Simple hard instances for low-depth algebraic proofs

Tuomas Hakoniemi

Imperial College London

July 7th 2022, ICMS, Edinburgh

Joint work with Nashlen Govindasamy and Iddo Tzameret

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

$$1 = \sum_{k \in [\ell]} t_\ell q_\ell \mod \bar{x}^2 - \bar{x}.$$

э

★ ∃ ► < ∃ ►</p>

$$1 = \sum_{k \in [\ell]} t_\ell q_\ell \mod \bar{x}^2 - \bar{x}.$$

Complexity measure: the algebraic circuit size of t_k 's.

ヨトイヨト

э

$$1 = \sum_{k \in [\ell]} t_\ell q_\ell \mod \bar{x}^2 - \bar{x}.$$

Complexity measure: the algebraic circuit size of t_k 's.

A very strong proof system.

医下子 医

э

$$1 = \sum_{k \in [\ell]} t_\ell q_\ell \mod \bar{x}^2 - \bar{x}.$$

Complexity measure: the algebraic circuit size of t_k 's.

A very strong proof system.

Essentially Hilbert-style IPS of [GP'14] or IPS_{Lin'} of [FSTW'16].

Consider a variant of knapsack (or subset sum)

$$\sum_{i,j,k,\ell\in[n]} z_{ijk\ell} x_i x_j x_k x_\ell = \beta$$

unsatisfiable over the Boolean hypercube.

Consider a variant of knapsack (or subset sum)

$$\sum_{i,j,k,\ell\in[n]} z_{ijk\ell} x_i x_j x_k x_\ell = \beta$$

unsatisfiable over the Boolean hypercube.

Theorem (Informal)

Any low-depth **multilinear** refutation of the knapsack variant requires superpolynomial algebraic circuit size.

Conditional IPS lower bounds for Binary Value Principle [AGHT'20] and refutation formulas [ST'21]

Conditional IPS lower bounds for Binary Value Principle [AGHT'20] and refutation formulas [ST'21]

Unconditional low-depth IPS lower bounds [AF'21]

Conditional IPS lower bounds for Binary Value Principle [AGHT'20] and refutation formulas [ST'21]

Unconditional low-depth IPS lower bounds [AF'21]

Bit-complexity lower bounds for Extended Polynomial Calculus over rationals for Binary Value Principle [A'21]

Conditional IPS lower bounds for Binary Value Principle [AGHT'20] and refutation formulas [ST'21]

Unconditional low-depth IPS lower bounds [AF'21]

Bit-complexity lower bounds for Extended Polynomial Calculus over rationals for Binary Value Principle [A'21]

Size lower bounds for Extended Polynomial Calculus over finite fields with restricted use of extension variables. [IMP'22]

Theorem

Assume char(\mathbb{F}) = 0 and let $n, \Delta \in \mathbb{N}_+$ with $\Delta \leq \frac{1}{4} \log \log \log n$. Let f be the unique multilinear polynomial so that

$$f = rac{1}{\sum_{ijk\ell} z_{ijk\ell} x_i x_j x_k x_\ell - \beta}$$
 over Boolean valuations.

Then any algebraic circuit of product-depth at most Δ computing f requires size

$$n^{(logn)^{\exp(-O(\Delta))}}$$

A 3 5 4

э

the methods to prove superpolynomial lower bounds for constant-depth algebraic circuits from [LST '21]:

the methods to prove superpolynomial lower bounds for constant-depth algebraic circuits from [LST '21]:

 lower bounds for low-depth lopsided set-multilinear circuits from suitable rank lower bounds;

the methods to prove superpolynomial lower bounds for constant-depth algebraic circuits from [LST '21]:

- lower bounds for low-depth lopsided set-multilinear circuits from suitable rank lower bounds;
- a depth-preserving reduction from general circuits to set-multilinear ones;

the methods to prove superpolynomial lower bounds for constant-depth algebraic circuits from [LST '21]:

- lower bounds for low-depth lopsided set-multilinear circuits from suitable rank lower bounds;
- a depth-preserving reduction from general circuits to set-multilinear ones;

the methods to prove IPS lower bounds via functional lower bounds from [FSTW '16]:

the methods to prove superpolynomial lower bounds for constant-depth algebraic circuits from [LST '21]:

- lower bounds for low-depth lopsided set-multilinear circuits from suitable rank lower bounds;
- a depth-preserving reduction from general circuits to set-multilinear ones;

the methods to prove IPS lower bounds via functional lower bounds from [FSTW '16]:

• rank lower bounds using partial valuations.

∃ ► < ∃ ►</p>

э

Step 2: find a suitable lopsided set-multilinear polynomial within the multilinear refutation f of ks_w.

Step 2: find a suitable lopsided set-multilinear polynomial within the multilinear refutation f of ks_w.

Step 3: project f to the space of these lopsided set-multilinear polynomials and prove a rank lower bound for the projection.

Step 2: find a suitable lopsided set-multilinear polynomial within the multilinear refutation f of ks_w.

Step 3: project f to the space of these lopsided set-multilinear polynomials and prove a rank lower bound for the projection.

Step 4: obtain the circuit lower bounds from the rank lower bounds using [LST'21].

Setup: let $w \in \mathbb{Z}^d$ be a word, and fix for any $i \in [d]$ a set of variables of size $2^{|w_i|}$.

Setup: let $w \in \mathbb{Z}^d$ be a word, and fix for any $i \in [d]$ a set of variables of size $2^{|w_i|}$.

Consider **positive** variables $x_{\sigma}^{(i)}$ and **negative** variables $y_{\sigma}^{(j)}$.

Setup: let $w \in \mathbb{Z}^d$ be a word, and fix for any $i \in [d]$ a set of variables of size $2^{|w_i|}$.

Consider **positive** variables $x_{\sigma}^{(i)}$ and **negative** variables $y_{\sigma}^{(j)}$.

We define a variant of the Knapsack of the form

$$\mathsf{ks}_{w} := \sum x_{\sigma}^{(i)} f_{\sigma}^{(i)} - \beta,$$

where $f_{\sigma}^{(i)}$ is a polynomial in the negative variables.

Definition by example:

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

Definition by example:

Here $f_{011001}^{(2)} = y_{011}^{(1)} \cdot y_{00}^{(3)} \cdot (y_{1000}^{(4)} + y_{1001}^{(4)} + \dots + y_{1111}^{(4)})$

3

• • = • • = •

What's the point?

э

э

What's the point?

A partial valuation corresponding to the monomial

 $y_{100}^{(1)}y_{1001}^{(4)}y_{0110}^{(7)}y_{11}^{(8)}$

simplifies ks_w to

$$x_{00}^{(5)} + x_{101101}^{(6)} - \beta.$$

3.1

From [FSTW'16] we know exactly the structure of the multilinear f such that

$$f = \frac{1}{\sum_{i \in [n]} x_i - \beta} \quad \text{or}$$

ver Boolean valuations.

From [FSTW'16] we know exactly the structure of the multilinear f such that

$$f = \frac{1}{\sum_{i \in [n]} x_i - \beta}$$
 over Boolean valuations.

In particular, the leading monomial of f is $\prod_{i \in [n]} x_i$.

Lemma

Let $w \in \mathbb{Z}$ be a balanced word, and let f be the multilinear polynomial so that

$$f = \frac{1}{ks_w}$$

over Boolean valuations.

Then $M_w(f)$ is full-rank.

Lemma

Let $w \in \mathbb{Z}$ be a balanced word, and let f be the multilinear polynomial so that

$$r = \frac{1}{\mathsf{ks}_w} \quad ov$$

over Boolean valuations.

Then $M_w(f)$ is full-rank.

Corollary

For a balanced word with $|w_i| \leq b$, relrk_w $(f) \geq 2^{-b/2}$.

- **3 b** - **3**

Lower bounds for set-multilinear circuits

Take a balanced word $w \in \{-k, \lfloor k/\sqrt{2} \rfloor\}^d$ with $k \ge 10d$. By [LTS'21] any set-ml formula *C* over *w* of size *s* and product-depth Δ satisfies

$$\operatorname{relrk}_w(C) \leq s \cdot 2^{-\frac{kd^{1/(2^{\Delta}-1)}}{20}}$$

Lower bounds for set-multilinear circuits

Take a balanced word $w \in \{-k, \lfloor k/\sqrt{2} \rfloor\}^d$ with $k \ge 10d$. By [LTS'21] any set-ml formula *C* over *w* of size *s* and product-depth Δ satisfies

$$\operatorname{relrk}_w(C) \le s \cdot 2^{-\frac{kd^{1/(2^{\Delta}-1)}}{20}}$$

Corollary

Let k, d and w be as above, and let f be the multilinear polynomial that equals $1/ks_w$ over Boolean valuations. Then any set-ml circuit of product-depth at most Δ computing $\Pi_w(f)$, requires size

$$2^{k\left(\frac{d^{1/(2^{\Delta}-1)}-20}{40\Delta}\right)}$$

Also from [LST'21] we have that for any word $w \in \mathbb{Z}^d$ and any polynomial f:

Also from [LST'21] we have that for any word $w \in \mathbb{Z}^d$ and any polynomial f:

 \exists a circuit of size s and product-depth Δ computing f

Also from [LST'21] we have that for any word $w \in \mathbb{Z}^d$ and any polynomial f:

 \exists a circuit of size *s* and product-depth Δ computing *f*

 \exists a set-ml circuit of size $d^{O(d)}$ poly(s) and product-depth 2Δ computing $\Pi_w(f)$.

Finally take $k = \lfloor \log n/2 \rfloor$ and $d = \lfloor \log n/30 \rfloor$.

3

★ ∃ ► < ∃ ►</p>

Finally take $k = \lfloor \log n/2 \rfloor$ and $d = \lfloor \log n/30 \rfloor$.

Now $d2^k < n$, and the polynomials $f_{\sigma}^{(i)}$ are of degree at most 3.

э

Finally take $k = \lfloor \log n/2 \rfloor$ and $d = \lfloor \log n/30 \rfloor$.

Now $d2^k < n$, and the polynomials $f_{\sigma}^{(i)}$ are of degree at most 3.

Hence there is a restriction that maps

$$\sum_{i,j,k,\ell\in[n]} z_{ijk\ell} x_i x_j x_k x_\ell - \beta$$

to ks_w (up to renaming variables).

• Upper bounds for low-depth multilinear refutations.

∃ → ∢

- Upper bounds for low-depth multilinear refutations.
- Can we get around the multilinearity restriction? Bounded individual degree?

- Upper bounds for low-depth multilinear refutations.
- Can we get around the multilinearity restriction? Bounded individual degree?
- Lower bounds for CNFs?

- Upper bounds for low-depth multilinear refutations.
- Can we get around the multilinearity restriction? Bounded individual degree?
- Lower bounds for CNFs?
- Lower bounds over finite fields?

Thank you!

Tuomas Hakoniemi Simple hard instances for low-depth algebraic proofs

æ