ω) : Ω ⊂ R2 open and Lipschitz} = 0,

sup{F (Ω) : Ω ⊂ R2 open and Lipschitz} = +∞.

These results follow from the following theorem:

Theorem (D. Bucur, M. Nahon 2020)

Let Ω1,Ω2 ⊂ R2 be two smooth, conformal open sets. Then there
exists a sequence of smooth open sets (Ω1,ϵ)ϵ>0 with uniformly
bounded perimeter satisfying a uniform ϵ-cone condition such that

limϵ→0 dH(∂Ω1,ϵ, ∂Ω1) = 0 and
limϵ→0 P(Ω1,ϵ)σk(Ω1,ϵ) = P(Ω2)σk(Ω2)
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The convex case

We are now interested in the study of the extremum problems in
the class of convex plane domains:

inf{F (Ω) : Ω ⊂ R2 convex},

sup{F (Ω) : Ω ⊂ R2 convex }.

In the convex setting, since every quantity is continuous for the
Hausdorff convergence, the alternative is the following:

There exists an open convex set that minimize (maximize) the
functional F (Ω)
The minimizing (maximizing) sequence converges to a
segment (collapsing sequences).
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Behavior for collapsing sequences

Let Ωn be a sequence converging to a segment, we can prove

Theorem

π2

12
≤ lim inf F (Ωn) ≤ lim supF (Ωn) ≤ 4.

The idea is to study the asymptotic behavior of µ1(Ωn) and σ1(Ωn)
and we are led to eigenvalues of two different Sturm-Liouville
problems.



Upper and lower bounds for F (Ω)

Theorem
There exists an explicit constant C1 such that, for every convex
open set Ω ⊂ R2, the following inequalities hold

0.62 ≤ π2

6 3
√

18
≤ F (Ω) :=

µ1(Ω)|Ω|
σ1(Ω)P(Ω)

≤ C1 ≤ 9.2.

Proof of the lower bound: We define the following class of
domains (2 ≤ δ ≤ π):

Cδ := {Ω ⊂ R2 : Ω is convex and P(Ω) ≤ δD(Ω)}.

We separate the set of convex plane domains in two sets Cδ and Cc
δ .

We worked separately in the two classes and then we found the
optimal δ.
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Proof of the upper bound

Let us introduce, the inradius r(Ω), the minimal width w(Ω) and
the diameter D(Ω) of the set Ω. For σ1(Ω) we use a lower bound
found in a classical paper of Kuttler-Sigilitto:

σ1(Ω) ≥
µ1(Ω)r(Ω)

2(1 +
√

µ1(Ω)D(Ω))

We combine it with the following inequality (recent joint work with

A. Lemenant and I. Lucardesi) µ1(Ω) ≤
π2w2(Ω)

|Ω|2
and the

geometric inequality |Ω| ≤ r(Ω)P(Ω) to end up with

F (Ω) ≤ 2
(

1 +
πw(Ω)D(Ω)

r(Ω)P(Ω)

)
.

To conclude, we use the Blaschke−Santaló diagram found by M. A.
Hernández Cifre involving the three quantities w , r ,D.
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Conjecture

We plot the diagram for random convex polygons

Conjecture

For every convex and open set Ω ⊂ R2 the following bounds hold

1 ≤ F (Ω) ≤ 2.



The inequalities of the conjecture would be sharp.
If Ωϵ is a sequence of isoscele triangles collapsing to a
segment, then F (Ωϵ) → 2.

If Ωϵ is a sequence of rectangles collapsing to a segment, then
F (Ωϵ) → 1.
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Another approach: a L2-hot spot property

Let u be an eigenfunction associated to µ1(Ω), we introduce

Definition

Ω satisfies the L2-hot spot property if

1
P(Ω)

∫
∂Ω)

u2(σ)dσ ≥ 1
|Ω|

∫
Ω)

u2(X )dX

Assume that Ω satisfies the L2-hot spot property and that u also
satisfies

∫
∂Ω u(σ)dσ = 0 (this is the case for example if Ω has two

orthogonal axis of symmetry) then

σ1(Ω) ≤
∫
Ω |∇u|2∫
∂Ω u2 ≤ |Ω|

P(Ω)

∫
Ω |∇u|2∫
Ω u2 =

|Ω|
P(Ω)

µ1(Ω).
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The L2-hot spot property

Conjecture

Any convex domain Ω satisfies the L2-hot spot property.

We have been able to prove:

Theorem (A.H., M. Michetti, E. Parini)

Let Ω be a convex domain circumscribed to a disk, then Ω satisfies
the L2-hot spot property.

For the proof, we use the torsion function with Neumann boundary
condition of such domains which turns out to be proportional to
x2 + y2.
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Thank you for your attention!


