

Alexandre Girouard

Université Laval

Metric upper bounds for Steklov and Laplace eigenvalues

joint work with

Bruno Colbois

Université de Neuchâtel

Steklov eigenvalue problem

Let *M* be a compact Riemannian manifold with smooth $\Sigma := \partial M$.

$$\begin{cases} \Delta u = 0 & \text{ in } M, \\ \partial_{\nu} u = \sigma u & \text{ on } \Sigma. \end{cases}$$

The Steklov eigenvalues form a sequence

$$\mathbf{0} = \sigma_{\mathbf{0}} \leq \sigma_{\mathbf{1}} \leq \sigma_{\mathbf{2}} \leq \cdots \nearrow +\infty$$

Steklov eigenvalue problem

Let *M* be a compact Riemannian manifold with smooth $\Sigma := \partial M$.

$$egin{cases} \Delta u = 0 & ext{ in } M, \ \partial_
u u = \sigma u & ext{ on } \Sigma. \end{cases}$$

The Steklov eigenvalues form a sequence

$$\mathbf{0} = \sigma_{\mathbf{0}} \leq \sigma_{\mathbf{1}} \leq \sigma_{\mathbf{2}} \leq \cdots \nearrow +\infty$$

$$\sigma_k = \min_{V \in E(k+1)} \max_{u \in V \setminus \{0\}} \frac{\int_M |\nabla u|^2 \, dV}{\int_{\Sigma} u^2 \, dA}$$

where $E(k + 1) = \{V \subset H^1(M) : \dim(V) = k + 1\}$

Geometric upper bounds for Steklov eigenvalues

Fraser–Schoen 2011

$$\sigma_1(M)|\Sigma||M|^{\frac{1-n}{1+n}} \le (n+1)V_{rc}(M)^{2/n+1}$$

Geometric upper bounds for Steklov eigenvalues

Fraser–Schoen 2011

$$\sigma_1(M)|\Sigma||M|^{\frac{1-n}{1+n}} \leq (n+1)V_{rc}(M)^{2/n+1}$$

Colbois–El Soufi–Girouard 2011 If $M \subset \mathbb{R}^{n+1}$ is a bounded domain,

$$\sigma_k(M)|\Sigma||M|^{\frac{1-n}{1+n}} \leq K(n)k^{2/(n+1)}$$

Geometric upper bounds for Steklov eigenvalues

Fraser–Schoen 2011

$$\sigma_1(M)|\Sigma||M|^{rac{1-n}{1+n}} \leq (n+1)V_{rc}(M)^{2/n+1}$$

Colbois–El Soufi–Girouard 2011 If $M \subset \mathbb{R}^{n+1}$ is a bounded domain, $\sigma_k(M)|\Sigma||M|^{\frac{1-n}{1+n}} < K(n)k^{2/(n+1)}$

The isoperimetric inequality leads to

$$\sigma_k(M)|\Sigma|^{1/n} \leq K(n)k^{2/(n+1)}$$

Here $\Sigma=\partial \textit{M}$ is the boundary of a domain: an hypersurface

Colbois–Girouard–Gittins 2019

Let $\Sigma \subset \mathbb{R}^d$ be a *n*-dimensional closed submanifold.

There is $A_{\Sigma} > 0$ such that each submanifold $M \subset \mathbb{R}^d$ with $\Sigma = \partial M$ satisfies

 $\sigma_k(M) \leq A_{\Sigma} |M| k^{2/n}$

Colbois–Girouard–Gittins 2019

Let $\Sigma \subset \mathbb{R}^d$ be a *n*-dimensional closed submanifold.

There is $A_{\Sigma} > 0$ such that each submanifold $M \subset \mathbb{R}^d$ with $\Sigma = \partial M$ satisfies

 $\sigma_k(M) \leq A_{\Sigma} |M| k^{2/n}$

This applies to arbitrary submanifolds, not only hypersurfaces.

Colbois–Girouard–Gittins 2019

Let $\Sigma \subset \mathbb{R}^d$ be a *n*-dimensional closed submanifold.

There is $A_{\Sigma} > 0$ such that each submanifold $M \subset \mathbb{R}^d$ with $\Sigma = \partial M$ satisfies

 $\sigma_k(M) \leq A_{\Sigma} |M| k^{2/n}$

This applies to arbitrary submanifolds, not only hypersurfaces.

What is the nature of the constant A_{Σ} ?

Theorem A (Colbois–Girouard 2021)

Let *M* be a smooth connected compact Riemannian manifold of dimension n + 1 with boundary Σ .

The following holds for each $k \ge 1$,

$$\sigma_k(M) \leq \left(rac{b^2 N^3 \Gamma \Lambda^2}{|\Sigma|^{1+rac{2}{n}}}
ight) |M| k^{2/n}$$

where

- b = number of connected components of the boundary
- N = packing constant of Σ for d_M
- $\Gamma=$ growth constant of Σ
- $\Lambda = distortion of \Sigma in M$

a) The packing constant $N \in \mathbb{N}$ for (Σ, d_M) :

For each r > 0 and $x \in \Sigma$, the extrinsic ball $B^{M}(x, r) \cap \Sigma$ can be covered by N extrinsic balls of radius r/2 centred at points $x_1, \dots, x_N \in \Sigma$:

$$B^{M}(x,r)\cap\Sigma\subsetigcup_{i=1}^{N}B^{M}(x_{i},r/2);$$

a) The packing constant $N \in \mathbb{N}$ for (Σ, d_M) :

For each r > 0 and $x \in \Sigma$, the extrinsic ball $B^{M}(x, r) \cap \Sigma$ can be covered by N extrinsic balls of radius r/2 centred at points $x_1, \dots, x_N \in \Sigma$:

$$B^{M}(x,r)\cap\Sigma\subsetigcup_{i=1}^{N}B^{M}(x_{i},r/2);$$

b) The growth constant [:

For each $x \in \Sigma$ and r > 0, $|B^{\Sigma}(x, r)|_{\Sigma} \leq \Gamma r^{n}$.

c) The distortion of the boundary Λ : For $x, y \in \Sigma$, we have $d_M(x, y) \leq d_{\Sigma}(x, y)$.

Let Σ_1,\cdots,Σ_b be the connected components of the boundary.

The distortion of Σ_j in *M* is the number $\Lambda_j \in [1, \infty)$ defined by

$$\Lambda_j := \inf\{c \ge 1 : d_{\Sigma}(x, y) \le cd_M(x, y) \quad \forall x, y \in \Sigma_j\}.$$
 (1)

c) The distortion of the boundary Λ : For $x, y \in \Sigma$, we have $d_M(x, y) \leq d_{\Sigma}(x, y)$.

Let Σ_1,\cdots,Σ_b be the connected components of the boundary.

The distortion of Σ_j in *M* is the number $\Lambda_j \in [1, \infty)$ defined by

$$\Lambda_j := \inf\{c \geq 1 : d_{\Sigma}(x,y) \leq cd_M(x,y) \quad \forall x,y \in \Sigma_j\}.$$
 (1)

The distortion of Σ in *M* is

$$\Lambda := \max\{\Lambda_1, \cdots, \Lambda_b\}.$$

The distortion is a measure of how much the geodesic distance d_{Σ} differs from the induced distance $d_M|_{\Sigma}$.

Theorem A

Let *M* be a smooth connected compact Riemannian manifold of dimension n + 1 with boundary Σ .

The following holds for each $k \ge 1$,

$$\sigma_k(\textbf{\textit{M}}) \leq \left(\frac{b^2 \textbf{\textit{N}}^3 \textbf{\textit{\Gamma}} \Lambda^2}{|\boldsymbol{\Sigma}|^{1+\frac{2}{n}}}\right) |\textbf{\textit{M}}| k^{2/n}$$

where

- b = number of connected components of the boundary
- N = packing constant of Σ for d_M
- $\Gamma=$ growth constant of Σ
- $\Lambda = distortion of \Sigma in M$

Theorem B (Colbois–Girouard 2021)

Let *M* be a smooth connected compact Riemannian manifold of dimension n + 1 with boundary $\Sigma = \cup_{j=1}^{b} \Sigma_{j}$.

Then, for each $j = 1, \cdots, b$ and each $k \ge 1$,

$$\sigma_k(M) \leq K(n) rac{|M|}{\mathsf{Diam}_M(\Sigma_j)^2 \mathsf{inj}(\Sigma_j)^n} k^{n+1}$$

where

Diam_M(Σ_j) is the extrinsic diameter of Σ_j inj(Σ_j) is the injectivity radius of Σ_j

Theorem B (Colbois–Girouard 2021)

Let *M* be a smooth connected compact Riemannian manifold of dimension n + 1 with boundary $\Sigma = \cup_{j=1}^{b} \Sigma_{j}$.

Then, for each $j = 1, \cdots, b$ and each $k \ge 1$,

$$\sigma_k(M) \leq K(n) rac{|M|}{\mathsf{Diam}_M(\Sigma_j)^2 \mathsf{inj}(\Sigma_j)^n} k^{n+1}$$

where

Diam_M(Σ_j) is the extrinsic diameter of Σ_j inj(Σ_j) is the injectivity radius of Σ_j

Moreover

$$\sigma_1(M) \leq K(n) \frac{|M|}{\operatorname{Diam}_M(\Sigma)^2 \operatorname{inj}(\Sigma)^n}$$

Applications to eigenvalues of the Laplace operator

Let Σ be a closed Riemannian manifold.

Let $0 < \lambda_1 \le \lambda_2 \le \lambda_3 \cdots$ be the nonzero **eigenvalues of the** Laplacian on Σ .

Let $M = [-L, L] \times \Sigma$.

The Steklov eigenvalues of M are

0,
$$1/L$$
, $\sqrt{\lambda_k} \operatorname{tanh}(\sqrt{\lambda_k}L)$, $\sqrt{\lambda_k} \operatorname{coth}(\sqrt{\lambda_k}L)$

For L > 0 small enough, $\sigma_k = \sqrt{\lambda_k} \tanh(\sqrt{\lambda_k}L)$.

Notice that b = 2, $\Lambda = 1$, $N = N_{\Sigma}$ and $|M| = L|\Sigma|$.

$$\sqrt{\lambda_k} \operatorname{tanh}(\sqrt{\lambda_k}L) \leq N_{\Sigma}^{3} \Gamma \frac{L|\Sigma|}{|\Sigma|^{\frac{n+2}{n}}} k^{2/n}.$$

Theorem $\mathbf{A} \Longrightarrow$

$$\sqrt{\lambda_k} \operatorname{tanh}(\sqrt{\lambda_k}L) \leq N_{\Sigma}^3 \Gamma \frac{L|\Sigma|}{|\Sigma|^{\frac{n+2}{n}}} k^{2/n}.$$

Divide by L:

$$\sqrt{\lambda_k}\left(\frac{\tanh(\sqrt{\lambda_k}L)}{L}\right) \leq N^3 \Gamma \Lambda^2 \frac{1}{|\Sigma|^{\frac{2}{n}}} k^{2/n}.$$

Theorem $\mathbf{A} \Longrightarrow$

$$\sqrt{\lambda_k} \operatorname{tanh}(\sqrt{\lambda_k}L) \leq N_{\Sigma}^3 \Gamma \frac{L|\Sigma|}{|\Sigma|^{\frac{n+2}{n}}} k^{2/n}.$$

Divide by L:

This is in the spirit of Grigor'yan–Netrusov–Yau and Korevaar.

Theorem $\mathbf{B} \Longrightarrow$

$$\sqrt{\lambda_k} \operatorname{tanh}(\sqrt{\lambda_k}L) \leq K(n) rac{L|\Sigma|}{\operatorname{Diam}(\Sigma)^2} \left(rac{1}{\operatorname{inj}(\Sigma)^n}
ight) k^{n+1},$$

Theorem $\mathbf{B} \Longrightarrow$

$$\sqrt{\lambda_k} \operatorname{tanh}(\sqrt{\lambda_k}L) \leq K(n) rac{L|\Sigma|}{\operatorname{Diam}(\Sigma)^2} \left(rac{1}{\operatorname{inj}(\Sigma)^n}
ight) k^{n+1},$$

Divide by L and take $L \rightarrow 0$ and obtain...

Theorem C (Colbois–Girouard 2021)

$$\lambda_k(\Sigma) \mathsf{Diam}(\Sigma)^2 \leq \mathcal{K}(n) rac{|\Sigma|}{\mathsf{inj}(\Sigma)^n} k^{n+1}$$

This is an improvement of results from Berger, Croke and Kokarev.

Berger, Croke and Kokarev

Let $\boldsymbol{\Sigma}$ be a closed Riemannian manifold

Berger 1979

If $\boldsymbol{\Sigma}$ admits an isometric involution without fixed points, then

$$\lambda_1(\Sigma) \leq \kappa(n) \frac{|\Sigma|}{\operatorname{inj}(\Sigma)^{n+2}}.$$

Berger, Croke and Kokarev

Let $\boldsymbol{\Sigma}$ be a closed Riemannian manifold

Berger 1979

If $\boldsymbol{\Sigma}$ admits an isometric involution without fixed points, then

$$\lambda_1(\Sigma) \leq \kappa(n) \frac{|\Sigma|}{\operatorname{inj}(\Sigma)^{n+2}}.$$

Croke 1980 and Kokarev 2019

$$\lambda_k(\Sigma) \leq \kappa(n) \frac{|\Sigma|^2}{\operatorname{conv}(\Sigma)^{2n+2}} k^{2n}.$$

 $conv(\Sigma)$ is its convexity radius

Berger, Croke and Kokarev

Let $\boldsymbol{\Sigma}$ be a closed Riemannian manifold

Berger 1979

If $\boldsymbol{\Sigma}$ admits an isometric involution without fixed points, then

$$\lambda_1(\Sigma) \leq \kappa(n) \frac{|\Sigma|}{\operatorname{inj}(\Sigma)^{n+2}}$$

Croke 1980 and Kokarev 2019

$$\lambda_k(\Sigma) \leq K(n) rac{|\Sigma|^2}{\operatorname{conv}(\Sigma)^{2n+2}} k^{2n}.$$

 $\mathsf{conv}(\Sigma)$ is its convexity radius

Theorem C (Colbois–Girouard 2021)

$$\lambda_k(\Sigma) \leq \mathcal{K}(n) rac{|\Sigma|}{\mathsf{Diam}(\Sigma)^2 \mathsf{inj}(\Sigma)^n} k^{n+1}$$

The exponent on k is better.

Because $conv(\Sigma) \leq inj(\Sigma) \leq Diam(\Sigma)$, the control is better.

The exponent on k is better.

Because $\text{conv}(\Sigma) \leq \text{inj}(\Sigma) \leq \text{Diam}(\Sigma)$, the control is better.

Example: Consider $\Sigma_L = \mathbb{S}^1_L \times \mathbb{S}^{n-1}$ with $L \to +\infty$.

The exponent on k is better.

Because $\text{conv}(\Sigma) \leq \text{inj}(\Sigma) \leq \text{Diam}(\Sigma)$, the control is better.

Example: Consider $\Sigma_L = \mathbb{S}^1_L \times \mathbb{S}^{n-1}$ with $L \to +\infty$.

$$\lambda_1 \sim 1/L^2$$
 Diam $(\Sigma_L) \sim L$ $|\Sigma_L| = L |\mathbb{S}^{n-1}|.$
Injectivity and convexity radii = π .

The exponent on k is better.

Because $\text{conv}(\Sigma) \leq \text{inj}(\Sigma) \leq \text{Diam}(\Sigma)$, the control is better.

Example: Consider $\Sigma_L = \mathbb{S}_L^1 \times \mathbb{S}^{n-1}$ with $L \to +\infty$.

$$\begin{split} \lambda_1 \sim 1/L^2 & \text{Diam}(\Sigma_L) \sim L & |\Sigma_L| = L |\mathbb{S}^{n-1}|. \\ \text{Injectivity and convexity radii} = \pi. \end{split}$$

Berger and Croke:

 $\lambda_1(\Sigma) \leq \kappa(n)L|\mathbb{S}^{n-1}|/\pi^{n+2}$ and $\lambda_1 \leq \kappa(n)L^2|\mathbb{S}^{n-1}|^2/\pi^{2n+2}.$

The exponent on *k* is better.

Because $\text{conv}(\Sigma) \leq \text{inj}(\Sigma) \leq \text{Diam}(\Sigma)$, the control is better.

Example: Consider $\Sigma_L = \mathbb{S}_L^1 \times \mathbb{S}^{n-1}$ with $L \to +\infty$.

$$\begin{split} \lambda_1 \sim 1/L^2 & \text{Diam}(\Sigma_L) \sim L & |\Sigma_L| = L |\mathbb{S}^{n-1}|. \\ \text{Injectivity and convexity radii} = \pi. \end{split}$$

Berger and Croke:

 $\lambda_1(\Sigma) \leq K(n)L|\mathbb{S}^{n-1}|/\pi^{n+2}$ and $\lambda_1 \leq K(n)L^2|\mathbb{S}^{n-1}|^2/\pi^{2n+2}$. Our bound:

$$\lambda_1 \leq K(n) \frac{|\mathbb{S}^{n-1}|}{L\pi^n} \xrightarrow{L \to \infty} 0.$$

Optimal exponent on k for negative curvature

Croke 1980 and Kokarev 2019

$$\lambda_k(\Sigma) \leq K(n) rac{|\Sigma|^2}{\operatorname{conv}(\Sigma)^{2n+2}} k^{2n}.$$

Optimal exponent on k for negative curvature

Croke 1980 and Kokarev 2019

$$\lambda_k(\Sigma) \leq \kappa(n) rac{|\Sigma|^2}{\operatorname{conv}(\Sigma)^{2n+2}} k^{2n}.$$

Colbois-Girouard 2021

$$\lambda_k(\Sigma) \leq K(n) rac{|\Sigma|}{\mathsf{Diam}(\Sigma)^2 \mathsf{inj}(\Sigma)^n} k^{n+1}$$

Kokarev 2019

Let Σ be a closed Riemannian manifold with non-positive sectional curvature. Then,

$$\lambda_k(\Sigma) \leq K(n) rac{|\Sigma|^2}{\operatorname{inj}(\Sigma)^{2n+2}} k^{2/n}.$$

Some references

Bruno Colbois, Alexandre Girouard. *Metric upper bounds for Steklov and Laplace eigenvalues*. arXiv:2108.03101

Gerasim Kokarev. Berger inequality for Riemannian manifolds with an upper sectional curvature bound. arXiv:1910.06647

Bounds on σ_k in terms of the diameter have also been studied elsewhere:

Abdelkader Al Sayed; Beniamin Bogosel; Antoine Henrot; Florent Nacry. *Maximization of the Steklov eigenvalues with a diameter constraint*.

SIAM J. Math. Anal. 53 (2021)

Beniamin Bogosel; Dorin Bucur; Alessandro Giacomini. *Optimal shapes maximizing the Steklov eigenvalues*. SIAM J. Math. Anal. 49 (2017), no. 2, 1645–1680.