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The stationary flow under Navier conditions

Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary,
E ⊂ Ω, and let V ∈ C 1(Rd ;Rd) be a divergence free vector field.
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If u : Ω \ E → Rd is the velocity field, we require that the following
items hold true.

(a) Incompressibility: div u = 0 in Ω \ E .

(b) Boundary conditions: we have

u = V on ∂Ω and u · ν = 0 on ∂E ,

(c) Equilibrium: considering the stress

σ := −pId + 2µe(u),

we require
div σ = 0 in Ω \ E .

(d) Navier conditions on the obstacle: we have

(σν)τ = βu on ∂E ,

where β > 0.
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The stationary flow has the following variational characterization:
u is the minimizer of the energy

E(u) := 2µ

∫
Ω\E
|e(u)|2 dx + β

∫
∂E
|u|2 dHd−1

among the class of (sufficiently regular) admissible fields

V reg
E ,V (Ω) :=

{
v ∈ H1(Ω \ E ,Rd) : v satisfies

incompressibility and boundary conditions} .
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The drag force and the optimization problem

Assume now that the external vector field V is equal to a constant
V∞ ∈ Rd \ {0}, i.e. the obstacle E is immersed in a uniform flow.
The flow is perturbed near E , and the obstacle experiences a force
whose component in the direction V∞ is given by

Drag(E ) :=

∫
∂E
σν · V∞
|V∞|

dHd−1.

It turns out that

Drag(E ) =
1

|V∞|
E(u)

=
1

|V∞|

[
2µ

∫
Ω\E
|e(u)|2 dx + β

∫
∂E
|u|2 dHd−1

]
.
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Let c > 0 and let f : (0, |Ω|)→ R ∪ {+∞} be a lower
semicontinuous functions that is not identically equal to +∞. We
are interested in the following optimization problem:

min
E

{
Drag(E ) + cHd−1(∂E ) + f (|E |)

}
.

Letting V be arbitrary, the drag minimization problem above is a
particular case of the following shape optimization problem

min
E ,u∈V reg

E ,V (Ω)

{∫
Ω\E
|e(u)|2 dx + β

∫
∂E
|u|2 dHd−1

+cHd−1(∂E ) + f (|E |)
}
.
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Goal: prove existence of a minimizer through the Direct Method of
the Calculus of Variations in a suitable relaxed context.

Class of admissible obstacle  Sets of finite perimeter.

Class of admissible velocities  Discontinuous fields are important!

En E

Γ

Alessandro Giacomini Università degli Studi di Brescia
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We are led to consider a velocity field discontinuous across Γ. We
also expect an extra term in the surface integral related to the
Navier conditions, which amounts at least to

β

∫
Γ\∂E

[|u+|2 + |u−|2] dHd−1,

where u± are the two traces from both sides of Γ. An other extra
term comes from the perimeter penalization and reads

2cHd−1(Γ).

A natural functional space to be considered is the space of
functions of bounded deformation SBD: u ∈ SBD(Ω) if
u ∈ L1(Ω;Rd) and

Eu = e(u) dx + (u+ − u−)� νuHd−1bJu
as matrix valued measures on Ω.
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Compactness in SBD (Bellettini, Coscia, Dal Maso)

Let Ω ⊆ Rd be open, bounded and with a Lipschitz boundary, and
let (un)n∈N be a sequence in SBD(Ω) such that

sup
n

[
|Eun|(Ω) + ‖un‖L1(Ω;Rd ) + ‖e(un)‖Lp(Ω;Md

sym)

+Hd−1(Jun)
]
< +∞

for some p > 1. Then there exists u ∈ SBD(Ω) and a subsequence
(unk )k∈N such that

unk → u strongly in L1(Ω;Rd),

e(unk ) ⇀ e(u) weakly in Lp(Ω;Md
sym),

Hd−1(Ju) ≤ lim inf
k→+∞

Hd−1(Junk ).
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The functional setting

Let Ω′ ⊂⊂ Rd be open and bounded with Ω ⊂⊂ Ω′.

Admissible pairs

We say that (E , u) is an admissible pair and write (E , u) ∈ A(V ),
if

(a) E ⊆ Ω has finite perimeter;

(b) u ∈ SBD(Ω′) with u = 0 a.e. in E , u = V on Ω′ \ Ω and

Incompressibility: div u = 0 in D′(Ω′);

Tangency constraint: u± ⊥ νE∪Ju on ∂∗E ∪ Ju.
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The relaxed optimization problem

The relaxed formulation for the optimization problem involves the
energy

J (E , u) :=

∫
Ω\E
|e(u)|2 dx

+ β

∫
∂∗E
|u+|2 dHd−1 + β

∫
Ju\∂∗E

[|u+|2 + |u−|2] dHd−1

+ cHd−1(∂∗E ) + 2cHd−1(Ju \ ∂∗E )

+ f (|E |).
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The main result

Theorem (Bucur, Chambolle, G., Nahon, 2022)

The minimum problem

min
(E ,u)
J (E , u)

has a solution.

Alessandro Giacomini Università degli Studi di Brescia
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Compactness

Theorem (Bucur, Chambolle, G., Nahon, 2022)

For every (E , u) ∈ A(V ) we have

Hd−1(∂∗E ) + ‖e(u)‖L2 +Hd−1(Ju)

+ |Eu|(Ω) + ‖u‖L2+ ≤ CJ (E , u).

As a consequence compactness in L1 for the obstacles and in SBD
for the velocities are available.
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The main difficulties to get the full result are the following.

The tangency constraint:

u±n ⊥ νEn∪Jun =⇒ u± ⊥ νE∪Ju .

Lower semicontinuity of Navier energies:∫
∂∗E
|u+|2 dHd−1 +

∫
Ju\∂∗E

|u+|2 + |u−|2 dHd−1

≤ lim inf
n

[∫
∂∗En

|u+
n |2 dHd−1 +

∫
Jun\∂∗En

|u+
n |2 + |u−n |2 dHd−1

]
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Theorem (Bucur, Chambolle, G., Nahon, 2022)

Let Ω ⊆ Rd be a bounded open set, and let (un)n∈N be a sequence
in SBD(Ω) such that

sup
n

[∫
Ω
|e(un)|2 dx +Hd−1(Jun)

]
< +∞

with un → u in L1(Ω) for some u ∈ SBD(Ω). Then the following
facts hold true.

We have∫
Ju

[
|u+ · νu|+ |u− · νu|

]
dHd−1

≤ lim inf
n→+∞

∫
Jun

[
|u+

n · νun |+ |u− · νun |
]
dHd−1.
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If φ : Rd → [0,+∞] is a lower semicontinuous function, we
have∫
Ju

[φ(u+)+φ(u−)] dHd−1 ≤ lim inf
n→+∞

∫
Jun

[φ(u+
n )+φ(u−n )] dHd−1.
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Thank you for your attention!
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Regularity

Theorem (Bucur, Chambolle, G., Nahon, 2022)

Assume d = 2, and let (E , u) be a minimizer of the problem. Then

H1(∂∗E ∪ Ju \ (∂∗E ∪ Ju)) = 0

and

u ∈ H1(Ω \ (∂∗E ∪ Ju);R2) ∩ C∞(Ω \ (∂∗E ∪ Ju);R2).

In other words, the optimal obstacle is given by the closed set

∂∗E ∪ Ju.
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