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Introduction

• In this talk, we give some eigenvalue estimates for the magnetic
Laplacian on a Riemannian surface, possibly with boundary (in that case,
we use magnetic Neumann boundary conditions).

• The magnetic Laplacian, and its spectrum, depend on the pair (Ω,A),
where Ω is the surface and A is the potential 1-form, giving rise to the
magnetic field B

.
= dA, which in dimension 2 is identified with a real

valued function by the Hodge-star operator.

• When A = 0, or more generally when A is exact, the spectrum
coincide with that of the usual, non magnetic case, in particular

λ1(Ω,A) = 0.

• However there are situations in which the magnetic field is zero (i.e.
A is closed) and yet the ground state energy is positive:

λ1(Ω,A) > 0.



• Physically, this corresponds to the so-called Aharonov-Bohm effect:
consider an impenetrable region (typically, an ideal solenoid) where a
magnetic field is confined, while a charged quantum particle is placed
outside the impenetrable region.

• It turns out that the corresponding Hamiltonian of the particle feels in
some sense a shift which is related to the flux of magnetic potential A
along closed paths, even if the magnetic field vanishes outside the
solenoid (the flux should not be an integer).

• For a spectral geometer, this relation between the spectrum and the
topology is quite interesting, which prompted us to study the case of
closed potentials (dA = 0).

• In fact, a general easy argument shows that the spectrum does not
change if we replace A by its co-closed part in the Hodge decomposition.

• This means that we can assume A to be a harmonic one form, i.e. a
de Rham cohomology class.



• Eigenvalue estimates should depend on the flux of the magnetic
potential A and the geometry of the surface.

• In particular, this gives a one-parameter (or multi-parameter)
deformation of spectrum of the standard Laplacian, the parameter being
precisely the set of fluxes.

• We first give a lower bound for annuli, that is, domains of type
[0, 1]× S1 with a Riemannian metric. Then, we apply the lower bound to
Euclidean annuli having convex boundary components.

• A lower bound for closed genus one surfaces should follow (work in
progress). The case of genus g ≥ 2 is more complicated.

• Finally, we introduce the so-called Aharonov-Bohm potentials, in
which the magnetic field is concentrated at one point of the domain
(Dirac mass). In this limit case, we can prove a reverse Faber-Krahn
inequality for domains in the plane and, more generally, in the plane
endowed with a large class of radially invariant metrics, including those
with non-positive curvature.

• Similar classic isoperimetric inequalities for the Steklov problem, as
Brock’s theorem and Weinstock inequality, are extended to the magnetic
case.



The magnetic Laplacian

• Let Ω be a Riemannian manifold and A a smooth real 1-form, called
the potential 1-form. The 2-form

B = dA

is called the magnetic field.

• One defines a modified gradient ∇A on the space of complex-valued
functions C∞(M,C) by

∇A
Xu = ∇Xu − iA(X )u.

• The magnetic Laplacian is the operator acting on C∞(Ω,C) defined

by ∆A = (∇A)?∇A.



Explicitly one has:

∆Au = ∆u + |A|2u + 2i〈du,A〉+ iudivA.

• We stress that the potential 1-form is assumed to be real.

• If M is closed (compact, without boundary) the magnetic Laplacian
has a discrete spectrum, which we denote by

λ1(Ω,A) ≤ λ2(Ω,A) ≤ · · · ≤ λk(Ω,A) ≤ . . .

and λ1(Ω,A) ≥ 0, because

λ1(Ω,A) = inf
06=u∈C∞(Ω,C)

∫
Ω
|∇Au|2∫
Ω
|u|2



Neumann conditions

• If Ω has a (smooth) boundary we will adopt (magnetic) Neumann
conditions: these are

〈∇Au,N〉 = 0 on ∂Ω.

The spectrum will be denoted in the same way.

Clearly the spectrum reduces to the spectrum of the usual
(non-magnetic) Laplacian when A = 0.

• Note that, according to our numbering:

λ1(Ω, 0) = 0

so that the first positive eigenvalue (in the non-magnetic case) is
λ2(Ω, 0).



Gauge invariance

It is the identity:
∆Ae

−iφ = e−iφ∆A+dφ

for all smooth real valued functions φ on M. Therefore, ∆A and ∆A+dφ

are unitarily equivalent, so that they have the same spectrum:

λk(Ω,A + dφ) = λk(Ω,A)

for all k. In particular, λk(Ω, dφ) = λk(Ω, 0) (the usual non-magnetic
Laplacian).

• What happens when the potential is a closed form, that is, the
magnetic field is zero? Is it true that then λk(Ω,A) = λk(Ω, 0) (the
non-magnetic case) ?

• In other words: does the magnetic field determine the spectrum?

• Answer: no.

• In particular, there are many situations in which B = dA = 0 but
λ1(Ω,A) > 0.



The situation was clarified by Shigekawa (closed manifolds) and Helffer
et al. (for magnetic Neumann boundary conditions). Given a closed
curve c on M, consider the flux of A around c :

ΦA
c =

1

2π

∮
c

A

Theorem
One has λ1(Ω,A) = 0 if and only if dA = 0 and the flux of A around any
closed curve is an integer.

• In other words, we can ”gauge away” all potential 1-forms in the
lattice

P = {A : dA = 0, ΦA
c ∈ Z for all closed curves c}

Note that P is between the subspace of exact forms and that of closed
forms.



Spectrum of the unit circle

Let M = S1, the circle with length 2π. Let t be the angular coordinate.
The one-form

Aν = νdt

is closed, not exact, and has flux ν around the circle. One easily
computes the spectrum and gets the family of eigenvalues

(k − ν)2, k ∈ Z

with associated eigenfunctions

uk(t) = e ikt .



Note that indeed the spectrum reduces to the non-magnetic case when ν
is an integer, and that:

λ1(M,Aν) = inf
k∈Z

(k − ν)2

which is positive precisely when ν /∈ Z.

• Actually, by gauge invariance, one could always assume that
ν ∈ [0, 1

2 ]. In that case,

λ1(M,Aν) = ν2

• One could see λk(S1,Aν) as a continuous deformation of the usual
spectrum λk(S1, 0) of S1.



Flat tori
Take for simplicity of exposition the square torus T = S1 × S1 with
potential one-form

A = ν1dx1 + ν2dx2,

where ν1, ν2 ∈ R. Then A is closed (actually harmonic), and has fluxes
ν1, ν2 around the two homology classes which generate the cohomology
of T .
The spectrum is the union of

(k − ν1)2 + (h − ν2)2

over k, h ∈ Z and the lowest eigenvalue is

λ1 = inf
{

(k − ν1)2 + (h − ν2)2 : (k , h) ∈ Z× Z
}
.

One sees that λ1 > 0 iff (ν1, ν2) does not belong to the integer lattice
Z× Z;

• if (ν1, ν2) ∈ Z× Z then λ1 = 0 and actually the spectrum reduces to
the spectrum of the usual (non-magnetic) Laplacian.

• Compute the lowest eigenvalue of the magnetic Laplacian on any flat
torus.



Aharonov-Bohm potentials

We now focus on dimension 2, and consider the lowest eigenvalue for
domains in a space form of constant curvature (that is, R2,H2,S2) and
for a class of particular potentials, the Aharonov-Bohm potentials.

• We explain the results for planar bounded domains Ω ⊆ R2.

Let Ω be a smooth bounded domain of R2 with a distinguished point
x0 = (a, b). Consider the one-form

ω = − y − b

(x − a)2 + (y − b)2
dx +

x − a

(x − a)2 + (y − b)2
dy . (1)

Then, ω is smooth on R2 \ {x0} and singular at the pole x0; it is closed
(actually harmonic) and has flux 1 around the point x0.

• The one-form Ax0,ν = νω will be called Aharonov-Bohm potential
with pole x0 and flux ν.



• In the punctured plane R2 \ {x0}, the potential Ax0,ν gives rise to a
vanishing magnetic field (B = dAx0,ν = 0); viewed as a distribution on
R2 the magnetic field is a Dirac mass at x0:

?dAx0,ν = νδx0 .

• If the flux ν is not an integer, the lowest eigenvalue (with magnetic

Neumann conditions) is positive.

• By that we mean the eigenvalue problem (the Aharonov-Bohm
potential Ax0,ν is simply denoted by A):{

∆Au = λu , in Ω,

〈∇Au,N〉 = 0 , on ∂Ω,
(2)

where N is the inner unit normal.
It admits a non-negative, discrete spectrum:

λ1(Ω,A) ≤ λ2(Ω,A) ≤ . . .



and the min-max principle reads:

λ1(Ω,Ax0,ν) = inf
06=u∈H1

A(Ω,C)

∫
Ω
|∇Au|2∫
Ω
|u|2

where H1
A(Ω,C) is the form domain we work with, the magnetic Sobolev

space, the closure of C∞x0
(Ω,C) (the space of smooth functions on Ω

vanishing in a neighborhood of x0) with respect to the norm

‖u‖2
A :=

∫
Ω

|∇Au|2 + |u|2 , ∀u ∈ C∞x0
(Ω,C) : ∇Au, u ∈ L2(Ω,C).

• If ν ∈ Z then the Aharonov-Bohm spectrum coincides with the usual
non-magnetic Neumann spectrum:

λk(Ω,Ax0,ν) = λk(Ω, 0)

for all k.



Magnetic Szëgo-Weinberger inequality (Euclidean plane)

Theorem
(Colbois, Provenzano, S)
Let Ω be a smooth bounded domain in R2 and let Ax0,ν be the
Aharonov-Bohm potential with pole at x0 and flux ν. Let B = B(x0,R)
be the disk centered at the pole x0 such that |B| = |Ω|. Then

λ1(Ω,Ax0,ν) ≤ λ1(B,Ax0,ν); (3)

if ν /∈ Z, equality holds if and only if Ω = B(x0,R).

• We remark that the classical, non-magnetic Szëgo-Weinberger
inequality regards the second Neumann eigenvalue, and not the first
(which is zero for every domain), and in our notation can be stated as
follows:

λ2(Ω, 0) ≤ λ2(B, 0)

where B is a ball with the same volume of Ω.



Idea of proof

• We can assume that ν ∈ (0, 1
2 ].

Here is the scheme of the proof:

Step 1. We compute the spectrum of a disk centered at the pole x0, and
observe that the first eigenfunction is real and radial around x0.

Step 2. We reduce the proof of the above inequality to an isoperimetric
inequality involving Schrödinger operators of type ∆ + V where
V = V (r) is radial around x0.

Step 3. We apply the inequality in Step 2 to the case V = |Ax0,ν |2 and
get the final result.



Step 2: an upper bound by an associated Schrödinger
operator

When giving upper bounds we often use test-functions which are real.
Since the potential one-form A is real, when u is real the Rayleigh
quotient writes: ∫

Ω

|∇Au|2 =

∫
Ω

(
|∇u|2 + |A|2u2

)
that is, the first eigenvalue for the magnetic Laplacian is bounded above
by that of the Scrhödinger ∆ + V where V = |A|2, for Neumann
conditions.

Theorem
One has always:

λ1(Ω,∆A) ≤ λ1(Ω,∆ + V ),

where V = |A|2. Equality holds if and only if there is a first eigenfunction
of ∆A which is real.



An isoperimetric inequality for Schröedinger operators

The following considerations apply in any dimension n.
We consider potentials V which are non-negative and radial around a
point x0:

V = V (r),

where r is the distance to x0.

• Note that V could be singular at x0: if A = Ax0,ν then V (r) =
ν2

r2
.

Introduce the natural form domain

H1
V (Ω) = {u ∈ H1(Ω) : V

1
2 u ∈ L2(Ω)}

and define

λ1(Ω,∆ + V ) = inf
06=u∈H1

V (Ω)

∫
Ω

(
|∇u|2 + Vu2

)
∫

Ω
u2

,

which is non-negative.



Let then Ω be a smooth bounded domain in Rn and let B
.

= B(x0,R) be
the ball centered at x0 with the same volume:

|Ω| = |B|.

We set D(Ω) = sup{d(x , x0) : x ∈ Ω} and make the following
assumptions:

Assumption 1. There exists a first eigenfunction u on B which is
non-negative, radial and non-decreasing in the radial direction:
u ≥ 0, u′ ≥ 0.

Assumption 2. V is radial around x0, non-negative and non increasing:
V ′(r) ≤ 0 on (0,DΩ).

Assumption 3. V ′ + 2V 2r ≤ 0 on (0,R).

Theorem
Under assumptions 1, 2, 3 above, we have:

λ1(Ω,∆ + V ) ≤ λ1(B,∆ + V ),

with equality if and only if Ω is the ball B.



Step 3: end of proof

We now go back to dimension 2. One easily checks that the assumption
hold when V = |Ax0,ν |2, that is, when

V (r) =
ν2

r2

Therefore,
λ1(Ω,∆ + |Ax0,ν |2) ≤ λ1(B,∆ + |Ax0,ν |2).

We now conclude easily:

λ1(Ω,Ax0,ν) ≤ λ1(Ω,∆ + |Ax0,ν |2)

≤ λ1(B,∆ + |Ax0,ν |2)

= λ1(B,Ax0,ν)

where the second inequality follows from our estimate on Schrödinger
operators and the last one follows from the fact that the groundstate on
the ball is real.



Extension to space forms and surfaces of revolution

The above inequality for Schrödinger operators can be extended, under
suitable hypothesis, to domains in any manifold of revolution (basically,
Rn with a radial metric around x0).

In dimension 2, consider polar coordinates (r , t) around x0. The 1 form:

Ax0,ν = ν dt

is closed and has flux ν around x0; this two facts characterize the
spectrum of the magnetic Laplacian, and Ax0,ν could be called
Aharonov-Bohm potential as well.

One can try to extend the magnetic Szëgo-Weinberger inequality to this
situation. Note for example that in H2:

|Ax0,ν |2 =
ν2

sinh2 r

while in S2:

|Ax0,ν |2 =
ν2

sin2 r



The above scheme yields the following fact.

Theorem
Let Ω be a smooth bounded domain in R2 or H2 and let Ax0,ν be the
Aharonov-Bohm potential with pole at x0 and flux ν. If B = B(x0,R) is
the ball centered at x0 with the same volume of Ω, then

λ1(Ω,Ax0ν) ≤ λ1(B,Ax0,ν). (4)

If ν /∈ Z, equality holds if and only if Ω = B(x0,R).
The same conclusions hold when Ω ⊆ S2 is a spherical domain contained
in the hemisphere centered at the pole x0.

• More generally, the Szëgo-Weinberger inequality holds for any metric
on R2, which is radial around x0 and has non-positive Gauss curvature.



Optimal placement of the pole

Let M be a space form (R2,H2 or S2) and Ax0,ν be, as usual, the
Aharonov-Bohm potential with pole x0 and flux ν. Fix a disk B(p,R)
with center p and radius R. It is a fact that:

• If the pole x0 ∈ B(p,R) tends to the boundary then

λ1(B(p,R),Ax0,ν)→ λ1(B(p, r), 0) = 0.

• What is the optimal position of the pole? In Euclidean or hyperbolic
space, the first eigenvalue is maximized when the pole x0 is at the center:
x0 = p. In the sphere, we assume that B(p,R) is contained in a
hemisphere. This follows immediately from the isoperimetric inequality
proved above. In other words:

Theorem
Among all geodesic balls of fixed radius in R2,H2 and S2

+ (the
hemisphere) the maximum value of the first Aharonov-Bohm eigenvalue
is attained when the pole is at the center (for any value of the flux).



Steklov problem

For Aharonov-Bohm potential A = Ax0,ν we now consider the magnetic
Steklov eigenvalue problem:{

∆Au = 0 , in Ω,

〈∇Au,N〉 = σu , on ∂Ω
(5)

which has a discrete, non-negative spectrum:

σ1(Ω,A) ≤ σ2(Ω,A) ≤ · · · ≤ σk(Ω,A) ≤ . . .

its lowest eigenvalue (by standard arguments as above) is positive
provided ν /∈ Z.



Brock theorem

Theorem
Let Ω be a smooth bounded domain in R2, x0 ∈ Ω a fixed pole, and let
B = B(x0,R) be the disk with the same measure of Ω. Then:

σ1(Ω,Ax0,ν) ≤ σ1(B,Ax0,ν) =

√
π

|Ω| 12
inf
k∈Z
|ν − k|

Equality holds if and only if Ω = B(x0,R).



Magnetic Weinstock inequality

Theorem
Let Ω be bounded simply connected domain in R2, x0 ∈ R2 be a fixed
pole, and let B

.
= B(x0,R) the disk with the same perimeter of Ω. Then:

σ1(Ω,Ax0,ν) ≤ σ1(B,Ax0,ν) =
2π

|∂Ω|
inf
k∈Z
|ν − k|.

Equality holds if and only if Ω = B(x0,R).

• Remark that the non-magnetic Weinstock inequality reads

σ2(Ω, 0) ≤ σ2(B, 0).



The proof is a simple consequence of: the conformal invariance of the
magnetic energy, gauge invariance and the Riemann mapping theorem.
The conformal invariance of the magnetic energy states that, if
Φ : Ω1 → Ω2 is a conformal map between surfaces and A is any potential
one-form on Ω2 then, for all functions u:∫

Ω1

|∇Φ?A(Φ?u)|2 dµ =

∫
Ω2

|∇Au|2 dµ

where Φ?A is the potential one-form on Ω1 obtained by pulling back A by
Φ.



A general lower bound for annuli

An annulus is a Riemannian manifold diffeomorphic to [0, 1]× S1. It has
two boundary components

Γ0 = {0} × S1, Γ1 = {1} × S1

• If A is a closed potential one-form, it has the same flux around Γ0 and

Γ1: we denote this common flux by ΦA.

• If ΦA is close to an integer, by continuity the first eigenvalue tends to
zero. Hence, a lower bound will involve the minimum distance of ΦA to
the integers:

d(ΦA,Z)
.

= inf
k∈Z
|ΦA − k |.

• the plan is to give a geometric lower bound for λ1(Ω,A).



• On any annulus there exists functions ψ : Ω→ R such that ψ is
constant on each component of ∂Ω and has no critical points inside Ω.

• Then, for any such ψ we can define the invariant:

K = KΩ,ψ =
supΩ|∇ψ|
infΩ|∇ψ|

.

• Of course K ≥ 1.

• Notice that KΩ,ψ = 1 when Ω is a flat cylinder, that is, it is isometric
to [0, a]× S1(R) with the product metric, and ψ is the ”height” function
(distance function to one of the boundary components).

• Notice that the level curves of ψ are all regular. We then say that Ω
is K-foliated by the level curves of ψ.



Theorem
(Colbois-S 2018) a) Let A be a closed 1-form on an annulus Ω which is

foliated by the level curves of ψ. Then:

λ1(Ω,A) ≥ 4π2

KΩ,ψL2
inf
k∈Z
|ΦA − k |2.

where L is the maximum length of a level curve of ψ and ΦA is the flux
of A across any boundary component of Ω.

b) Equality holds if and only if Ω is a flat cylinder, i.e. the Riemannian
product [0, a]× S1(R) for some a and R, in which case KΩ,ψ = 1.

• Sketch of proof: Ω is foliated by the level curves of ψ; on each of
these, say {ψ = t}, restrict the first eigenfunction and use it as
test-function for the magnetic Laplacian of a circle of the same length.
Integrate the inequalities by using the co-area formula. The equality case
is more involved technically.



Doubly connected plane domains

We now consider a doubly connected plane domain, bounded by two
convex curves Γ and Γ′. We let β and B be, respectively, the minimum
amd maximum distance of a point x ∈ Γ′ (the outer component) to Γ.
By applying the theorem above, we obtain:

Theorem
Let Ω be as above, and let A be a closed potential 1-form with flux ΦA

around any of the two boundary components. Then:

λ1(Ω,A) ≥ 4π2

L2

β2

B2
d(ΦA,Z)2,

where L is the length of the outer component.



• In order have λ1 small, for a fixed outer length, it is necessary that
the ratio β

B , and not just β, has to be small.

• The dependance on β
B is somewhat necessary: if the two components

get close somewhere (and B is uniformly bounded below) then the lowest
eigenvalue might be very small.

• The dependance on the outer length and d(ΦA,Z)2 is also necessary,
as explicit examples show.

• The term
β2

B2
has been improved to

β

B
(at some extra cost in the

constants) in Colbois-S. 2021. This linear dependance is shown to be the
sharp one, when the flux and the outer length have been fixed.



Closed surfaces
Let Σ be a compact surface without boundary with genus g and A a
closed potential one-form. We are interested in the lowest eigenvalue

λ1(Ω,A).

• By the Hodge decomposition theorem, we can reduce to the case

where A is a harmonic form (i.e. closed and co-closed), hence, a
1-cohomology class. Hence, if g = 0, Σ is a topological sphere, hence A
is also exact and by gauge invariance

λk(Σ,A) = λk(Σ, 0),

the spectrum of the usual Laplacian. In particular:

λ1(Σ,A) = λ1(Σ, 0) = 0.

• Hence we have something new only when g ≥ 1; in that case a
harmonic 1-form is determined by its fluxes across the generators of the
homology in dimension 1, which are, in number, 2g cycles.

• If at least one of these fluxes is not an integer, we have λ1(Ω,A) > 0.



Genus one

A topological torus (genus one closed surface) can be split into two
annuli. Since we need to estimate the first eigenvalue, no orthogonality
condition is needed and then λ1 is bounded below by the smallest
eigenvalue of the two pieces.

• A lower bound for all topological tori follows (work in progress).

• For example, take a revolution torus Ω embedded in R3 and having
radii a > b > 0 (that is, Σ is the set of points at distance b to a circle of
radius a in 3-space).

• Let A be a closed potential one-form having flux ΦA
1 around any of

the parallels and flux ΦA
2 around any of the meridians. Using the main

theorem, and foliating the torus in ”two different orthogonal ways” we
get:

λ1(Ω,A) ≥ 1

(a + b)2
d(ΦA

1 ,Z)2 +
a− b

b2(a + b)
d(ΦA

2 ,Z)2

• The homology of a genus g closed surface Σ has 2g generators;
hence a harmonic potential 1-form A is determined by its fluxes across
these generators. Give a lower bound of λ1(Σ,A) in terms of these fluxes
and the geometry of Σ.


