Metric upper bounds for Steklov and Laplace eigenvalues

joint work with

Bruno Colbois
Université de Neuchâtel

Steklov eigenvalue problem

Let M be a compact Riemannian manifold with smooth $\Sigma:=\partial M$.

$$
\begin{cases}\Delta u=0 & \text { in } M \\ \partial_{\nu} u=\sigma u & \text { on } \Sigma\end{cases}
$$

The Steklov eigenvalues form a sequence

$$
0=\sigma_{0} \leq \sigma_{1} \leq \sigma_{2} \leq \cdots \nearrow+\infty
$$

Steklov eigenvalue problem

Let M be a compact Riemannian manifold with smooth $\Sigma:=\partial M$.

$$
\begin{cases}\Delta u=0 & \text { in } M \\ \partial_{\nu} u=\sigma u & \text { on } \Sigma\end{cases}
$$

The Steklov eigenvalues form a sequence

$$
\begin{gathered}
0=\sigma_{0} \leq \sigma_{1} \leq \sigma_{2} \leq \cdots \nearrow+\infty \\
\sigma_{k}=\min _{V \in E(k+1)} \max _{u \in V \backslash\{0\}} \frac{\int_{M}|\nabla u|^{2} d V}{\int_{\Sigma} u^{2} d A}
\end{gathered}
$$

where $E(k+1)=\left\{V \subset H^{1}(M): \operatorname{dim}(V)=k+1\right\}$

Geometric upper bounds for Steklov eigenvalues

Fraser-Schoen 2011

$$
\sigma_{1}(M)|\Sigma||M|^{\frac{1-n}{1+n}} \leq(n+1) V_{r c}(M)^{2 / n+1}
$$

Geometric upper bounds for Steklov eigenvalues

Fraser-Schoen 2011

$$
\sigma_{1}(M)|\Sigma||M|^{\frac{1-n}{1+n}} \leq(n+1) V_{r c}(M)^{2 / n+1}
$$

Colbois-El Soufi-Girouard 2011
If $M \subset \mathbb{R}^{n+1}$ is a bounded domain,

$$
\sigma_{k}(M)|\Sigma||M|^{\frac{1-n}{1+n}} \leq K(n) k^{2 /(n+1)}
$$

Geometric upper bounds for Steklov eigenvalues

Fraser-Schoen 2011

$$
\sigma_{1}(M)|\Sigma||M|^{\frac{1-n}{1+n}} \leq(n+1) V_{r c}(M)^{2 / n+1}
$$

Colbois-El Soufi-Girouard 2011
If $M \subset \mathbb{R}^{n+1}$ is a bounded domain,

$$
\sigma_{k}(M)|\Sigma||M|^{\frac{1-n}{1+n}} \leq K(n) k^{2 /(n+1)}
$$

The isoperimetric inequality leads to

$$
\sigma_{k}(M)|\Sigma|^{1 / n} \leq K(n) k^{2 /(n+1)}
$$

Colbois-Girouard-Gittins 2019
Let $\Sigma \subset \mathbb{R}^{d}$ be a n-dimensional closed submanifold.
There is $A_{\Sigma}>0$ such that each submanifold $M \subset \mathbb{R}^{d}$ with $\Sigma=\partial M$ satisfies

$$
\sigma_{k}(M) \leq A_{\Sigma}|M| k^{2 / n}
$$

Colbois-Girouard-Gittins 2019
Let $\Sigma \subset \mathbb{R}^{d}$ be a n-dimensional closed submanifold.
There is $A_{\Sigma}>0$ such that each submanifold $M \subset \mathbb{R}^{d}$ with $\Sigma=\partial M$ satisfies

$$
\sigma_{k}(M) \leq A_{\Sigma}|M| k^{2 / n}
$$

This applies to arbitrary submanifolds, not only hypersurfaces.

Colbois-Girouard-Gittins 2019
Let $\Sigma \subset \mathbb{R}^{d}$ be a n-dimensional closed submanifold.
There is $A_{\Sigma}>0$ such that each submanifold $M \subset \mathbb{R}^{d}$ with $\Sigma=\partial M$ satisfies

$$
\sigma_{k}(M) \leq A_{\Sigma}|M| k^{2 / n}
$$

This applies to arbitrary submanifolds, not only hypersurfaces.

What is the nature of the constant A_{Σ} ?

Theorem A (Colbois-Girouard 2021)

Let M be a smooth connected compact Riemannian manifold of dimension $n+1$ with boundary Σ.

The following holds for each $k \geq 1$,

$$
\sigma_{k}(M) \leq\left(\frac{b^{2} N^{3} \Gamma \Lambda^{2}}{|\Sigma|^{1+\frac{2}{n}}}\right)|M| k^{2 / n}
$$

where
$b=$ number of connected components of the boundary
$N=$ packing constant of Σ for d_{M}
$\Gamma=$ growth constant of Σ
$\Lambda=$ distortion of Σ in M
a) The packing constant $N \in \mathbb{N}$ for $\left(\Sigma, d_{M}\right)$:

For each $r>0$ and $x \in \Sigma$, the extrinsic ball $B^{M}(x, r) \cap \Sigma$ can be covered by N extrinsic balls of radius $r / 2$ centred at points $x_{1}, \cdots, x_{N} \in \Sigma$:

$$
B^{M}(x, r) \cap \sum \subset \bigcup_{i=1}^{N} B^{M}\left(x_{i}, r / 2\right) ;
$$

a) The packing constant $N \in \mathbb{N}$ for $\left(\Sigma, d_{M}\right)$:

For each $r>0$ and $x \in \Sigma$, the extrinsic ball $B^{M}(x, r) \cap \Sigma$ can be covered by N extrinsic balls of radius $r / 2$ centred at points $x_{1}, \cdots, x_{N} \in \Sigma$:

$$
B^{M}(x, r) \cap \Sigma \subset \bigcup_{i=1}^{N} B^{M}\left(x_{i}, r / 2\right) ;
$$

b) The growth constant Γ :

For each $x \in \Sigma$ and $r>0,\left|B^{\Sigma}(x, r)\right|_{\Sigma} \leq \Gamma r^{n}$.
c) The distortion of the boundary \wedge :

For $x, y \in \Sigma$, we have $d_{M}(x, y) \leq d_{\Sigma}(x, y)$.
Let $\Sigma_{1}, \cdots, \Sigma_{b}$ be the connected components of the boundary.

The distortion of Σ_{j} in M is the number $\Lambda_{j} \in[1, \infty)$ defined by

$$
\begin{equation*}
\Lambda_{j}:=\inf \left\{c \geq 1: d_{\Sigma}(x, y) \leq c d_{M}(x, y) \quad \forall x, y \in \Sigma_{j}\right\} \tag{1}
\end{equation*}
$$

c) The distortion of the boundary \wedge :

For $x, y \in \Sigma$, we have $d_{M}(x, y) \leq d_{\Sigma}(x, y)$.
Let $\Sigma_{1}, \cdots, \Sigma_{b}$ be the connected components of the boundary.

The distortion of Σ_{j} in M is the number $\Lambda_{j} \in[1, \infty)$ defined by

$$
\begin{equation*}
\Lambda_{j}:=\inf \left\{c \geq 1: d_{\Sigma}(x, y) \leq c d_{M}(x, y) \quad \forall x, y \in \Sigma_{j}\right\} \tag{1}
\end{equation*}
$$

The distortion of Σ in M is

$$
\Lambda:=\max \left\{\Lambda_{1}, \cdots, \Lambda_{b}\right\}
$$

The distortion is a measure of how much the geodesic distance d_{Σ} differs from the induced distance $\left.d_{M}\right|_{\Sigma}$.

Theorem A

Let M be a smooth connected compact Riemannian manifold of dimension $n+1$ with boundary Σ.

The following holds for each $k \geq 1$,

$$
\sigma_{k}(M) \leq\left(\frac{b^{2} N^{3} \Gamma \Lambda^{2}}{|\Sigma|^{1+\frac{2}{n}}}\right)|M| k^{2 / n}
$$

where
$b=$ number of connected components of the boundary
$N=$ packing constant of Σ for d_{M}
$\Gamma=$ growth constant of Σ
$\Lambda=$ distortion of Σ in M

Theorem B (Colbois-Girouard 2021)

Let M be a smooth connected compact Riemannian manifold of dimension $n+1$ with boundary $\Sigma=\cup_{j=1}^{b} \Sigma_{j}$.

Then, for each $j=1, \cdots, b$ and each $k \geq 1$,

$$
\sigma_{k}(M) \leq K(n) \frac{|M|}{\operatorname{Diam}_{M}\left(\Sigma_{j}\right)^{2} \operatorname{inj}\left(\Sigma_{j}\right)^{n}} k^{n+1}
$$

where
$\operatorname{Diam}_{M}\left(\Sigma_{j}\right)$ is the extrinsic diameter of Σ_{j} $\operatorname{inj}\left(\Sigma_{j}\right)$ is the injectivity radius of Σ_{j}

Theorem B (Colbois-Girouard 2021)

Let M be a smooth connected compact Riemannian manifold of dimension $n+1$ with boundary $\Sigma=\cup_{j=1}^{b} \Sigma_{j}$.

Then, for each $j=1, \cdots, b$ and each $k \geq 1$,

$$
\sigma_{k}(M) \leq K(n) \frac{|M|}{\operatorname{Diam}_{M}\left(\Sigma_{j}\right)^{2} \operatorname{inj}\left(\Sigma_{j}\right)^{n}} k^{n+1}
$$

where
$\operatorname{Diam}_{M}\left(\Sigma_{j}\right)$ is the extrinsic diameter of Σ_{j} $\operatorname{inj}\left(\Sigma_{j}\right)$ is the injectivity radius of Σ_{j}

Moreover

$$
\sigma_{1}(M) \leq K(n) \frac{|M|}{\operatorname{Diam}_{M}(\Sigma)^{2} \operatorname{inj}(\Sigma)^{n}}
$$

Applications to eigenvalues of the Laplace operator

Let Σ be a closed Riemannian manifold.

Let $0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \cdots$ be the nonzero eigenvalues of the Laplacian on Σ.

Let $M=[-L, L] \times \Sigma$.
The Steklov eigenvalues of M are

$$
0,1 / L, \sqrt{\lambda_{k}} \tanh \left(\sqrt{\lambda_{k}} L\right), \sqrt{\lambda_{k}} \operatorname{coth}\left(\sqrt{\lambda_{k}} L\right)
$$

For $L>0$ small enough, $\sigma_{k}=\sqrt{\lambda_{k}} \tanh \left(\sqrt{\lambda_{k}} L\right)$.

Notice that $b=2, \quad \Lambda=1, \quad N=N_{\Sigma} \quad$ and $\quad|M|=L|\Sigma|$.

Theorem $\mathbf{A} \Longrightarrow$

$$
\sqrt{\lambda_{k}} \tanh \left(\sqrt{\lambda_{k}} L\right) \leq N_{\Sigma}^{3} \Gamma \frac{L|\Sigma|}{|\Sigma|^{\frac{n+2}{n}}} k^{2 / n}
$$

Theorem A \Longrightarrow

$$
\sqrt{\lambda_{k}} \tanh \left(\sqrt{\lambda_{k}} L\right) \leq N_{\Sigma}^{3} \Gamma \frac{L|\Sigma|}{|\Sigma|^{\frac{n+2}{n}}} k^{2 / n}
$$

Divide by L:

$$
\sqrt{\lambda_{k}}\left(\frac{\tanh \left(\sqrt{\lambda_{k}} L\right)}{L}\right) \leq N^{3} \Gamma \Lambda^{2} \frac{1}{|\Sigma|^{\frac{2}{n}}} k^{2 / n} .
$$

Theorem A \Longrightarrow

$$
\sqrt{\lambda_{k}} \tanh \left(\sqrt{\lambda_{k}} L\right) \leq N_{\Sigma}{ }^{3} \Gamma \frac{L|\Sigma|}{|\Sigma|^{\frac{n+2}{n}}} k^{2 / n}
$$

Divide by L :

$$
\sqrt{\lambda_{k}}\left(\frac{\tanh \left(\sqrt{\lambda_{k}} L\right)}{L}\right) \leq N^{3} \Gamma \Lambda^{2} \frac{1}{|\Sigma|^{\frac{2}{n}}} k^{2 / n} .
$$

Take $L \rightarrow 0$:

$$
\lambda_{k}(\Sigma)|\Sigma|^{\frac{2}{n}} \leq N_{\Sigma}^{3}\left\ulcorner k^{2 / n}\right.
$$

This is in the spirit of Grigor'yan-Netrusov-Yau and Korevaar.

Theorem B \Longrightarrow

$$
\sqrt{\lambda_{k}} \tanh \left(\sqrt{\lambda_{k}} L\right) \leq K(n) \frac{L|\Sigma|}{\operatorname{Diam}(\Sigma)^{2}}\left(\frac{1}{\operatorname{inj}(\Sigma)^{n}}\right) k^{n+1}
$$

Theorem B \Longrightarrow

$$
\sqrt{\lambda_{k}} \tanh \left(\sqrt{\lambda_{k}} L\right) \leq K(n) \frac{L|\Sigma|}{\operatorname{Diam}(\Sigma)^{2}}\left(\frac{1}{\operatorname{inj}(\Sigma)^{n}}\right) k^{n+1}
$$

Divide by L and take $L \rightarrow 0$ and obtain. . .
Theorem C (Colbois-Girouard 2021)

$$
\lambda_{k}(\Sigma) \operatorname{Diam}(\Sigma)^{2} \leq K(n) \frac{|\Sigma|}{\operatorname{inj}(\Sigma)^{n}} k^{n+1}
$$

This is an improvement of results from Berger, Croke and Kokarev.

Berger, Croke and Kokarev

Let Σ be a closed Riemannian manifold
Berger 1979
If Σ admits an isometric involution without fixed points, then

$$
\lambda_{1}(\Sigma) \leq K(n) \frac{|\Sigma|}{\operatorname{inj}(\Sigma)^{n+2}}
$$

Berger, Croke and Kokarev

Let Σ be a closed Riemannian manifold
Berger 1979
If Σ admits an isometric involution without fixed points, then

$$
\lambda_{1}(\Sigma) \leq K(n) \frac{|\Sigma|}{\operatorname{inj}(\Sigma)^{n+2}}
$$

Croke 1980 and Kokarev 2019

$$
\lambda_{k}(\Sigma) \leq K(n) \frac{|\Sigma|^{2}}{\operatorname{conv}(\Sigma)^{2 n+2}} k^{2 n}
$$

$\operatorname{conv}(\Sigma)$ is its convexity radius

Berger, Croke and Kokarev

Let Σ be a closed Riemannian manifold
Berger 1979
If Σ admits an isometric involution without fixed points, then

$$
\lambda_{1}(\Sigma) \leq K(n) \frac{|\Sigma|}{\operatorname{inj}(\Sigma)^{n+2}}
$$

Croke 1980 and Kokarev 2019

$$
\lambda_{k}(\Sigma) \leq K(n) \frac{|\Sigma|^{2}}{\operatorname{conv}(\Sigma)^{2 n+2}} k^{2 n}
$$

$\operatorname{conv}(\Sigma)$ is its convexity radius
Theorem C (Colbois-Girouard 2021)

$$
\lambda_{k}(\Sigma) \leq K(n) \frac{|\Sigma|}{\operatorname{Diam}(\Sigma)^{2} \operatorname{inj}(\Sigma)^{n}} n^{n+1}
$$

Improvements:

The exponent on k is better.
Because $\operatorname{conv}(\Sigma) \leq \operatorname{inj}(\Sigma) \leq \operatorname{Diam}(\Sigma)$, the control is better.

Improvements:

The exponent on k is better.
Because conv $(\Sigma) \leq \operatorname{inj}(\Sigma) \leq \operatorname{Diam}(\Sigma)$, the control is better.
Example: Consider $\Sigma_{L}=\mathbb{S}_{L}^{1} \times \mathbb{S}^{n-1}$ with $L \rightarrow+\infty$.

Improvements:

The exponent on k is better.
Because conv $(\Sigma) \leq \operatorname{inj}(\Sigma) \leq \operatorname{Diam}(\Sigma)$, the control is better.
Example: Consider $\Sigma_{L}=\mathbb{S}_{L}^{1} \times \mathbb{S}^{n-1}$ with $L \rightarrow+\infty$.

$$
\begin{gathered}
\lambda_{1} \sim 1 / L^{2} \quad \operatorname{Diam}\left(\Sigma_{L}\right) \sim L \quad\left|\Sigma_{L}\right|=L\left|\mathbb{S}^{n-1}\right| . \\
\text { Injectivity and convexity radii }=\pi .
\end{gathered}
$$

Improvements:

The exponent on k is better.
Because conv $(\Sigma) \leq \operatorname{inj}(\Sigma) \leq \operatorname{Diam}(\Sigma)$, the control is better.
Example: Consider $\Sigma_{L}=\mathbb{S}_{L}^{1} \times \mathbb{S}^{n-1}$ with $L \rightarrow+\infty$.

$$
\begin{gathered}
\lambda_{1} \sim 1 / L^{2} \quad \operatorname{Diam}\left(\Sigma_{L}\right) \sim L \quad\left|\Sigma_{L}\right|=L\left|\mathbb{S}^{n-1}\right| . \\
\text { Injectivity and convexity radii }=\pi .
\end{gathered}
$$

Berger and Croke:
$\lambda_{1}(\Sigma) \leq K(n) L\left|\mathbb{S}^{n-1}\right| / \pi^{n+2} \quad$ and $\quad \lambda_{1} \leq K(n) L^{2}\left|\mathbb{S}^{n-1}\right|^{2} / \pi^{2 n+2}$.

Improvements:

The exponent on k is better.
Because conv $(\Sigma) \leq \operatorname{inj}(\Sigma) \leq \operatorname{Diam}(\Sigma)$, the control is better.
Example: Consider $\Sigma_{L}=\mathbb{S}_{L}^{1} \times \mathbb{S}^{n-1}$ with $L \rightarrow+\infty$.

$$
\begin{gathered}
\lambda_{1} \sim 1 / L^{2} \quad \operatorname{Diam}\left(\Sigma_{L}\right) \sim L \quad\left|\Sigma_{L}\right|=L\left|\mathbb{S}^{n-1}\right| . \\
\text { Injectivity and convexity radii }=\pi .
\end{gathered}
$$

Berger and Croke:
$\lambda_{1}(\Sigma) \leq K(n) L\left|\mathbb{S}^{n-1}\right| / \pi^{n+2} \quad$ and $\quad \lambda_{1} \leq K(n) L^{2}\left|\mathbb{S}^{n-1}\right|^{2} / \pi^{2 n+2}$.
Our bound:

$$
\lambda_{1} \leq K(n) \frac{\left|\mathbb{S}^{n-1}\right|}{L \pi^{n}} \xrightarrow{L \rightarrow \infty} 0
$$

Optimal exponent on k for negative curvature

Croke 1980 and Kokarev 2019

$$
\lambda_{k}(\Sigma) \leq K(n) \frac{|\Sigma|^{2}}{\operatorname{conv}(\Sigma)^{2 n+2}} k^{2 n}
$$

Optimal exponent on k for negative curvature
Croke 1980 and Kokarev 2019

$$
\lambda_{k}(\Sigma) \leq K(n) \frac{|\Sigma|^{2}}{\operatorname{conv}(\Sigma)^{2 n+2}} k^{2 n}
$$

Colbois-Girouard 2021

$$
\lambda_{k}(\Sigma) \leq K(n) \frac{|\Sigma|}{\operatorname{Diam}(\Sigma)^{2} \operatorname{inj}(\Sigma)^{n}} k^{n+1}
$$

Kokarev 2019
Let Σ be a closed Riemannian manifold with non-positive sectional curvature. Then,

$$
\lambda_{k}(\Sigma) \leq K(n) \frac{|\Sigma|^{2}}{\operatorname{inj}(\Sigma)^{2 n+2}} k^{2 / n}
$$

Some references

Bruno Colbois, Alexandre Girouard. Metric upper bounds for Steklov and Laplace eigenvalues.
arXiv:2108.03101
Gerasim Kokarev. Berger inequality for Riemannian manifolds with an upper sectional curvature bound.
arXiv:1910.06647

Bounds on σ_{k} in terms of the diameter have also been studied elsewhere:
Abdelkader Al Sayed; Beniamin Bogosel; Antoine Henrot;
Florent Nacry. Maximization of the Steklov eigenvalues with a diameter constraint.
SIAM J. Math. Anal. 53 (2021)
Beniamin Bogosel; Dorin Bucur; Alessandro Giacomini.
Optimal shapes maximizing the Steklov eigenvalues.
SIAM J. Math. Anal. 49 (2017), no. 2, 1645-1680.

