Lifting Theorems: A Survey

Robert Robere School of Computer Science McGill University

Mathematical Approaches to Lower Bounds: **Complexity of Proofs and Computation**

ICMS Edinburgh

July 6, 2022

What is a Lifting Theorem?

• Let's ask the expert...

AI model generating images from any prompt!

DALL'E mini

DALL·E mini

AI model generating images from any prompt!

Thanks for Listening!

Lifting Theorems: A Survey

Robert Robere School of Computer Science McGill University

Mathematical Approaches to Lower Bounds: **Complexity of Proofs and Computation**

ICMS Edinburgh

July 6, 2022

Lifting Theorems in Complexity Theory

- Many new results in proof and circuit complexity using lifting theorems [GP12, GPW14, GLMWZ15, CLRS16, LRS16, RPRC16, PR17, KMR17, PR18, dRNV 16, GGKS18, GKRS18, dRMNPR18, dRMNPRV20, FGGR2022, LMMPZ22]
- These results rely on a fairly sophisticated set of equivalences and formal relationships between different computational models:
 - Proof Systems, Query Algorithms, Communication Protocols, Circuit Models
- Results generalize and extend classic lower bound techniques (such as monotone feasible interpolation)
- Place the complexity of total search problems at center stage!

Lifting Theorem: Basic Idea

 $f: \{0,1\}^n \to \{0,1\}$

 $f \circ g^n : X^n \times Y^n \to \{0,1\}$

 $g: X \times Y \rightarrow \{0,1\}$ is a "complex gadget"

Complexity Preserving Simulations!

What This Talk Is About

- Query-to-communication lifting theorems for search problems $S \subseteq \mathscr{I} \times \mathscr{O}$
- Survey some basic ideas from lifting theorems for tree-like and dag-like models, motivate "why" the connection should hold.
- Connections to other areas, like TFNP.
- Based on recent SIGACT Complexity Column:

R. Robere³

Total Search Problems

Concrete Complexity

Part 1

and

Lifting Schema

All equivalences are "complexity preserving"

e.g. Tree-like Resolution

e.g. Decision Trees

e.g. Communication Protocols

e.g. Monotone Boolean Formulas

Lifting Schema

All equivalences are "complexity preserving"

Total Search Problems

- $S \subseteq I \times O$ is a total search problem if for all $x \in I$ there is an $o \in O$ such that $(x, o) \in S$.
 - For any $x \in I$ let $S(x) := \{ o \in O : (x, o) \in S \}$
- Study total search problems with verifiable solutions in various algorithmic models.
- Classical TFNP Verify $(x, o) \in S$ using polynomial time Turing Machines
- Black-Box TFNP^{dt} Verify $(x, o) \in S$ using $\log^{O(1)} n$ -depth decision trees
- Communication TFNP^{cc} Verify $(x, o) \in S$ using $\log^{O(1)} n$ -depth communication protocols

Black-Box TFNP

- $\mathcal{S} = \{S_n \subseteq \{0,1\}^n \times O_n\}_{n \in \mathbb{N}}$ sequence of total search problems
 - O_n finite, reasonably bounded in siz
- that, given query access to $x \in \{0,1\}^n$ verifies if $(x, o) \in S_n$

Given $x \in \{0,1\}^n$, find $i \in [m]$ such that $C_i(x) = 0$.

ze (e.g.
$$|O_n| = n^{O(1)}$$
).

• $\mathcal{S} \in \mathsf{TFNP}^{dt}$ if for every $n, o \in O_n$ there is a decision tree T_o of depth $\log^{O(1)} n$

• Canonical Example: Unsatisfiable $\log^{O(1)} n$ -width CNF $F = C_1 \land \dots \land C_m$, define

 $S(F) \subseteq \{0,1\}^n \times [m]$

False Clause Search Problem

- If $S \subseteq \{0,1\}^n \times O_n$ then define (written as CNF) $F_S(x) = \bigwedge \neg T_o(x) = "x \text{ has no solution"}$ $0 \in O_n$
- T_o is low-depth decision tree so F_S is bounded-width CNF
- Not hard to see that S(F) is essentially the same as $S(F_S)$
- Thus can redefine $\mathsf{TFNP}^{dt} = \{\{S(F_n)\}_{n \in \mathbb{N}} : F_n \text{ is unsat and bounded width}\}$

- $S(F) \subseteq \{0,1\}^n \times [m]$
- Given $x \in \{0,1\}^n$, find $i \in [m]$ such that $C_i(x) = 0$.

False Clause Search and Proof Complexity

 $F = C_1 \wedge \cdots \wedge C_m$

F is an unsatisfiable CNF

- Let's quickly review one example: decision trees and tree-like Resolution
- Can be generalized to rectangle dags and Resolution

 $S(F) \subseteq \{0,1\}^n \times \mathcal{O}$

Query complexity of S(F) is very closely related to the complexity of refuting F

Decision Trees for S(F)

- Size: Number of nodes
- **Depth:** Length of longest path
- Given boolean assignment, follow unique path consistent with that assignment, output violated clause.
- Decision tree for S(F) is essentially the **DPLL method** for solving SAT.

$S(F) \subseteq \{0,1\}^n \times [m]$ Given $x \in \{0,1\}^n$, find $i \in [m]$ such that $C_i(x) = 0$.

 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

Resolution Proofs

- Lines are **clauses**.
- New lines deduced using
 - **Resolution Rule**: $C \lor x, D \lor \overline{x} \vdash C \lor D$
 - Weakening: $C \vdash C \lor D$
- Length: Number of lines.
- **Depth:** Length of longest path.
- Proof is tree-like if each clause is used at most once.
 - Input clauses can be copied any number of times

Example. $F = x_1 \land x_2 \land (\overline{x}_1 \lor \overline{x}_2 \lor x_3) \land (\overline{x}_3 \lor x_4) \land (\overline{x}_3 \lor \overline{x}_4)$ Length: 10, Depth: 4

Tree-Like Resolution of F

 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

Tree-Like Resolution of F

 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

Tree-Like Resolution of F

 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

Tree-Like Resolution of F

 $F = x_1 \land (\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3) \land \overline{x}_3$

- **Theorem.** Let F be an unsatisfiable CNF formula. Then
 - Size O(s), depth O(d) Tree-like Res. refutation of F if and only if

Size O(s), depth O(d) Decision Tree for S(F)

Correspondence is stronger: essentially the same object!

Lifting Schema

All equivalences are "complexity preserving"

F is an unsatisfiable CNF

Communication TFNP

- $\mathcal{S} = \{S_n \subseteq (X^n \times Y^n) \times O_n\}_{n \in \mathbb{N}}$ sequence of communication total search problems
 - X, Y, O_n finite, O_n reasonably bounded in size (e.g. $|O_n| = n^{O(1)}$).
- $\mathcal{S} \in \mathsf{TFNP}^{cc}$ if for every *n* there is a monochromatic rectangle cover \mathscr{R} of S_n of at most quasipolynomial size (equiv. polylogarithmic non-deterministic protocols)

This means
$$\bigcup_{R \in \mathscr{R}} R = X^n \times Y^n$$
 and $\forall R \in \mathscr{R} \exists o \in O_n$ s.t. o is valid for all $(x, y) \in R$

• Canonical Example: Given $f: \{0,1\}^n \rightarrow \{0,1,*\}$, define the KW-Game [KW90]: $KW(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times [n]$ Given $x \in f^{-1}(1), y \in f^{-1}(0)$, find $i \in [n]$ such that $x_i \neq y_i$

Karchmer-Wigderson Games

- Let $f: \{0,1\}^n \to \{0,1,*\}$
 - (Total) f monotone if $x \leq y$ (coordinate-wise) implies $f(x) \leq f(y)$
 - (Partial) f monotone if it has a total monotone extension
- f has an associated total search problem [KW 90]

KW(*f*) ⊆ *f*⁻¹
Given
$$x \in f^{-1}(1), y \in f^{-1}(1)$$

 $^{1}(1) \times f^{-1}(0) \times [n]$ (0), find $i \in [n]$ such that $x_i \neq y_i$

Circuit Complexity of $f \equiv Communication Complexity of KW(f)$

Karchmer-Wigderson Games

- Let $f: \{0,1\}^n \to \{0,1,*\}$
 - (Total) f monotone if $x \le y$ (coordinate-wise) implies $f(x) \le f(y)$
 - (Partial) f monotone if it has a total monotone extension
- Monotone f has an associated total search problem [KW 90]

 $\mathsf{mKW}(f) \subseteq f^-$

Mon. Circuit Complexity of $f \equiv$ **Mon. Communication Complexity** of KW(f)

$$^{-1}(1) \times f^{-1}(0) \times [n]$$

Given $x \in f^{-1}(1), y \in f^{-1}(0)$, find $i \in [n]$ such that $x_i > y_i$

Monotone KW-Games are Canonical

- Every $\mathcal{S} \in \mathsf{TFNP}^{cc}$ is a mKW game in disguise!
- If $S \subseteq U \times V \times O$ with rect. cover $\mathscr{R} = \{U_i \times V_i\}_{i=1}^r$ then let $f \colon \{0,1\}^r \to \{0,1\}$:
 - f(x) = 1 if there is a $u \in X^n$ s.t. for all $i \in [r]$, $x_i = 1 \iff u \in U_i$
 - f(x) = 0 if there is a $v \in Y^n$ s.t. for all $i \in [r]$, $x_i = 0 \iff v \in V_i$
 - f(x) = * otherwise

- $mKW(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times [n]$
- Given $x \in f^{-1}(1), y \in f^{-1}(0)$, find $i \in [n]$ such that $x_i > y_i$

• Well defined since if x satisfies both conditions then (u, v) is not covered by \mathscr{R} !

Monotone KW-Games are Canonical

 $mKW(f) \subseteq f^{-1}$ Given $x \in f^{-1}(1), y \in f^{-1}(1)$

- Every $\mathcal{S} \in \mathsf{TFNP}^{cc}$ is a mKW game in disguise!
- If $S \subseteq U \times V \times O$ with rect. cover $\mathscr{R} = \{U_i \times V_i\}_{i=1}^r$ then let $f \colon \{0,1\}^r \to \{0,1\}$:
 - f(x) = 1 if there is a $u \in X^n$ s.t. for all $i \in [r]$, $x_i = 1 \iff u \in U_i$
 - f(x) = 0 if there is a $v \in Y^n$ s.t. for all $i \in [r]$, $x_i = 0 \iff v \in V_i$
 - f(x) = * otherwise
- With this definition, mKW(f) is equivalent to S!

- $\mathsf{mKW}(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times [n]$
- Given $x \in f^{-1}(1), y \in f^{-1}(0)$, find $i \in [n]$ such that $x_i > y_i$

 $g: X \times Y \rightarrow \{0,1\}$ is a "complex gadget"

- complexity of (m)KW(f) captures (monotone) circuit depth [KW 90]
- Razborov later showed that PLS^{cc} captures (monotone) circuit size! [Razb 95]

f is a boolean function related to $S(F) \circ g^n$

Karchmer and Wigderson famously showed that the deterministic communication

Boolean Formula for f

 $f = (x_1 \land x_2) \lor x_3 \lor x_4$

Boolean Formula for f

Boolean Formula for f

Boolean Formula for f

 $f = (x_1 \land x_2) \lor x_3 \lor x_4$

Boolean Formula for f

 $f = (x_1 \land x_2) \lor x_3 \lor x_4$

Theorem.

- Let $f: \{0,1\}^n \to \{0,1,*\}$ be a partial boolean function. Then
 - Size O(s), depth O(d) Boolean formula for f if and only if
 - Size O(s), depth O(d) communication protocol for KW(f)

Correspondence is stronger: essentially the same object!

Theorem.

- Let $f: \{0,1\}^n \rightarrow \{0,1,*\}$ be a partial monotone boolean function. Then
 - Size O(s), depth O(d) monotone Boolean formula for f
 - if and only if
 - Size O(s), depth O(d) communication protocol for mKW(f)

Correspondence is stronger: essentially the same object!

Alternate Perspective: Rectangle DAGs

- Let $S \subseteq X^n \times Y^n \times O$ be a total search problem
- A rectangle DAG for S is a directed acyclic graph G = (V, E) with a unique root node such that
 - Every vertex is a rectangle in $X^n \times Y^n$
 - Root is $X^n \times Y^n$
 - Leaves are monochrome (consistent with one solution)
 - If *R* has children $R_1, R_2 \Rightarrow R \subseteq R_1 \cup R_2$

Rectangle DAGs vs KW-Games

Let mF(f) denote the minimum size of any monotone formula computing f.

Theorem [KW90]. Rectangle Tree Size of $mKW_f = \Theta(mF(f))$

Let mC(f) denote the minimum size of any monotone circuit computing f.

Theorem [R95, S16, GGKS17]. Rectangle DAG Size of mKW_f = $\Theta(mC(f))$

- Rectangle DAG:
 - Root is $X \times Y$
 - Leaves are monochrome (consistent with one solution)
 - If *R* has children $R_1, R_2 \Rightarrow R \subseteq R_1 \cup R_2$

Query Models and Communication Models

Search(F) and mKW(f)

- **Capture** the complexity of these processes
- Are canonical examples of their respective TFNP classes

- **Bottom-up** models (proofs, circuits)
 - are captured by
- **Top-down** algorithms (decision trees, comm. protocols)

Relating Query to Communication

Part 2

Lifting Schema

First, we need to discuss how to relate S(F) for unsatisfiable F with communication search problems.

Lifting Schema

First, we need to discuss how to relate S(F) for unsatisfiable F with communication search problems.

"Feasible Interpolation"

- Many interesting results from relating two worlds
- Here is the simplest way to turn a query problem into a communication problem.
- If $\mathcal{S} \subseteq \{0,1\}^n \times O$ is a query search problem, let $[n] = X \cup Y$ be variable partition
- Define $\mathcal{S}^{X,Y} \subseteq \{0,1\}^X \times \{0,1\}^Y \times O$ as a communication problem, so
 - Alice gets $x \in \{0,1\}^X$, Bob gets $y \in \{0,1\}^Y$, solutions are $\mathcal{S}^{X,Y}(x,y) = \mathcal{S}(xy)$
- Translates circuit lower bounds to proof lower bounds
 - Closely related to classical feasible interpolation results [K97, P97, BPR00,...]
 - Construction underlies Cutting Planes lbs for random CNFs [FPPR 16, HP16]

From Proofs to Communication

- Let $F = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ be an unsatisfiable CNF on variables z_1, \ldots, z_n .
- S(F): Given $z \in \{0,1\}^n$, find $i \in [m]$ such that $C_i(z) = 0$.
- For any partition $X \cup Y = [n], S_{X,Y}(F) \subseteq \{0,1\}^X \times \{0,1\}^Y \times [m]$:
 - Given $x \in \{0,1\}^X$, $y \in \{0,1\}^Y$, find $i \in [m]$ such that $C_i(xy) = 0$.
- **Observation:** Since C_i is a clause, the set Combinatorial **Rectangle!** $R_i = \{(x, y) \in \{0, 1\}^X \times \{0, 1\}^Y : C_i(xy) = 0\}$ $= \{x \in \{0,1\}^X : C_i^X(x) = 0\} \times \{y \in \{0,1\}^Y : C_i^Y(y) = 0\}$
- Thus clauses of F yield a rectangle covering of $S_{X,Y}(F)$

mCSP-SAT / Unsatisfiability Certificate

- Every communication total search problem is equivalent to mKW_f for some partial monotone boolean function $f: \{0,1\}^n \rightarrow \{0,1,*\}$
- What is the boolean function corresponding to $S_{X,Y}(F)$?
- [FPPR 17, HP 17] Gave independent (essentially equivalent) answers.
 - [FPPR 17] mCSPSAT := monotone generalization of SAT
 - (mCSPSAT appears in many works on lifting [GP12, GPW14, O15,...])
 - [HP 17] cert_F := unsatisfiability certificate of F

- $F = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ unsat. CNF, $X \cup Y = [n]$ partition of variables
- Let $C_i = C_i^X \vee C_i^Y$ (partition clauses according to X, Y)
- Define $\operatorname{cert}_F = \operatorname{cert}_F^{X,Y} : \{0,1\}^m \to \{0,1\}$ by

- otherwise

- $F = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ unsat. CNF, $X \cup Y = [n]$ partition of variables
- Let $C_i = C_i^X \lor C_i^Y$ (partition clauses according to X, Y)
- Define $\operatorname{cert}_F = \operatorname{cert}_F^{X,Y} : \{0,1\}^m \to \{0,1\}$ by
- $z_1 \qquad z_2 \qquad z_3 \qquad z_4$ $(C_1^X \lor C_1^Y) \land (C_2^X \lor C_2^Y) \land (C_3^X \lor C_3^Y) \land (C_4^X \lor C_4^Y)$

 $\operatorname{cert}_{F}(z) = \begin{cases} 1 & \bigwedge_{i : z_{i}=0}^{X} C_{i}^{X} \text{ is satisfiable} \\ 0 & \bigwedge_{i : z_{i}=1}^{Y} C_{i}^{Y} \text{ is satisfiable} \\ * & \text{otherwise} \end{cases}$

- $F = C_1 \land C_2 \land \dots \land C_m$ unsat. CNF, $X \cup Y = [n]$ partition of variables
- Let $C_i = C_i^X \lor C_i^Y$ (partition clauses according to X, Y)
- Define $\operatorname{cert}_F = \operatorname{cert}_F^{X,Y} : \{0,1\}^m \to \{0,1\}$ by

 $z_{1} = 1 \qquad z_{2} = 0 \qquad z_{3} = 1 \qquad z_{4} = 0$ $(C_{1}^{X} \lor C_{1}^{Y}) \land (C_{2}^{X} \lor C_{2}^{Y}) \land (C_{3}^{X} \lor C_{3}^{Y}) \land (C_{4}^{X} \lor C_{4}^{Y})$ $cert_{F}(z) = \begin{cases} 1 \qquad \bigwedge_{i:z_{i}=0}^{X} C_{i}^{X} \text{ is satisfiable} \\ 0 \qquad \bigwedge_{i:z_{i}=1}^{X} C_{i}^{Y} \text{ is satisfiable} \\ * \quad \text{otherwise} \end{cases}$

- $F = C_1 \land C_2 \land \dots \land C_m$ unsat. CNF, $X \cup Y = [n]$ partition of variables
- Let $C_i = C_i^X \vee C_i^Y$ (partition clauses according to X, Y)
- Define $\operatorname{cert}_F = \operatorname{cert}_F^{X,Y} : \{0,1\}^m \to \{0,1\}$ by

Satisfiable?

 $\begin{array}{l} \mathbf{0} \\ \mathbf{f} \end{pmatrix} \quad \operatorname{cert}_{F}(z) = \begin{cases} 1 & \bigwedge_{i:z_{i}=0}^{X} C_{i}^{X} \text{ is satisfiable} \\ 0 & \bigwedge_{i:z_{i}=1}^{Y} C_{i}^{Y} \text{ is satisfiable} \\ * & \operatorname{otherwise} \end{cases}$

- $F = C_1 \wedge C_2 \wedge \cdots \wedge C_m$ unsat. CNF, $X \cup Y = [n]$ partition of variables
- Let $C_i = C_i^X \vee C_i^Y$ (partition clauses according to X, Y)
- Define $\operatorname{cert}_F = \operatorname{cert}_F^{X,Y} : \{0,1\}^m \to \{0,1\}$ by

 $\operatorname{cert}_{F}(z) = \begin{cases} 1 & \bigwedge_{i:z_{i}=0}^{X} C_{i}^{X} \text{ is satisfiable} \\ 0 & \bigwedge_{i:z_{i}=1}^{Y} C_{i}^{Y} \text{ is satisfiable} \end{cases}$ $z_1 = 1$ $z_2 = 0$ $z_3 = 1$ $z_4 = 0$ otherwise

 $(C_1^X \lor C_1^Y) \land (C_2^X \lor C_2^Y) \land (C_3^X \lor C_3^Y) \land (C_4^X \lor C_4^Y)$ If both satisfiable then the whole formula is satisfiable!

Feasible Interpolation

Theorem [HP17]. Let F be any unsatisfiable CNF, and let X, Y be any variable partition.

If there is a Resolution refutation of F of size s, then there is a monotone circuit computing $\operatorname{cert}_F = \operatorname{cert}_F^{X,Y}$ of size O(s).

Theorem [HP17]. Let F be any unsatisfiable CNF, and let X, Y be any variable partition.

 $\operatorname{cert}_F = \operatorname{cert}_F^{X,Y}$ of size O(s).

- Root rectangle is $\{0,1\}^X \times \{0,1\}^Y$
- Leaves are defining rectangles for mKW_{cert_F}
- If D_i deduced from D_i, D_k by resolution, then $R_i \subseteq R_j \cup R_k$
 - Equivalently, if $D_i(x, y) = 0$ then either $D_i(x, y) = 0$ or $D_k(x, y) = 0$.

If there is a Resolution refutation of F of size s, then there is a monotone circuit computing

Monotone Feasible Interpolation

- [HP17] "Standard" feasible interpolation (in [K97] sense) can be deduced from this result.
- [FPPR17, HP17] Key idea enabling Cutting Planes lower bounds for random $\omega(1)$ -CNFs.
- Using this idea, one can deduce monotone feasible interpolation results for many proof systems and related monotone circuit models. (*Proof of F size* $s \Rightarrow$ *Monotone circuit for* cert_F of size $s^{O(1)}$)
 - **Resolution** \Rightarrow **Monotone Circuits** [HP17, prior result K97]
 - Tree-Like Resolution \Rightarrow Monotone Formulas [Same as above]
 - **Cutting Planes** \Rightarrow **Real Monotone Circuits** [HP17b, prior results K97, P97, BPR95]
 - **Nullstellensatz** \Rightarrow **Monotone Span Programs** [Follows ideas of PR18, prior result PS96]
 - Sherali-Adams \Rightarrow Weak MLP Gate/Linear Separation Complexity [FGGR21, prior H20]

Lifting Schema

Lifting Theorems

- Query-to-communication lifting theorems give the other direction
- $\mathcal{S} \subseteq \{0,1\}^n \times O$ is a query search problem, $g: X \times Y \to \{0,1\}^n$ is a gadget
- Define $\mathcal{S} \circ g \subseteq X^n \times Y^n \times O$ by $(\mathcal{S} \circ g)(x, y) = \mathcal{S}(g^n(x, y))$
 - Alice gets $x \in X^n$, Bob gets $y \in Y^n$, evaluate $z = g^n(x, y)$ and solve $\mathcal{S}(z)$

Theorem. [RM 99, GPW 14] Let $\mathcal{S} \subseteq \{0,1\}^n \times O$ be a search problem, let $\operatorname{Ind}_m : [m] \times \{0,1\}^m \to \{0,1\}$ by $Ind_m(x, y) = y_x$. If $m = n^{O(1)}$ then

 $\mathsf{FP}^{cc}(\mathcal{S} \circ \mathsf{Ind}_m) = \Theta(\mathsf{FP}^{dt}(\mathcal{S}) \cdot \log m)$

• If g "complex" then Alice and Bob's best strategy is to simulate the query strategy

Lifting?

(*Index*) and a monotone boolean function $f_{F,g}$ such that

$$\mathsf{mF}(f_{F,g}) =$$

- mF denotes monotone formula size
- Monotone circuit for $\operatorname{cert}_{F \circ g^n}$ of size $s \Longrightarrow$ Proof of F with degree $O(\log s/\log |g|)$
- Many (not all) proof systems have well-defined notions of degree (depth, width, polynomial degree, etc.)

• By combining this together with the earlier reductions, we get the following theorem:

- **Theorem** [GPW14]. Let F be an unsatisfiable CNF formula. There is a function g
 - $= 2^{\Omega(D_{\text{Res}}(F)(\log|g|))}$

Lower Bounds?

- Is the function that we get from lifting interesting at all?
- Surprisingly, yes!

•
$$f_{F,g} = \operatorname{cert}_{F \circ g^n}^{X,Y}$$
 depends on the for

- Number of input variables: $N = O(|F||X|^{w(F)})$
- Examples:
 - $F = Ind_n$ then $f_{F,g}$ is layered st-connectivity STCONN
 - $F = Peb_G$ then $f_{F,g}$ is generation GEN
- Changing g modifies the instances of the function produced.

rmula F and gadget $g: X \times Y \rightarrow \{0,1\}$

Proof Sketch

Theorem. [RM 99, GPW 14] Let $\mathcal{S} \subseteq \{0,1\}^n \times O$ be a search problem, let $\operatorname{Ind}_m : [m] \times \{0,1\}^m \to \{0,1\}$ by $\operatorname{Ind}_m(x, y) = y_x$. If $m = n^{O(1)}$ then $\mathsf{FP}^{cc}(\mathcal{S} \circ \mathsf{Ind}_m) = \Theta(\mathsf{FP}^{dt}(\mathcal{S}) \cdot \log m)$

- Simulation Argument
 - One direction (query implies communication) is easy.
 - algorithm making $O(c/\log m)$ queries.
 - which are "approximately" of the form $\rho g^{n-d}(x, y)$ for some restriction

• Starting from a communication protocol for $\mathcal{S} \circ \mathbf{Ind}$ of complexity c, extract a query

• To do this, we approximate an arbitrary rectangle R into "structured" rectangles

Proof \Rightarrow **Circuit Lifting**

Proof Complexity Size		Proof Complexity Degree	Circuit Complexity Measure	Gadget	Citation
	Tree-Like Resolution Size	Resolution Depth	Monotone Formula Size	Index, Low-Discrepancy	[Folklore, RM99, GPW14, CKFMP19]
	Resolution Size	Resolution Width	Monotone Circuit Size	Index	[GGKS17]
	Nullstellensatz Monomial Size	Nullstellensatz Degree	Monotone Span Program Size	Any High Rank	[PR18, dRMNPR20]
	Sherali-Adams Monomial Size	Sherali-Adams Degree	Linear Extension Complexity	Index, Inner Product*	[GLMW14, CLRS14, KMR17] (<mark>Incomplete</mark>)
	Sums-of-Squares Monomial Size	SOS Degree	Semidefinite Extension Complexity	Index*	[LRS15] (<mark>Incomplete</mark>)

Part 3

TENP

and

Future Directions

TFNP Classes

Query TFNP

Communication TFNP

TFNP Program in Proof and Circuit Complexity

- All in all, this suggests a research program!
- Use TFNP classes to characterize circuit and proof classes.
- Relate these classes by feasible interpolation and lifting theorems
- Use intuition from one setting to prove results in the other setting.
 - Many TFNP classes are not characterized in either setting.
- Intersection theorems are particularly interesting!
 - Reversible Resolution = Resolution \cap Sherali-Adams* [HGMPRST 22]

Other "Shapes"

- does not capture **all** proof systems.
- Prominent Example: Cutting Planes
 - first exponential size lower bounds
 - bounds [Kra98, BEGJ00, dRNV16, HP18, GGKS20]
- Lifting theorem uses triangles instead of rectangles

• The TFNP^{cc} classes capture communication reductions to proof systems, but this

 Pudlak [Pud97], building on Krajicek [Kra97] proved a feasible interpolation theorem for Cutting Planes using real monotone circuits, used this to prove the

• By lifting to real communication protocols, we can prove cutting planes lower

Open Problems

- What TFNP problem captures Sums-of-Squares?
- Characterize the communication variants of other classical classes.
- What about Cutting Planes, Lovasz-Shrijver? (These are somehow different.)
- Res(CP)? Or what about Res(Lin)?
- What about NOF lifting theorems?
- Characterize more circuit and proof classes using TFNP classes.
- Can this approach (communication and query complexity) say anything novel about very powerful proof systems?
- What about non-monotone complexity? Can anything be said?

Query TFNP

Thanks for Listening!

Communication TFNP