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Steklov eigenvalue problem

Let M be a compact Riemannian manifold with smooth Σ := ∂M.{
∆u = 0 in M,

∂νu = σu on Σ.

The Steklov eigenvalues form a sequence

0 = σ0 ≤ σ1 ≤ σ2 ≤ · · · ↗ +∞

σk = min
V∈E(k+1)

max
u∈V\{0}

∫
M |∇u|

2 dV∫
Σ u2 dA

where E(k + 1) = {V ⊂ H1(M) : dim(V) = k + 1}
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Geometric upper bounds for Steklov eigenvalues

Fraser–Schoen 2011

σ1(M)|Σ||M|
1−n
1+n ≤ (n + 1)Vrc(M)2/n+1

Colbois–El Soufi–Girouard 2011

If M ⊂ Rn+1 is a bounded domain,

σk(M)|Σ||M|
1−n
1+n ≤ K(n)k2/(n+1)

The isoperimetric inequality leads to

σk(M)|Σ|1/n ≤ K(n)k2/(n+1)

Here Σ = ∂M is the boundary of a domain: an hypersurface

3 / 16



Geometric upper bounds for Steklov eigenvalues

Fraser–Schoen 2011

σ1(M)|Σ||M|
1−n
1+n ≤ (n + 1)Vrc(M)2/n+1

Colbois–El Soufi–Girouard 2011

If M ⊂ Rn+1 is a bounded domain,

σk(M)|Σ||M|
1−n
1+n ≤ K(n)k2/(n+1)

The isoperimetric inequality leads to

σk(M)|Σ|1/n ≤ K(n)k2/(n+1)

Here Σ = ∂M is the boundary of a domain: an hypersurface

3 / 16



Geometric upper bounds for Steklov eigenvalues

Fraser–Schoen 2011

σ1(M)|Σ||M|
1−n
1+n ≤ (n + 1)Vrc(M)2/n+1

Colbois–El Soufi–Girouard 2011

If M ⊂ Rn+1 is a bounded domain,

σk(M)|Σ||M|
1−n
1+n ≤ K(n)k2/(n+1)

The isoperimetric inequality leads to

σk(M)|Σ|1/n ≤ K(n)k2/(n+1)

Here Σ = ∂M is the boundary of a domain: an hypersurface

3 / 16



Colbois–Girouard–Gittins 2019

Let Σ ⊂ Rd be a n-dimensional closed submanifold.

There is AΣ > 0 such that each submanifold M ⊂ Rd with
Σ = ∂M satisfies

σk(M) ≤ AΣ|M|k2/n

This applies to arbitrary submanifolds, not only hypersurfaces.

What is the nature of the constant AΣ?
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Theorem A (Colbois–Girouard 2021)
Let M be a smooth connected compact Riemannian manifold of

dimension n + 1 with boundary Σ.

The following holds for each k ≥ 1,

σk(M) ≤

(
b2N3ΓΛ2

|Σ|1+ 2
n

)
|M|k2/n

where

b = number of connected components of the boundary

N = packing constant of Σ for dM

Γ = growth constant of Σ

Λ = distortion of Σ in M
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a) The packing constant N ∈ N for (Σ,dM):

For each r > 0 and x ∈ Σ, the extrinsic ball BM(x, r) ∩ Σ can be
covered by N extrinsic balls of radius r/2 centred at points
x1, · · · , xN ∈ Σ:

BM(x, r) ∩ Σ ⊂
N⋃
i=1

BM(xi, r/2);

b) The growth constant Γ:

For each x ∈ Σ and r > 0, |BΣ(x, r)|Σ ≤ Γrn.
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c) The distortion of the boundary Λ:
For x, y ∈ Σ, we have dM(x, y) ≤ dΣ(x, y).

Let Σ1, · · · ,Σb be the connected components of the boundary.

The distortion of Σj in M is the number Λj ∈ [1,∞) defined by

Λj := inf{c ≥ 1 : dΣ(x, y) ≤ cdM(x, y) ∀x, y ∈ Σj}. (1)

The distortion of Σ in M is

Λ := max{Λ1, · · · ,Λb}.

The distortion is a measure of how much the geodesic
distance dΣ differs from the induced distance dM

∣∣
Σ

.
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Theorem B (Colbois–Girouard 2021)

Let M be a smooth connected compact Riemannian manifold of

dimension n + 1 with boundary Σ = ∪bj=1Σj.

Then, for each j = 1, · · · ,b and each k ≥ 1,

σk(M) ≤ K(n)
|M|

DiamM(Σj)2inj(Σj)n
kn+1

where
DiamM(Σj) is the extrinsic diameter of Σj

inj(Σj) is the injectivity radius of Σj

Moreover σ1(M) ≤ K(n)
|M|

DiamM(Σ)2inj(Σ)n
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Applications to eigenvalues of the Laplace operator

Let Σ be a closed Riemannian manifold.

Let 0 < λ1 ≤ λ2 ≤ λ3 · · · be the nonzero eigenvalues of the
Laplacian on Σ.

Let M = [−L, L]× Σ.

The Steklov eigenvalues of M are

0, 1/L,
√
λk tanh(

√
λkL),

√
λk coth(

√
λkL)

For L > 0 small enough, σk =
√
λk tanh(

√
λkL).

Notice that b = 2, Λ = 1, N = NΣ and |M| = L|Σ|.
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Theorem A =⇒√
λk tanh(

√
λkL) ≤ NΣ

3Γ
L|Σ|
|Σ|

n+2
n

k2/n.

Divide by L:

√
λk

(
tanh(

√
λkL)

L

)
≤ N3ΓΛ2 1

|Σ|
2
n

k2/n.

Take L→ 0: λk(Σ)|Σ|
2
n ≤ NΣ

3Γk2/n

This is in the spirit of Grigor’yan–Netrusov–Yau and Korevaar.
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Theorem B =⇒

√
λk tanh(

√
λkL) ≤ K(n)

L|Σ|
Diam(Σ)2

(
1

inj(Σ)n

)
kn+1,

Divide by L and take L→ 0 and obtain. . .

Theorem C (Colbois–Girouard 2021)

λk(Σ)Diam(Σ)2 ≤ K(n)
|Σ|

inj(Σ)n
kn+1

This is an improvement of results from Berger, Croke and
Kokarev.
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Berger, Croke and Kokarev
Let Σ be a closed Riemannian manifold

Berger 1979
If Σ admits an isometric involution without fixed points, then

λ1(Σ) ≤ K(n)
|Σ|

inj(Σ)n+2
.

Croke 1980 and Kokarev 2019

λk(Σ) ≤ K(n)
|Σ|2

conv(Σ)2n+2
k2n.

conv(Σ) is its convexity radius

Theorem C (Colbois–Girouard 2021)

λk(Σ) ≤ K(n)
|Σ|

Diam(Σ)2inj(Σ)n
kn+1
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Improvements:

The exponent on k is better.

Because conv(Σ) ≤ inj(Σ) ≤ Diam(Σ), the control is better.

Example: Consider ΣL = S1
L × Sn−1 with L→ +∞.

λ1 ∼ 1/L2 Diam(ΣL) ∼ L |ΣL| = L|Sn−1|.

Injectivity and convexity radii = π.

Berger and Croke:

λ1(Σ) ≤ K(n)L|Sn−1|/πn+2 and λ1 ≤ K(n)L2|Sn−1|2/π2n+2.

Our bound:

λ1 ≤ K(n)
|Sn−1|
Lπn

L→∞−−−→ 0.
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Optimal exponent on k for negative curvature

Croke 1980 and Kokarev 2019

λk(Σ) ≤ K(n)
|Σ|2

conv(Σ)2n+2
k2n.

Colbois-Girouard 2021

λk(Σ) ≤ K(n)
|Σ|

Diam(Σ)2inj(Σ)n
kn+1

Kokarev 2019
Let Σ be a closed Riemannian manifold with non-positive
sectional curvature. Then,

λk(Σ) ≤ K(n)
|Σ|2

inj(Σ)2n+2
k2/n.
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