Talk Title: Realising finite sets of rational numbers as mapping degree sets

Abstract

Let M and N be two closed oriented manifolds of the same dimension. A very first step to understand maps from M to N is to consider the set of mapping degrees, denoted by $D(M, N)$.

In a recent work, C. Newofytidis, S. Wang, and Z. Wang have shown that there exists an infinite subset of integers containing 0 which cannot be realized as $D(M, N)$, for any closed oriented n -manifolds M and N , and raised the question of whether any finite subset of integers containing 0 can be so realized. In this lecture we address that question and show that: 1.- Given A , a finite subset of integers containing 0 , there exist closed oriented 3 -manifolds M and N, such that $D(M, N)=A$. 2.- Given A, a finite subset of rational numbers containing 0 , and an integer n, there exist n connected closed oriented manifolds M and N of the same dimension such that the set of mapping degrees of their rationalizations $M_{-} 0$ and $N _0$, namely $D\left(M _0, N _0\right)$, is A.

