
Fourier convergence and
homeomorphisms of the circle

A. M. Olevskii

Based on joint work with Gady Kozma

Fourier Analysis @200

Edinburgh, June 2022

1



1 Introduction

Can one improve convergence properties of Fourier series by
change of variable?

Theorem 1 (J. Pál, 1914; H. Bohr, 1935). For every real
function f ∈ C(T) there exists a homeomorphism h : T → T
such that the Fourier series of the superposition f ◦ h converges
uniformly.

Proof. Let f > 0. Consider Ω = {z = reiθ, r < f(θ)} . Let
F (z) be the conformal map: D → Ω. Then |F (eit)| = f ◦ h (t).
F belongs to the Sobolev space W (2, 12), and |F | also does.

The homeomorphism h in this proof is, in general, singular.

Problems (N.N. Luzin):

1. Is it possible for any f to find an absolutely continuous home-
omorphism h such that f ◦ h has uniformly convergent Fourier
series?

2. Is it possible to find h so that the superposition has absolutely
convergent Fourier series?

Nina Bari ”Trigonometric series” (1959)

The second problem was resolved negatively in 1981, using dif-
ferent approaches, by J. P. Kahane & Y. Katznelson and by
Olevskii.

”Real” proofs of Pál - Bohr thm (K - K 1978, A. Saakyan 1979)
extended the theorem in different aspects. However in all these
proofs h is singular. So the first Luzin problem has been open
so far.

One cannot require h to be C1+ε - smooth (Kahane - Katznelson
1983).
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THE RESULT

Theorem 2 (G. Kozma, A.O., 2021). For every continuous real
function f there exists an absolutely continuous (AC) homeo-
morphism h such that Fourier series of the superposition f ◦ h
converges uniformly.

I will discuss some ideas involved in the proof.

2 Random Homeomorphisms

Recall our earlier result in the subject (G. Kozma, A.O. 1998):

For any f ∈ C(T) there is a Holder homeomorphism h such that
‖Sn(f ◦ h)‖∞ = o(log log n).

We used the Dubbins - Freedman random homeomorphism:

Take φ(0) = 0, φ(1) = 1. Take φ(1/2) to be uniform between 0
and 1. Then take φ(1/4) to be uniform between 0 and φ(1/2),
and φ(3/4) to be uniform between φ(1/2) and 1, and other-
wise independent. Continue similarly, taking φ(k/2n) to be
uniform between φ((k − 1)/2n) and φ((k + 1)/2n) for all odd
k ∈ {1, 3, ..., 2n − 1}. Almost surely this can be extended to a
Holder homeomorphism.

Theorem (G. Kozma, A.O. 1998). For any continuous function
f , if φ is a Dubbins -Freedman random homeomorphism then
the Fourier partial sums of the superposition f ◦ φ have norms
o(log log n) almost surely.

The estimate is sharp.

We did not expect a purely random construction to solve Luzin’s
problem.
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3 Random signs

Given f , ‖f‖ ≤ 1, consider partial sums:

Sn(f ◦ h;x) =

∫
f(h(t))Dn(x− t)dt .

To make the problem discrete assume x = j/n, j ∈ {0, .., n−1}.
Most serious simplification: replace homeomorphism by multi-
plication with signs. Instead of f ◦h we replace f in the interval
(k/n, (k + 1)/n) by εkf for some εk = ±1.

Question: are there εk such that

|
∑

[0,n−1]

εk

∫
[k/n,(k+1)/n]

f(t)Dn(
j

n
− t)dt | < C ∀j ?

The integrals above can be bounded by C/(|k − j|+ 1). So the
following lemma gives the answer:

Lemma 1. Let vk,j be numbers satisfying |vk,j| ≤ 1/(|k−j|+1) .
Then there are signs εk such that

|
∑

εkvk,j| < C ∀j .

In what follows, we will use an advanced (more technical) version
of the lemma.

Taking εk be i.i.d. does not work: the maximum becomes ≈
log log n.

For the proof of lemma 1 we use a ”hierarchical random con-
struction”. A similar one was used by B. Kashin (1979) in his
discrete version of Menshov correction theorem.
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It is interesting to compare Lemma 1 with J. Komlos conjecture
(1980-s):

If ‖vk‖2 ≤ 1 ∀k then there are signs εk such that

‖
∑

εkvk‖∞ < C .

J. Spenser proved that it is true if we allow εk ∈ [−1, 1] and half
of them in {−1, 1}.

4 Removing randomness

Come back to random homeomorphisms. Here I describe the
first of two main ideas involved in the proof of Theorem 2.

Starting with a random homeomorphism of Dubbins - Freedman
type, we are going to ”remove randomness” step by step, keeping
the behavior of the average E(f ◦φ) and its partial Fourier sums
under control.

Fix a number q, 0 < q < 1. We define a random homeomorphism
ψq. The only difference from D-F is: given a dyadic interval
I = [(k − 1)/2n, (k + 1)/2n], the image of the point d = k/2n is
defined uniformly distributed on the interval concentric to ψ(I)
and of length q|ψ(I)|.
One can see that ψq is Holder for sure, and for small q the
smoothness is close to 1.

Let a function f be given, ‖f‖ = 1. For dyadic points d = k/2n,
k is odd, we call n the rank of d. Let n be fixed.

Assume that we have a modification of ψq (denote it by φ),
satisfying the following conditions:

(i) for all dyadic points d of rank < n φ(d) is not random;
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(ii) for all d of rank n φ(d) is uniformly distributed over some
interval J(d) of length |φ(I)| q/2j;
(iii) for all d of higher rank the conditional distributions of φ(d)
remains as it was at the beginning.

Now we make the next modification (denote it by φ′), changing
only the condition (ii). It is replaced by

(ii’) for all d of rank n the image φ′(d) is uniformly distributed
over a half of J(d), upper or lower.

The choice of the half, depending on f , is based on Lemma 1
(advanced version). The corresponding matrix V = (vi,k) has
2n−1 rows (the number of points d of rank n) and infinite number
of columns.

The lemma allows one to choose for each d the corresponding
half so that all Fourier sums of the function

F = E(f ◦ φ′)− E(f ◦ φ)

will be small.

More precisely:

‖Sr(F )(x)‖ < e−c(j+|n−u|)

for r ∈ [2u−1, 2u), u = 1, 2, ...

Now by induction over j (for a fixed n) we get a random homeo-
morphism φn, for which all points of rank n become non-random.
Then another induction, over n, provides a deterministic home-
omorphism h.

Summing all the deviations, we get

Theorem 3. There is a Holder homeomorphism h (of any order
< 1) such that f ◦ h has bounded Fourier sums.
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5 Absolutely continuous homeomorphisms

The scheme above, started with φq, where q is a constant, allows
us to get Holder but not AC homeomorphism.

To get AC we need to reduce ”randomness” somehow. For this
purpose, we make q not a constant number but a function of
dyadic rationals d, such that the local ”size of randomness”
would correspond to local oscillations of f .

Roughly, if f is ”flat” on a dyadic interval centered at d, then we
do not need much randomness there and we can take the value
q(d) small. This makes the homeomorphism smoother which
allows us to hope eventually for the AC property.

However the problem is whether any f has enough ”flatness”.
On the other hand, if q(d) is too small then it provides not
enough randomness to kill resonances with the Dirichlet kernel.

The Haar decomposition of f plays an important role in our
construction.

We set:
qf(d) = |I|−3/2

∑
w∈I

<f, χw>
2 |w|1/2 ,

where I is the dyadic interval centered at d, and w is the support
of the Haar function χw.

Having {qf} for all dyadic d in [0, 1], we define the ”starting”
homeomorphism ψf (in fact, ψ−1f ) as above.

We prove:

1) the random homeomorphism ψf is absolutely continuous for
sure;
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2) it admits the process of ”removing of randomness”, similar
to one described in section 4, which finally gives a deterministic
homeomorphism h required in Theorem 2.

In the proof of the first claim, the John - Nirenberg inequality
for dyadic BMO space is used.
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