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The proof system

We consider NS refutations of q1 = 0, . . . , q` = 0 the form

1 =
∑
k∈[`]

t`q` mod x̄2 − x̄ .

Complexity measure: the algebraic circuit size of tk ’s.

A very strong proof system.

Essentially Hilbert-style IPS of [GP’14] or IPSLin′ of [FSTW’16].
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The hard instance

Consider a variant of knapsack (or subset sum)∑
i ,j,k,`∈[n]

zijk`xixjxkx` = β

unsatisfiable over the Boolean hypercube.

Theorem (Informal)
Any low-depth multilinear refutation of the knapsack variant
requires superpolynomial algebraic circuit size.
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Smörgåsbord of previous work

Lower bounds for subsystems of IPS based on roABPs and
multilinear formulas [FSTW ’16]

Conditional IPS lower bounds for Binary Value Principle
[AGHT’20] and refutation formulas [ST’21]

Unconditional low-depth IPS lower bounds [AF’21]

Bit-complexity lower bounds for Extended Polynomial Calculus
over rationals for Binary Value Principle [A’21]

Size lower bounds for Extended Polynomial Calculus over finite
fields with restricted use of extension variables. [IMP’22]
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Our result

Theorem
Assume char(F) = 0 and let n,∆ ∈ N+ with ∆ ≤ 1

4 log log log n.
Let f be the unique multilinear polynomial so that

f = 1∑
ijk` zijk`xixjxkx` − β

over Boolean valuations.

Then any algebraic circuit of product-depth at most ∆ computing
f requires size

n(logn)exp(−O(∆))
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Proof ingredients

Our proof combines

the methods to prove superpolynomial lower bounds for
constant-depth algebraic circuits from [LST ’21]:

lower bounds for low-depth lopsided set-multilinear circuits
from suitable rank lower bounds;
a depth-preserving reduction from general circuits to
set-multilinear ones;

the methods to prove IPS lower bounds via functional lower
bounds from [FSTW ’16]:

rank lower bounds using partial valuations.
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Proof outline

Step 1: restrict to another variant of knapsack ksw by setting the
z-variables and some of the x -variables.

Step 2: find a suitable lopsided set-multilinear polynomial within
the multilinear refutation f of ksw .

Step 3: project f to the space of these lopsided set-multilinear
polynomials and prove a rank lower bound for the projection.

Step 4: obtain the circuit lower bounds from the rank lower
bounds using [LST’21].
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Constructing ksw

Setup: let w ∈ Zd be a word, and fix for any i ∈ [d ] a set of
variables of size 2|wi |.

Consider positive variables x (i)
σ and negative variables y (j)

σ .

We define a variant of the Knapsack of the form

ksw :=
∑

x (i)
σ f (i)

σ − β,

where f (i)
σ is a polynomial in the negative variables.
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Defining f (i)
σ

Definition by example:

Here f (2)
011001 = y (1)

011 · y
(3)
00 · (y

(4)
1000 + y (4)

1001 + · · ·+ y (4)
1111)
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Knapsacks all the way down

What’s the point?

A partial valuation corresponding to the monomial

y (1)
100y (4)

1001y (7)
0110y (8)

11

simplifies ksw to
x (5)

00 + x (6)
101101 − β.
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Multilinear refutations of vanilla Knapsack

From [FSTW’16] we know exactly the structure of the multilinear
f such that

f = 1∑
i∈[n] xi − β

over Boolean valuations.

In particular, the leading monomial of f is
∏

i∈[n] xi .
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Rank lower bound

Lemma
Let w ∈ Z be a balanced word, and let f be the multilinear
polynomial so that

f = 1
ksw

over Boolean valuations.

Then Mw (f ) is full-rank.

Corollary
For a balanced word with |wi | ≤ b, relrkw (f ) ≥ 2−b/2.
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Rank lower bound
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Lower bounds for set-multilinear circuits

Take a balanced word w ∈ {−k, bk/
√
2c}d with k ≥ 10d . By

[LTS’21] any set-ml formula C over w of size s and product-depth
∆ satisfies

relrkw (C) ≤ s · 2−
kd1/(2∆−1)

20 .

Corollary
Let k, d and w be as above, and let f be the multilinear polynomial
that equals 1/ksw over Boolean valuations. Then any set-ml
circuit of product-depth at most ∆ computing Πw (f ), requires size

2
k
(

d1/(2∆−1)−20
40∆

)
.
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Final reduction

Also from [LST’21] we have that for any word w ∈ Zd and any
polynomial f :

∃ a circuit of size s and product-depth ∆ computing f

=⇒

∃ a set-ml circuit of size dO(d)poly(s) and product-depth 2∆
computing Πw (f ).
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Final touches

Finally take k = blog n/2c and d = blog n/30c.

Now d2k < n, and the polynomials f (i)
σ are of degree at most 3.

Hence there is a restriction that maps∑
i ,j,k,`∈[n]

zijk`xixjxkx` − β

to ksw (up to renaming variables).
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Open questions

Upper bounds for low-depth multilinear refutations.

Can we get around the multilinearity restriction? Bounded
individual degree?
Lower bounds for CNFs?
Lower bounds over finite fields?
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Thank you!
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