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The proof system

We consider NS refutations of gg = 0,..., gy = 0 the form

1= Z trqe mod x> — X.
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The proof system

We consider NS refutations of gg = 0,..., gy = 0 the form

1= Z trqe mod x> — X.
kel4]

Complexity measure: the algebraic circuit size of t;'s.
A very strong proof system.

Essentially Hilbert-style IPS of [GP'14] or IPS;,, of [FSTW'16].

Tuomas Hakoniemi Simple hard instances for low-depth algebraic proofs



Consider a variant of knapsack (or subset sum)

> zZjwexixpxixe = B
ij,k,L€[n]

unsatisfiable over the Boolean hypercube.
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The hard instance

Consider a variant of knapsack (or subset sum)

> zZjwexixpxixe = B
ij,k,L€[n]

unsatisfiable over the Boolean hypercube.

Theorem (Informal)

Any low-depth multilinear refutation of the knapsack variant
requires superpolynomial algebraic circuit size.
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Smorgasbord of previous work

Lower bounds for subsystems of IPS based on roABPs and
multilinear formulas [FSTW '16]
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Smorgasbord of previous work

Lower bounds for subsystems of IPS based on roABPs and
multilinear formulas [FSTW '16]

Conditional IPS lower bounds for Binary Value Principle
[AGHT'20] and refutation formulas [ST'21]

Unconditional low-depth IPS lower bounds [AF'21]

Bit-complexity lower bounds for Extended Polynomial Calculus
over rationals for Binary Value Principle [A'21]

Size lower bounds for Extended Polynomial Calculus over finite
fields with restricted use of extension variables. [IMP'22]
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Our result

Theorem

Assume char(F) = 0 and let n, A € N with A < % log log log n.
Let f be the unique multilinear polynomial so that
1

f = over Boolean valuations.
ikt ZijkeXiXjXkXe — B

Then any algebraic circuit of product-depth at most A computing
f requires size
exp(—O(A
n(/og,,) p(—0(4))
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Proof ingredients

Our proof combines

the methods to prove superpolynomial lower bounds for
constant-depth algebraic circuits from [LST '21]:

@ lower bounds for low-depth lopsided set-multilinear circuits
from suitable rank lower bounds;

@ a depth-preserving reduction from general circuits to
set-multilinear ones;

the methods to prove IPS lower bounds via functional lower
bounds from [FSTW '16]:

@ rank lower bounds using partial valuations.
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Proof outline

Step 1: restrict to another variant of knapsack ks,, by setting the
z-variables and some of the x-variables.
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Proof outline

Step 1: restrict to another variant of knapsack ks,, by setting the
z-variables and some of the x-variables.

Step 2: find a suitable lopsided set-multilinear polynomial within
the multilinear refutation f of ks,,.

Step 3: project f to the space of these lopsided set-multilinear
polynomials and prove a rank lower bound for the projection.

Step 4: obtain the circuit lower bounds from the rank lower
bounds using [LST'21].
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Constructing ks,

Setup: let w € Z9 be a word, and fix for any i € [d] a set of
variables of size 2/%il.
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Constructing ks,

Setup: let w € Z9 be a word, and fix for any i € [d] a set of
variables of size 2/%il.

Consider positive variables x(g'.) and negative variables yﬁf).
We define a variant of the Knapsack of the form

ks := 3 x{ D — 3,

where fg(i) is a polynomial in the negative variables.
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Defining (")

Definition by example:
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Defining (")

Definition by example:

2 1 3 4 4 4
Here ’%(11)001 = ch1:)1 'Yéo) : (Y1(0t))0 +y1(0())1 +ooe Y1(1%1)
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Knapsacks all the way down

What'’s the point?

w

1 0 0 10 0 1(f0 1 1 0|1 1
BW BB BEZ}) Bg) Bz(18>
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Knapsacks all the way down

What'’s the point?

1 0 0 10 0 1(0 1 1 0|1 1

w w w w w

A partial valuation corresponding to the monomial

}/1((1)%}/1(3())1)’(530}/{?)

simplifies ks,, to
5 6
X(go) + Xl(Oilol - B.
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Multilinear refutations of vanilla Knapsack

From [FSTW'16] we know exactly the structure of the multilinear
f such that

1 .
f=—————  over Boolean valuations.

Zie[n] Xi — IB
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Multilinear refutations of vanilla Knapsack

From [FSTW'16] we know exactly the structure of the multilinear
f such that

1 .
f=—————  over Boolean valuations.

Zie[n] Xi — IB

In particular, the leading monomial of f is []c(y Xi-
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Rank lower bound

Lemma

Let w € Z be a balanced word, and let f be the multilinear
polynomial so that

1 .
f = ——  over Boolean valuations.
ks

Then M,,(f) is full-rank.
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Rank lower bound

Lemma

Let w € Z be a balanced word, and let f be the multilinear
polynomial so that

1 .
f = ——  over Boolean valuations.
ks

Then M,,(f) is full-rank.

Corollary

For a balanced word with |w;| < b, relrk,, (f) > 27b/2.
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Rank lower bound

multilinear monomial . .
set-multilinear monomials
over y-variables
over w|y

multilinear monomial I
. m
over x-variables -

set-multilinear monomials

over w|p,

M(f)

[
Il
Y coefficient of m - m’ in f

iemi Simple hard inst:

es for low-depth algebraic proofs



Lower bounds for set-multilinear circuits

Take a balanced word w € {—k, | k/+/2]}9 with k > 10d. By
[LTS'21] any set-ml formula C over w of size s and product-depth

A satisfies
kal/ (B —1)

relrk, (C) <s-27 =
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Lower bounds for set-multilinear circuits

Take a balanced word w € {—k, | k/+/2]}9 with k > 10d. By
[LTS'21] any set-ml formula C over w of size s and product-depth
A satisfies

relrk, (C) <s-27 =

Corollary

Let k,d and w be as above, and let f be the multilinear polynomial
that equals 1/ks,, over Boolean valuations. Then any set-ml
circuit of product-depth at most A computing My (f), requires size

x <d1/(2A1)—20)
2 40A
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Final reduction

Also from [LST'21] we have that for any word w € Z9 and any
polynomial f:

Tuomas Hakoniemi Simple hard instances for low-depth algebraic proofs



Final reduction

Also from [LST'21] we have that for any word w € Z9 and any
polynomial f:

3 a circuit of size s and product-depth A computing f
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Final reduction

Also from [LST'21] we have that for any word w € Z9 and any
polynomial f:

3 a circuit of size s and product-depth A computing f

—

3 a set-ml circuit of size do(d)poly(s) and product-depth 2A
computing M,,(f).

Tuomas Hakoniemi Simple hard instances for low-depth algebraic proofs



Final touches

Finally take k = |logn/2| and d = [log n/30].
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Final touches

Finally take k = |logn/2| and d = [log n/30].

Now d2% < n, and the polynomials fg(i) are of degree at most 3.
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Final touches

Finally take k = |logn/2| and d = [log n/30].
Now d2% < n, and the polynomials fg(i) are of degree at most 3.
Hence there is a restriction that maps

> Zjrexixixixe — B
ij,k,Len)

to ks,, (up to renaming variables).
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Open questions

@ Upper bounds for low-depth multilinear refutations.
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@ Can we get around the multilinearity restriction? Bounded
individual degree?
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Open questions

Upper bounds for low-depth multilinear refutations.

Can we get around the multilinearity restriction? Bounded
individual degree?

Lower bounds for CNFs?

Lower bounds over finite fields?
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Thank you!

es for low-depth algebraic proofs




