Simple hard instances for low-depth algebraic proofs

Tuomas Hakoniemi
Imperial College London

July 7th 2022, ICMS, Edinburgh

Joint work with Nashlen Govindasamy and Iddo Tzameret

The proof system

We consider NS refutations of $q_{1}=0, \ldots, q_{\ell}=0$ the form

$$
1=\sum_{k \in[\ell]} t_{\ell} q_{\ell} \quad \bmod \bar{x}^{2}-\bar{x}
$$

The proof system

We consider NS refutations of $q_{1}=0, \ldots, q_{\ell}=0$ the form

$$
1=\sum_{k \in[\ell]} t_{\ell} q_{\ell} \quad \bmod \bar{x}^{2}-\bar{x}
$$

Complexity measure: the algebraic circuit size of t_{k} 's.

The proof system

We consider NS refutations of $q_{1}=0, \ldots, q_{\ell}=0$ the form

$$
1=\sum_{k \in[\ell]} t_{\ell} q_{\ell} \quad \bmod \bar{x}^{2}-\bar{x}
$$

Complexity measure: the algebraic circuit size of t_{k} 's.
A very strong proof system.

The proof system

We consider NS refutations of $q_{1}=0, \ldots, q_{\ell}=0$ the form

$$
1=\sum_{k \in[\ell]} t_{\ell} q_{\ell} \quad \bmod \bar{x}^{2}-\bar{x}
$$

Complexity measure: the algebraic circuit size of t_{k} 's.
A very strong proof system.
Essentially Hilbert-style IPS of [GP'14] or IPS $_{\text {Lin }^{\prime}}$ of [FSTW'16].

The hard instance

Consider a variant of knapsack (or subset sum)

$$
\sum_{i, j, k, \ell \in[n]} z_{i j k \ell} x_{i} x_{j} x_{k} x_{\ell}=\beta
$$

unsatisfiable over the Boolean hypercube.

The hard instance

Consider a variant of knapsack (or subset sum)

$$
\sum_{i, j, k, \ell \in[n]} z_{i j k \ell} x_{i} x_{j} x_{k} x_{\ell}=\beta
$$

unsatisfiable over the Boolean hypercube.

Theorem (Informal)

Any low-depth multilinear refutation of the knapsack variant requires superpolynomial algebraic circuit size.

Smörgåsbord of previous work

Lower bounds for subsystems of IPS based on roABPs and multilinear formulas [FSTW '16]

Smörgåsbord of previous work

Lower bounds for subsystems of IPS based on roABPs and multilinear formulas [FSTW '16]

Conditional IPS lower bounds for Binary Value Principle [AGHT'20] and refutation formulas [ST'21]

Smörgåsbord of previous work

Lower bounds for subsystems of IPS based on roABPs and multilinear formulas [FSTW '16]

Conditional IPS lower bounds for Binary Value Principle [AGHT'20] and refutation formulas [ST'21]

Unconditional low-depth IPS lower bounds [AF'21]

Smörgåsbord of previous work

Lower bounds for subsystems of IPS based on roABPs and multilinear formulas [FSTW '16]

Conditional IPS lower bounds for Binary Value Principle [AGHT'20] and refutation formulas [ST'21]

Unconditional low-depth IPS lower bounds [AF'21]
Bit-complexity lower bounds for Extended Polynomial Calculus over rationals for Binary Value Principle [A'21]

Smörgåsbord of previous work

Lower bounds for subsystems of IPS based on roABPs and multilinear formulas [FSTW '16]

Conditional IPS lower bounds for Binary Value Principle [AGHT'20] and refutation formulas [ST'21]

Unconditional low-depth IPS lower bounds [AF'21]
Bit-complexity lower bounds for Extended Polynomial Calculus over rationals for Binary Value Principle [A'21]

Size lower bounds for Extended Polynomial Calculus over finite fields with restricted use of extension variables. [IMP'22]

Our result

Theorem

Assume char $(\mathbb{F})=0$ and let $n, \Delta \in \mathbb{N}_{+}$with $\Delta \leq \frac{1}{4} \log \log \log n$.
Let f be the unique multilinear polynomial so that

$$
f=\frac{1}{\sum_{i j k \ell} z_{i j k \ell} x_{i} x_{j} x_{k} x_{\ell}-\beta} \quad \text { over Boolean valuations. }
$$

Then any algebraic circuit of product-depth at most Δ computing f requires size

$$
n^{(\log n)^{\exp (-O(\Delta))}}
$$

Proof ingredients

Our proof combines

Proof ingredients

Our proof combines
the methods to prove superpolynomial lower bounds for constant-depth algebraic circuits from [LST '21]:

Proof ingredients

Our proof combines
the methods to prove superpolynomial lower bounds for constant-depth algebraic circuits from [LST '21]:

- lower bounds for low-depth lopsided set-multilinear circuits from suitable rank lower bounds;

Proof ingredients

Our proof combines
the methods to prove superpolynomial lower bounds for constant-depth algebraic circuits from [LST '21]:

- lower bounds for low-depth lopsided set-multilinear circuits from suitable rank lower bounds;
- a depth-preserving reduction from general circuits to set-multilinear ones;

Proof ingredients

Our proof combines
the methods to prove superpolynomial lower bounds for constant-depth algebraic circuits from [LST '21]:

- lower bounds for low-depth lopsided set-multilinear circuits from suitable rank lower bounds;
- a depth-preserving reduction from general circuits to set-multilinear ones;
the methods to prove IPS lower bounds via functional lower bounds from [FSTW '16]:

Proof ingredients

Our proof combines
the methods to prove superpolynomial lower bounds for constant-depth algebraic circuits from [LST '21]:

- lower bounds for low-depth lopsided set-multilinear circuits from suitable rank lower bounds;
- a depth-preserving reduction from general circuits to set-multilinear ones;
the methods to prove IPS lower bounds via functional lower bounds from [FSTW '16]:
- rank lower bounds using partial valuations.

Proof outline

Step 1: restrict to another variant of knapsack ks_{w} by setting the z-variables and some of the x-variables.

Proof outline

Step 1: restrict to another variant of knapsack ks_{w} by setting the z-variables and some of the x-variables.

Step 2: find a suitable lopsided set-multilinear polynomial within the multilinear refutation f of ks_{w}.

Proof outline

Step 1: restrict to another variant of knapsack ks_{w} by setting the z-variables and some of the x-variables.

Step 2: find a suitable lopsided set-multilinear polynomial within the multilinear refutation f of ks_{w}.

Step 3: project f to the space of these lopsided set-multilinear polynomials and prove a rank lower bound for the projection.

Proof outline

Step 1: restrict to another variant of knapsack ks_{w} by setting the z-variables and some of the x-variables.

Step 2: find a suitable lopsided set-multilinear polynomial within the multilinear refutation f of ks_{w}.

Step 3: project f to the space of these lopsided set-multilinear polynomials and prove a rank lower bound for the projection.

Step 4: obtain the circuit lower bounds from the rank lower bounds using [LST'21].

Constructing ks_{w}

Setup: let $w \in \mathbb{Z}^{d}$ be a word, and fix for any $i \in[d]$ a set of variables of size $2^{\left|w_{i}\right|}$.

Constructing ks_{w}

Setup: let $w \in \mathbb{Z}^{d}$ be a word, and fix for any $i \in[d]$ a set of variables of size $2^{\left|w_{i}\right|}$.

Consider positive variables $x_{\sigma}^{(i)}$ and negative variables $y_{\sigma}^{(j)}$.

Constructing ks_{w}

Setup: let $w \in \mathbb{Z}^{d}$ be a word, and fix for any $i \in[d]$ a set of variables of size $2^{\left|w_{i}\right|}$.

Consider positive variables $x_{\sigma}^{(i)}$ and negative variables $y_{\sigma}^{(j)}$.
We define a variant of the Knapsack of the form

$$
\mathrm{ks}_{w}:=\sum x_{\sigma}^{(i)} f_{\sigma}^{(i)}-\beta
$$

where $f_{\sigma}^{(i)}$ is a polynomial in the negative variables.

Defining $f_{o}^{(i)}$

Definition by example:

Defining $f_{\sigma}^{(i)}$

Definition by example:

Here $f_{011001}^{(2)}=y_{011}^{(1)} \cdot y_{00}^{(3)} \cdot\left(y_{1000}^{(4)}+y_{1001}^{(4)}+\cdots+y_{1111}^{(4)}\right)$

Knapsacks all the way down

What's the point?

Knapsacks all the way down

What's the point?

A partial valuation corresponding to the monomial

$$
y_{100}^{(1)} y_{1001}^{(4)} y_{0110}^{(7)} y_{11}^{(8)}
$$

simplifies ks_{w} to

$$
x_{00}^{(5)}+x_{101101}^{(6)}-\beta
$$

Multilinear refutations of vanilla Knapsack

From [FSTW'16] we know exactly the structure of the multilinear f such that

$$
f=\frac{1}{\sum_{i \in[n]} x_{i}-\beta} \quad \text { over Boolean valuations. }
$$

Multilinear refutations of vanilla Knapsack

From [FSTW'16] we know exactly the structure of the multilinear f such that

$$
f=\frac{1}{\sum_{i \in[n]} x_{i}-\beta} \quad \text { over Boolean valuations. }
$$

In particular, the leading monomial of f is $\prod_{i \in[n]} x_{i}$.

Rank lower bound

Lemma

Let $w \in \mathbb{Z}$ be a balanced word, and let f be the multilinear polynomial so that

$$
f=\frac{1}{\mathrm{ks}_{w}} \quad \text { over Boolean valuations. }
$$

Then $M_{w}(f)$ is full-rank.

Rank lower bound

Lemma

Let $w \in \mathbb{Z}$ be a balanced word, and let f be the multilinear polynomial so that

$$
f=\frac{1}{\mathrm{ks}_{w}} \quad \text { over Boolean valuations. }
$$

Then $M_{w}(f)$ is full-rank.

Corollary

For a balanced word with $\left|w_{i}\right| \leq b, \operatorname{relrk}_{w}(f) \geq 2^{-b / 2}$.

Rank lower bound

Lower bounds for set-multilinear circuits

Take a balanced word $w \in\{-k,\lfloor k / \sqrt{2}\rfloor\}^{d}$ with $k \geq 10 d$. By [LTS'21] any set-ml formula C over w of size s and product-depth Δ satisfies

$$
\operatorname{relrk}_{w}(C) \leq s \cdot 2^{-\frac{k d^{1} /\left(2^{\Delta}-1\right)}{20}}
$$

Lower bounds for set-multilinear circuits

Take a balanced word $w \in\{-k,\lfloor k / \sqrt{2}\rfloor\}^{d}$ with $k \geq 10 d$. By [LTS'21] any set-ml formula C over w of size s and product-depth Δ satisfies

$$
\operatorname{relrk}_{w}(C) \leq s \cdot 2^{-\frac{k d^{1 /\left(2^{\Delta}-1\right)}}{20}}
$$

Corollary

Let k, d and w be as above, and let f be the multilinear polynomial that equals $1 / \mathrm{ks}_{w}$ over Boolean valuations. Then any set-ml circuit of product-depth at most Δ computing $\Pi_{w}(f)$, requires size

$$
2^{k\left(\frac{\left.d^{1 /\left(2^{\Delta}\right.}-1\right)-20}{40 \Delta}\right)}
$$

Final reduction

Also from [LST'21] we have that for any word $w \in \mathbb{Z}^{d}$ and any polynomial f :

Final reduction

Also from [LST'21] we have that for any word $w \in \mathbb{Z}^{d}$ and any polynomial f :
\exists a circuit of size s and product-depth Δ computing f

Final reduction

Also from [LST'21] we have that for any word $w \in \mathbb{Z}^{d}$ and any polynomial f :
\exists a circuit of size s and product-depth Δ computing f
\exists a set-ml circuit of size $d^{O(d)}$ poly(s) and product-depth 2Δ computing $\Pi_{w}(f)$.

Final touches

Finally take $k=\lfloor\log n / 2\rfloor$ and $d=\lfloor\log n / 30\rfloor$.

Final touches

Finally take $k=\lfloor\log n / 2\rfloor$ and $d=\lfloor\log n / 30\rfloor$.
Now $d 2^{k}<n$, and the polynomials $f_{\sigma}^{(i)}$ are of degree at most 3 .

Final touches

Finally take $k=\lfloor\log n / 2\rfloor$ and $d=\lfloor\log n / 30\rfloor$.
Now $d 2^{k}<n$, and the polynomials $f_{\sigma}^{(i)}$ are of degree at most 3 .
Hence there is a restriction that maps

$$
\sum_{i, j, k, \ell \in[n]} z_{i j k \ell} x_{i} x_{j} x_{k} x_{\ell}-\beta
$$

to ks_{w} (up to renaming variables).

Open questions

- Upper bounds for low-depth multilinear refutations.

Open questions

- Upper bounds for low-depth multilinear refutations.
- Can we get around the multilinearity restriction? Bounded individual degree?

Open questions

- Upper bounds for low-depth multilinear refutations.
- Can we get around the multilinearity restriction? Bounded individual degree?
- Lower bounds for CNFs?

Open questions

- Upper bounds for low-depth multilinear refutations.
- Can we get around the multilinearity restriction? Bounded individual degree?
- Lower bounds for CNFs?
- Lower bounds over finite fields?

Thank you!

