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Abstract: 

In the standard Gaussian linear measurement model $Y=X\mu_0+\xi \in \R^m$ with a fixed noise 
level $\sigma>0$, we consider the problem of estimating the unknown signal $\mu_0$ under a 
convex constraint $\mu_0 \in K$, where $K$ is a closed convex set in $\R^n$. We show that the risk 
of the natural convex constrained least squares estimator (LSE) $\hat{\mu}(\sigma)$ can be 
characterized exactly in high dimensional limits, by that of the convex constrained LSE 
$\hat{\mu}_K^{\seq}$ in the corresponding Gaussian sequence model at a different noise level. 

The characterization holds (uniformly) for risks in the maximal regime that ranges from constant 
order all the way down to essentially the parametric rate, as long as certain necessary non-
degeneracy condition is satisfied for $\hat{\mu}(\sigma)$. 

The precise risk characterization reveals a fundamental difference between noiseless (or low noise 
limit) and noisy linear inverse problems in terms of the sample complexity for signal recovery. A 
concrete example is given by the isotonic regression problem: While exact recovery of a general 
monotone signal requires $m\gg n^{1/3}$ samples in the noiseless setting, consistent signal 
recovery in the noisy setting requires as few as $m\gg \log n$ samples. Such a discrepancy occurs 
when the low and high noise risk behavior of $\hat{\mu}_K^{\seq}$ differ significantly. In statistical 
languages, this occurs when $\hat{\mu}_K^{\seq}$ estimates $0$ at a faster `adaptation rate' than 
the slower `worst-case rate' for general signals. Several other examples, including non-negative least 
squares and generalized Lasso (in constrained forms), are also worked out to demonstrate the 
concrete applicability of the theory in problems of different types. 


