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What is a Lifting Theorem?
• Let’s ask the expert…



Thanks for Listening!
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Lifting Theorems in Complexity Theory
• Many new results in proof and circuit complexity using lifting theorems 

[GP12, GPW14, GLMWZ15, CLRS16, LRS16, RPRC16, PR17, KMR17, PR18, dRNV 16, GGKS18, GKRS18, dRMNPR18, dRMNPRV20, FGGR2022, LMMPZ22]


• These results rely on a fairly sophisticated set of equivalences and formal 
relationships between different computational models:


• Proof Systems, Query Algorithms, Communication Protocols, Circuit Models


• Results generalize and extend classic lower bound techniques (such as monotone 
feasible interpolation) 

• Place the complexity of total search problems at center stage!



Lifting Theorem: Basic Idea
Query Model Communication Model

 is a “complex gadget”g : X × Y → {0,1}

Protocol simulates Query

For “complex”  
this is best strategy!

g

f : {0,1}n → {0,1} f ∘ gn : Xn × Yn → {0,1}

Complexity Preserving Simulations!



What This Talk Is About
• Query-to-communication lifting theorems for search problems 


• Survey some basic ideas from lifting theorems for tree-like and dag-like models, 
motivate “why” the connection should hold.


• Connections to other areas, like TFNP.


• Based on recent SIGACT Complexity Column:

S ⊆ ℐ × 𝒪



Part 1

Total Search Problems 

and 

Concrete Complexity



Lifting Schema

Query Model Communication Model

 is a “complex gadget”g : X × Y → {0,1}
S(F) ⊆ {0,1}n × 𝒪 S(F) ∘ gn : Xn × Yn → 𝒪

Proof System

F = C1 ∧ ⋯ ∧ Cm

 is an unsatisfiable CNFF

Circuit Model

 is a boolean 
function related to  

f

S(F) ∘ gn

Equivalence EquivalenceLifting

All equivalences are “complexity preserving”

e.g. Tree-like Resolution e.g. Decision Trees e.g. Communication Protocols e.g. Monotone Boolean Formulas
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Total Search Problems
•  is a total search problem if for all  there is an  such that 

.


• For any  let 


• Study total search problems with verifiable solutions in various algorithmic models.


• Classical   
Verify  using polynomial time Turing Machines


• Black-Box   
Verify  using -depth decision trees 

• Communication   
Verify  using -depth communication protocols

S ⊆ I × O x ∈ I o ∈ O
(x, o) ∈ S

x ∈ I S(x) := {o ∈ O : (x, o) ∈ S}

𝖳𝖥𝖭𝖯
(x, o) ∈ S

𝖳𝖥𝖭𝖯dt

(x, o) ∈ S logO(1) n

𝖳𝖥𝖭𝖯cc

(x, o) ∈ S logO(1) n



Black-Box TFNP
•  sequence of total search problems


•  finite, reasonably bounded in size (e.g. ).


•  if for every ,  there is a decision tree  of depth  
that, given query access to  verifies if 


• Canonical Example: Unsatisfiable -width CNF , define 

𝒮 = {Sn ⊆ {0,1}n × On}n∈ℕ

On |On | = nO(1)

𝒮 ∈ 𝖳𝖥𝖭𝖯dt n o ∈ On To logO(1) n
x ∈ {0,1}n (x, o) ∈ Sn

logO(1) n F = C1 ∧ ⋯ ∧ Cm

S(F) ⊆ {0,1}n × [m]

Given , find  such that .x ∈ {0,1}n i ∈ [m] Ci(x) = 0



False Clause Search Problem

• If  then define (written as CNF)


 = “  has no solution”


•  is low-depth decision tree so  is bounded-width CNF


• Not hard to see that  is essentially the same as 


• Thus can redefine   

S ⊆ {0,1}n × On

FS(x) = ⋀
o∈On

¬To(x) x

To FS

S(F) S(FS)

𝖳𝖥𝖭𝖯dt = {{S(Fn)}n∈ℕ : Fn is unsat and bounded width}

S(F) ⊆ {0,1}n × [m]

Given , find  such that .x ∈ {0,1}n i ∈ [m] Ci(x) = 0



False Clause Search and Proof Complexity
Query Model

S(F) ⊆ {0,1}n × 𝒪

Proof System

F = C1 ∧ ⋯ ∧ Cm

 is an unsatisfiable CNFF

Equivalence

• Query complexity of  is very closely related to the complexity of refuting 


• Let’s quickly review one example: decision trees and tree-like Resolution 

• Can be generalized to rectangle dags and Resolution

S(F) F



Decision Trees for S(F)
• Size: Number of nodes


• Depth: Length of longest path


• Given boolean assignment, 
follow unique path consistent 
with that assignment, output violated 
clause.


• Decision tree for  is essentially the 
DPLL method for solving SAT.

S(F)

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

S(F) ⊆ {0,1}n × [m]
Given , find  such that .x ∈ {0,1}n i ∈ [m] Ci(x) = 0



Resolution Proofs
• Lines are clauses. 

• New lines deduced using 


• Resolution Rule: 


• Weakening:  

• Length: Number of lines.


• Depth: Length of longest path.


• Proof is tree-like if each clause is 
used at most once.


• Input clauses can be copied any number 
of times

C ∨ x, D ∨ x ⊢ C ∨ D

C ⊢ C ∨ D

Example.  

Length: 10, Depth: 4

F = x1 ∧ x2 ∧ (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4) ∧ (x3 ∨ x4)



Tree-Like Resolution  Decision Trees≡
Tree-Like Resolution of F

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

Decision Tree for S(F)



Tree-Like Resolution  Decision Trees≡
Tree-Like Resolution of F

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

Variable Resolved  Variable Queried≡

Decision Tree for S(F)



Tree-Like Resolution  Decision Trees≡
Tree-Like Resolution of F

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

x2 = 0

Partial assignment falsifies 
corresponding clause

Decision Tree for S(F)



Tree-Like Resolution  Decision Trees≡
Tree-Like Resolution of F

F = x1 ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ x3

x1 = 0, x2 = 0

Partial assignment falsifies (weakening) 
of corresponding clause

Decision Tree for S(F)



Tree-Like Resolution  Decision Trees≡
Theorem. Let  be an unsatisfiable CNF formula. Then 

Size , depth  Tree-like Res. refutation of  
if and only if  

Size , depth  Decision Tree for 

F

O(s) O(d) F

O(s) O(d) S(F)

Correspondence is stronger: essentially the same object!



Lifting Schema

Query Model Communication Model

 is a “complex gadget”g : X × Y → {0,1}
S(F) ⊆ {0,1}n × 𝒪 S(F) ∘ gn : Xn × Yn → 𝒪

Proof System

F = C1 ∧ ⋯ ∧ Cm

 is an unsatisfiable CNFF

Circuit Model

 is a boolean 
function related to  

f

S(F) ∘ gn

Equivalence EquivalenceLifting

All equivalences are “complexity preserving”



Communication TFNP
•  sequence of communication total search problems


•  finite,  reasonably bounded in size (e.g. ).


•  if for every  there is a monochromatic rectangle cover  of  of at most 
quasipolynomial size (equiv. polylogarithmic non-deterministic protocols)


This means  and  s.t.  is valid for all 


• Canonical Example: Given , define the KW-Game [KW90]:

𝒮 = {Sn ⊆ (Xn × Yn) × On}n∈ℕ

X, Y, On On |On | = nO(1)

𝒮 ∈ 𝖳𝖥𝖭𝖯cc n ℛ Sn

⋃
R∈ℛ

R = Xn × Yn ∀R ∈ ℛ∃o ∈ On o (x, y) ∈ R

f : {0,1}n → {0,1,*}

𝖪𝖶( f ) ⊆ f −1(1) × f −1(0) × [n]

Given , find  such that x ∈ f −1(1), y ∈ f −1(0) i ∈ [n] xi ≠ yi



Karchmer-Wigderson Games

𝖪𝖶( f ) ⊆ f −1(1) × f −1(0) × [n]

Given , find  such that x ∈ f −1(1), y ∈ f −1(0) i ∈ [n] xi ≠ yi

• Let  


• (Total)    monotone if  (coordinate-wise) implies 


• (Partial)    monotone if it has a total monotone extension


•   has an associated total search problem [KW 90]

f : {0,1}n → {0,1,*}

f x ≤ y f(x) ≤ f(y)

f

f

Circuit Complexity of     Communication Complexity of f ≡ 𝖪𝖶( f )



Karchmer-Wigderson Games

𝗆𝖪𝖶( f ) ⊆ f −1(1) × f −1(0) × [n]

Given , find  such that x ∈ f −1(1), y ∈ f −1(0) i ∈ [n] xi > yi

• Let  


• (Total)    monotone if  (coordinate-wise) implies 


• (Partial)    monotone if it has a total monotone extension


• Monotone   has an associated total search problem [KW 90]

f : {0,1}n → {0,1,*}

f x ≤ y f(x) ≤ f(y)

f

f

Mon. Circuit Complexity of     Mon. Communication Complexity of f ≡ 𝖪𝖶( f )



Monotone KW-Games are Canonical

• Every  is a  game in disguise!


• If  with rect. cover  then let :


•  if there is a  s.t. for all ,  


•  if there is a  s.t. for all ,  


•  otherwise


• Well defined since if  satisfies both conditions then  is not covered by !

𝒮 ∈ 𝖳𝖥𝖭𝖯cc 𝗆𝖪𝖶

S ⊆ U × V × O ℛ = {Ui × Vi}r
i=1 f : {0,1}r → {0,1}

f(x) = 1 u ∈ Xn i ∈ [r] xi = 1 ⟺ u ∈ Ui

f(x) = 0 v ∈ Yn i ∈ [r] xi = 0 ⟺ v ∈ Vi

f(x) = *

x (u, v) ℛ

𝗆𝖪𝖶( f ) ⊆ f −1(1) × f −1(0) × [n]

Given , find  such that x ∈ f −1(1), y ∈ f −1(0) i ∈ [n] xi > yi



Monotone KW-Games are Canonical

• Every  is a  game in disguise!


• If  with rect. cover  then let :


•  if there is a  s.t. for all ,  


•  if there is a  s.t. for all ,  


•  otherwise


• With this definition,  is equivalent to !

𝒮 ∈ 𝖳𝖥𝖭𝖯cc 𝗆𝖪𝖶

S ⊆ U × V × O ℛ = {Ui × Vi}r
i=1 f : {0,1}r → {0,1}

f(x) = 1 u ∈ Xn i ∈ [r] xi = 1 ⟺ u ∈ Ui

f(x) = 0 v ∈ Yn i ∈ [r] xi = 0 ⟺ v ∈ Vi

f(x) = *

𝗆𝖪𝖶( f ) S

𝗆𝖪𝖶( f ) ⊆ f −1(1) × f −1(0) × [n]

Given , find  such that x ∈ f −1(1), y ∈ f −1(0) i ∈ [n] xi > yi



KW Games and Circuit Complexity

• Karchmer and Wigderson famously showed that the deterministic communication 
complexity of  captures (monotone) circuit depth [KW 90] 

• Razborov later showed that  captures (monotone) circuit size! [Razb 95]

(𝗆)𝖪𝖶( f )

𝖯𝖫𝖲cc

Communication Model

 is a “complex gadget”g : X × Y → {0,1}
S(F) ∘ gn : Xn × Yn → 𝒪

Circuit Model

 is a boolean 
function related to  

f

S(F) ∘ gn

Equivalence



Formulas  Communication≡
Boolean Formula for f Protocol for 𝖪𝖶( f )

f = (x1 ∧ x2) ∨ x3 ∨ x4



Formulas  Communication≡
Boolean Formula for f Protocol for 𝖪𝖶( f )

f = (x1 ∧ x2) ∨ x3 ∨ x4

 1  1  0  0
 0  1  0  0

 1
 0

 0
 0

 1
 0



Formulas  Communication≡
Boolean Formula for f Protocol for 𝖪𝖶( f )

f = (x1 ∧ x2) ∨ x3 ∨ x4

 1  1  0  0
 0  1  0  0

 1
 0

 0
 0

 1
 0



Formulas  Communication≡
Boolean Formula for f Protocol for 𝖪𝖶( f )

f = (x1 ∧ x2) ∨ x3 ∨ x4

 gates∨
  gates∧



Formulas  Communication≡
Boolean Formula for f Protocol for 𝖪𝖶( f )

f = (x1 ∧ x2) ∨ x3 ∨ x4

Reverse Direction Also Works!



Formulas  Communication≡

Theorem.  
Let  be a partial boolean function. Then 

Size , depth   Boolean formula for  
if and only if  

Size , depth  communication protocol for 

f : {0,1}n → {0,1,*}

O(s) O(d) f

O(s) O(d) 𝖪𝖶( f )

Correspondence is stronger: essentially the same object!



Formulas  Communication≡

Theorem.  
Let  be a partial monotone boolean function. Then 

Size , depth  monotone Boolean formula for  
if and only if  

Size , depth  communication protocol for 

f : {0,1}n → {0,1,*}

O(s) O(d) f

O(s) O(d) 𝗆𝖪𝖶( f )

Correspondence is stronger: essentially the same object!



Alternate Perspective: Rectangle DAGs
• Let  be a total search problem


• A rectangle DAG for  is a directed acyclic graph 
 with a unique root node such that


• Every vertex is a rectangle in 


• Root is 


• Leaves are monochrome (consistent with one 
solution)


• If  has children   

S ⊆ Xn × Yn × O

S
G = (V, E)

Xn × Yn

Xn × Yn

R R1, R2 ⇒ R ⊆ R1 ∪ R2



Rectangle DAGs vs KW-Games
Let  denote the minimum size of any monotone formula computing  . 

Theorem [KW90]. Rectangle Tree Size of  = 


Let  denote the minimum size of any monotone circuit computing .


Theorem [R95, S16, GGKS17]. Rectangle DAG Size of  = 

𝗆𝖥( f ) f

𝗆𝖪𝖶f Θ(𝗆𝖥( f ))

𝗆𝖢( f ) f

𝗆𝖪𝖶f Θ(𝗆𝖢( f ))

•  Rectangle DAG:


• Root is 


• Leaves are monochrome (consistent with one solution)


• If  has children   

X × Y

R R1, R2 ⇒ R ⊆ R1 ∪ R2



Query Models and Communication Models

Bottom-up models (proofs, circuits) 


are captured by 


Top-down algorithms (decision trees, comm. protocols)


 and 


• Capture the complexity of these processes


• Are canonical examples of their respective  classes

𝖲𝖾𝖺𝗋𝖼𝗁(F) 𝗆𝖪𝖶(𝖿)

𝖳𝖥𝖭𝖯



Part 2


Relating Query to Communication



Lifting Schema

Query Model Communication Model

 is a “complex gadget”g : X × Y → {0,1}
S(F) ⊆ {0,1}n × 𝒪 S(F) ∘ gn : Xn × Yn → 𝒪

Proof System

F = C1 ∧ ⋯ ∧ Cm

 is an unsatisfiable CNFF

Circuit Model

 is a boolean 
function related to  

f

S(F) ∘ gn

Equivalence EquivalenceLifting

First, we need to discuss how to relate  for unsatisfiable  with communication search problems.S(F) F
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“Feasible Interpolation”
• Many interesting results from relating two worlds


• Here is the simplest way to turn a query problem into a communication problem.


• If  is a query search problem, let  be variable partition


• Define  as a communication problem, so


• Alice gets , Bob gets , solutions are 


• Translates circuit lower bounds to proof lower bounds


• Closely related to classical feasible interpolation results [K97, P97, BPR00,…]


• Construction underlies Cutting Planes lbs for random CNFs [FPPR 16, HP16]

𝒮 ⊆ {0,1}n × O [n] = X ∪ Y

𝒮X,Y ⊆ {0,1}X × {0,1}Y × O
x ∈ {0,1}X y ∈ {0,1}Y 𝒮X,Y(x, y) = 𝒮(xy)



From Proofs to Communication
Search(F) ⊆ {0,1}n × [m] F = C1 ∧ C2 ∧ ⋯ ∧ Cm

unsatisfiable CNF

{0,1}n

C1(z) = 0

C2(z) = 0

C3(z) = 0

C4(z) = 0

[n] = X ∪ Y
partition

C1 C4

C2 C3

{0,1}X

{0,1}Y

{0,1}X × {0,1}Y

SearchX,Y(F) ⊆ {0,1}X × {0,1}Y × [m]



From Proofs to Communication
• Let  be an unsatisfiable CNF on variables .


• : Given , find  such that .


• For any partition , :


• Given , , find  such that .


• Observation: Since  is a clause, the set


           
              
             


• Thus clauses of  yield a rectangle covering of 

F = C1 ∧ C2 ∧ ⋯ ∧ Cm z1, …, zn

S(F) z ∈ {0,1}n i ∈ [m] Ci(z) = 0

X ∪ Y = [n] SX,Y(F) ⊆ {0,1}X × {0,1}Y × [m]

x ∈ {0,1}X y ∈ {0,1}Y i ∈ [m] Ci(xy) = 0

Ci

Ri = {(x, y) ∈ {0,1}X × {0,1}Y : Ci(xy) = 0}

= {x ∈ {0,1}X : CX
i (x) = 0} × {y ∈ {0,1}Y : CY

i (y) = 0}

F SX,Y(F)

Combinatorial 
Rectangle!



mCSP-SAT / Unsatisfiability Certificate
• Every communication total search problem is equivalent to  for 

some partial monotone boolean function 


• What is the boolean function corresponding to ?


• [FPPR 17, HP 17] Gave independent (essentially equivalent) answers.


• [FPPR 17]  := monotone generalization of SAT 

• (  appears in many works on lifting [GP12, GPW14, O15,…]) 

• [HP 17]  := unsatisfiability certificate of 

𝗆𝖪𝖶f
f : {0,1}n → {0,1,*}

SX,Y(F)

𝗆𝖢𝖲𝖯𝖲𝖠𝖳

𝗆𝖢𝖲𝖯𝖲𝖠𝖳

𝖼𝖾𝗋𝗍F F



Unsatisfiability Certificate [HP 17]
•  unsat. CNF,  partition of variables


• Let  (partition clauses according to  )


• Define  by

F = C1 ∧ C2 ∧ ⋯ ∧ Cm X ∪ Y = [n]

Ci = CX
i ∨ CY

i X, Y

𝖼𝖾𝗋𝗍F = 𝖼𝖾𝗋𝗍X,Y
F : {0,1}m → {0,1}

𝖼𝖾𝗋𝗍F(z) =

1  is satisfiable⋀
i : zi=0

CX
i

* otherwise

0  is satisfiable⋀
i : zi=1

CY
i



Unsatisfiability Certificate [HP 17]
•  unsat. CNF,  partition of variables


• Let  (partition clauses according to  )


• Define  by

F = C1 ∧ C2 ∧ ⋯ ∧ Cm X ∪ Y = [n]

Ci = CX
i ∨ CY

i X, Y

𝖼𝖾𝗋𝗍F = 𝖼𝖾𝗋𝗍X,Y
F : {0,1}m → {0,1}

𝖼𝖾𝗋𝗍F(z) =

1  is satisfiable⋀
i : zi=0

CX
i

0

* otherwise

 is satisfiable⋀
i : zi=1

CY
i

(CX
1 ∨ CY

1 ) ∧ (CX
2 ∨ CY

2 ) ∧ (CX
3 ∨ CY

3 ) ∧ (CX
4 ∨ CY

4 )

z1 z2 z3 z4



Unsatisfiability Certificate [HP 17]
•  unsat. CNF,  partition of variables


• Let  (partition clauses according to  )


• Define  by

F = C1 ∧ C2 ∧ ⋯ ∧ Cm X ∪ Y = [n]

Ci = CX
i ∨ CY

i X, Y

𝖼𝖾𝗋𝗍F = 𝖼𝖾𝗋𝗍X,Y
F : {0,1}m → {0,1}

(CX
1 ∨ CY

1 ) ∧ (CX
2 ∨ CY

2 ) ∧ (CX
3 ∨ CY

3 ) ∧ (CX
4 ∨ CY

4 )

z1 = 1 z2 = 0 z3 = 1 z4 = 0

𝖼𝖾𝗋𝗍F(z) =

1  is satisfiable⋀
i : zi=0

CX
i

0

* otherwise

 is satisfiable⋀
i : zi=1

CY
i

Satisfiable?



Unsatisfiability Certificate [HP 17]
•  unsat. CNF,  partition of variables


• Let  (partition clauses according to  )


• Define  by

F = C1 ∧ C2 ∧ ⋯ ∧ Cm X ∪ Y = [n]

Ci = CX
i ∨ CY

i X, Y

𝖼𝖾𝗋𝗍F = 𝖼𝖾𝗋𝗍X,Y
F : {0,1}m → {0,1}

(CX
1 ∨ CY

1 ) ∧ (CX
2 ∨ CY

2 ) ∧ (CX
3 ∨ CY

3 ) ∧ (CX
4 ∨ CY

4 )

z1 = 1 z2 = 0 z3 = 1 z4 = 0

Satisfiable?

𝖼𝖾𝗋𝗍F(z) =

1  is satisfiable⋀
i : zi=0

CX
i

0

* otherwise

 is satisfiable⋀
i : zi=1

CY
i



Unsatisfiability Certificate [HP 17]
•  unsat. CNF,  partition of variables


• Let  (partition clauses according to  )


• Define  by

F = C1 ∧ C2 ∧ ⋯ ∧ Cm X ∪ Y = [n]

Ci = CX
i ∨ CY

i X, Y

𝖼𝖾𝗋𝗍F = 𝖼𝖾𝗋𝗍X,Y
F : {0,1}m → {0,1}

(CX
1 ∨ CY

1 ) ∧ (CX
2 ∨ CY

2 ) ∧ (CX
3 ∨ CY

3 ) ∧ (CX
4 ∨ CY

4 )

z1 = 1 z2 = 0 z3 = 1 z4 = 0

If both satisfiable then the whole formula is satisfiable!

𝖼𝖾𝗋𝗍F(z) =

1  is satisfiable⋀
i : zi=0

CX
i

0

* otherwise

 is satisfiable⋀
i : zi=1

CY
i



Feasible Interpolation

Theorem [HP17]. Let  be any unsatisfiable CNF, and let  be any variable 
partition. 


If there is a Resolution refutation of  of size , then there is a monotone circuit 
computing  of size .

F X, Y

F s
𝖼𝖾𝗋𝗍F = 𝖼𝖾𝗋𝗍X,Y

F O(s)



Theorem [HP17]. Let  be any unsatisfiable CNF, and let  be any variable partition. 


If there is a Resolution refutation of  of size , then there is a monotone circuit computing 
 of size .


Proof. Given size-  Resolution refutation of , give size-  Rectangle DAG for 

F X, Y

F s
𝖼𝖾𝗋𝗍F = 𝖼𝖾𝗋𝗍X,Y

F O(s)

s F s 𝗆𝖪𝖶𝖼𝖾𝗋𝗍F

C1 C2

C3

C5C4

D1

D2

D3 D4

⊥

CX
5 ∨ CY

5CX
4 ∨ CY

4 DX
2 ∨ DY

2

DX
3 ∨ DY

3 DX
4 ∨ DY

4

⊥

CX
1 ∨ CY

1 CX
2 ∨ CY

2

CX
3 ∨ CY

3DX
1 ∨ DY

1

partition X, Y
rectangle 

Ri(x, y) = Di(x, y)

• Root rectangle is 


• Leaves are defining rectangles for 


• If  deduced from  by resolution, then 


• Equivalently, if  then either  or .

{0,1}X × {0,1}Y

𝗆𝖪𝖶𝖼𝖾𝗋𝗍F

Di Dj, Dk Ri ⊆ Rj ∪ Rk

Di(x, y) = 0 Dj(x, y) = 0 Dk(x, y) = 0



Monotone Feasible Interpolation
• [HP17] “Standard” feasible interpolation (in [K97] sense) can be deduced from this result.


• [FPPR17, HP17] Key idea enabling Cutting Planes lower bounds for random -CNFs.


• Using this idea, one can deduce monotone feasible interpolation results for many proof systems 
and related monotone circuit models. (Proof of  size   Monotone circuit for  of size )


• Resolution  Monotone Circuits [HP17, prior result K97] 

• Tree-Like Resolution  Monotone Formulas [Same as above]


• Cutting Planes  Real Monotone Circuits [HP17b, prior results K97, P97, BPR95]


• Nullstellensatz  Monotone Span Programs [Follows ideas of PR18, prior result PS96] 

• Sherali-Adams  Weak MLP Gate/Linear Separation Complexity [FGGR21, prior H20]

ω(1)

F s ⇒ 𝖼𝖾𝗋𝗍F sO(1)

⇒

⇒

⇒

⇒

⇒



Lifting Schema

Query Model Communication Model

 is a “complex gadget”g : X × Y → {0,1}
S(F) ⊆ {0,1}n × 𝒪 S(F) ∘ gn : Xn × Yn → 𝒪

Proof System

F = C1 ∧ ⋯ ∧ Cm

 is an unsatisfiable CNFF

Circuit Model

 is a boolean 
function related to  

f

S(F) ∘ gn

Equivalence EquivalenceLifting



Lifting Theorems
• Query-to-communication lifting theorems give the other direction


•  is a query search problem,  is a gadget


• Define  by 


• Alice gets , Bob gets , evaluate  and solve 


• If  “complex” then Alice and Bob’s best strategy is to simulate the query strategy

𝒮 ⊆ {0,1}n × O g : X × Y → {0,1}n

𝒮 ∘ g ⊆ Xn × Yn × O (𝒮 ∘ g)(x, y) = 𝒮(gn(x, y))

x ∈ Xn y ∈ Yn z = gn(x, y) 𝒮(z)

g

Theorem. [RM 99, GPW 14] 
Let  be a search problem, let  by 

. If  then

𝒮 ⊆ {0,1}n × O 𝖨𝗇𝖽m : [m] × {0,1}m → {0,1}

𝖨𝗇𝖽m(x, y) = yx m = nO(1)

𝖥𝖯cc(𝒮 ∘ 𝖨𝗇𝖽m) = Θ(𝖥𝖯dt(𝒮) ⋅ log m)



Lifting?

•  denotes monotone formula size


• Monotone circuit for  of size   Proof of  with degree 


• Many (not all) proof systems have well-defined notions of degree (depth, width, 
polynomial degree, etc.) 


𝗆𝖥

𝖼𝖾𝗋𝗍F∘gn s ⟹ F O(log s/log |g | )

Theorem [GPW14]. Let  be an unsatisfiable CNF formula. There is a function  
(Index) and a monotone boolean function  such that


F g
fF,g

𝗆𝖥( fF,g) = 2Ω(D𝖱𝖾𝗌(F)(log|g|))

• By combining this together with the earlier reductions, we get the following theorem:



Lower Bounds?
• Is the function that we get from lifting interesting at all?


• Surprisingly, yes! 

•  depends on the formula  and gadget  

• Number of input variables:  

• Examples:


•  then  is layered st-connectivity  

•  then  is generation  

• Changing  modifies the instances of the function produced.

fF,g = 𝖼𝖾𝗋𝗍X,Y
F∘gn F g : X × Y → {0,1}

N = O( |F | |X |w(F) )

F = Indn fF,g STCONN

F = PebG fF,g GEN

g



Proof Sketch
Theorem. [RM 99, GPW 14] 
Let  be a search problem, let  by 

. If  then

𝒮 ⊆ {0,1}n × O 𝖨𝗇𝖽m : [m] × {0,1}m → {0,1}

𝖨𝗇𝖽m(x, y) = yx m = nO(1)

𝖥𝖯cc(𝒮 ∘ 𝖨𝗇𝖽m) = Θ(𝖥𝖯dt(𝒮) ⋅ log m)

• Simulation Argument 
• One direction (query implies communication) is easy.


• Starting from a communication protocol for  of complexity , extract a query 
algorithm making  queries.


• To do this, we approximate an arbitrary rectangle  into “structured” rectangles 
which are “approximately” of the form  for some restriction

𝒮 ∘ 𝖨𝗇𝖽 c
O(c/log m)

R
ρgn−d(x, y)



Proof  Circuit Lifting⇒
Proof Complexity Size Proof Complexity 

Degree
Circuit Complexity 

Measure Gadget Citation

Tree-Like 

Resolution Size Resolution Depth Monotone Formula Size Index,  

Low-Discrepancy
[Folklore, RM99,  

GPW14, CKFMP19]

Resolution Size Resolution Width Monotone Circuit Size Index [GGKS17]

Nullstellensatz 
Monomial Size Nullstellensatz Degree Monotone Span 

Program Size Any High Rank [PR18, dRMNPR20]

Sherali-Adams 
Monomial Size Sherali-Adams Degree Linear Extension 

Complexity Index, Inner Product*
[GLMW14, CLRS14, 

KMR17] 
(Incomplete)

Sums-of-Squares 
Monomial Size SOS Degree Semidefinite Extension 

Complexity Index* [LRS15]

(Incomplete)



Part 3


TFNP


and


Future Directions



TFNP Classes
𝖳𝖥𝖭𝖯

𝖯𝖯𝖠

𝖥𝖯

𝖯𝖯𝖠𝖣

𝖯𝖯𝖯𝖯𝖫𝖲

𝖯𝖯𝖠𝖣𝖲

𝖲𝖮𝖯𝖫
=

𝖯𝖫𝖲 ∩ 𝖯𝖯𝖠𝖣𝖲
𝖤𝖮𝖯𝖫

=
𝖯𝖫𝖲 ∩ 𝖯𝖯𝖠𝖣



Query TFNP Classes
𝖳𝖥𝖭𝖯dt

𝖯𝖯𝖠dt

𝖥𝖯dt

𝖯𝖯𝖠𝖣dt

𝖯𝖯𝖯dt𝖯𝖫𝖲dt

𝖯𝖯𝖠𝖣𝖲dt Low-Coeff. -Nullstellensatz 
[GKRS 18, HGMPRST 22]

ℤ

Resolution [BKT 14]

Low-Coeff. Sherali-Adams 
[HGMPRST 22]

 Nullstellensatz [BCEIP 98, GKRS 18]𝔽2

Tree Resolution [Folklore]

𝖲𝖮𝖯𝖫dt
=

𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣𝖲dt

Reversible Resolution 
= MaxResW Resolution 

[HGMPRST 22]

𝖤𝖮𝖯𝖫dt

=
𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣dt

Reversible Resolution w/Terminals 
[HGMPRST 22]



Communication TFNP
𝖳𝖥𝖭𝖯cc

𝖯𝖯𝖠cc

𝖥𝖯cc

𝖯𝖯𝖠𝖣cc

𝖯𝖯𝖯cc𝖯𝖫𝖲cc

𝖯𝖯𝖠𝖣𝖲cc

𝖲𝖮𝖯𝖫cc
=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣𝖲cc

𝖤𝖮𝖯𝖫cc

=
𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣cc



Communication TFNP
Boolean Circuits 
[R 95, K 97, S 17]

 Span Programs [GKRS 18]𝔽2

Boolean Formulas [KW 90]

𝖳𝖥𝖭𝖯cc

𝖯𝖯𝖠cc

𝖥𝖯cc

𝖯𝖯𝖠𝖣cc

𝖯𝖯𝖯cc𝖯𝖫𝖲cc

𝖯𝖯𝖠𝖣𝖲cc

𝖲𝖮𝖯𝖫cc
=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣𝖲cc

𝖤𝖮𝖯𝖫cc

=
𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣cc



Communication TFNP
Boolean Circuits 
[R 95, K 97, S 17]

 Span Programs [GKRS 18]𝔽2

Boolean Formulas [KW 90]

𝖳𝖥𝖭𝖯cc

𝖯𝖯𝖠cc

𝖥𝖯cc

𝖯𝖯𝖠𝖣cc

𝖯𝖯𝖯cc𝖯𝖫𝖲cc

𝖯𝖯𝖠𝖣𝖲cc

𝖲𝖮𝖯𝖫cc
=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣𝖲cc

𝖤𝖮𝖯𝖫cc

=
𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣cc



𝖳𝖥𝖭𝖯cc

𝖯𝖯𝖠cc

𝖥𝖯cc

𝖯𝖯𝖠𝖣cc

𝖯𝖯𝖯cc𝖯𝖫𝖲cc

𝖯𝖯𝖠𝖣𝖲cc

𝖲𝖮𝖯𝖫cc

=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣𝖲cc

𝖤𝖮𝖯𝖫cc

=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣cc

𝖳𝖥𝖭𝖯dt

𝖯𝖯𝖠dt

𝖥𝖯dt

𝖯𝖯𝖠𝖣dt

𝖯𝖯𝖯dt𝖯𝖫𝖲dt

𝖯𝖯𝖠𝖣𝖲dt

𝖲𝖮𝖯𝖫dt

=

𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣𝖲dt

𝖤𝖮𝖯𝖫dt

=

𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣dt

Query TFNP Communication TFNP
Feasible Interpolation 

Proof Upper Bounds  Circuit Upper Bounds⟹

Lifting Theorems 
Proof Lower Bounds  Circuit Lower Bounds⟹



TFNP Program in Proof and Circuit Complexity
• All in all, this suggests a research program!


• Use  classes to characterize circuit and proof classes.


• Relate these classes by feasible interpolation and lifting theorems


• Use intuition from one setting to prove results in the other setting. 

• Many  classes are not characterized in either setting.


• Intersection theorems are particularly interesting!


• Reversible Resolution = Resolution  Sherali-Adams* [HGMPRST 22]

𝖳𝖥𝖭𝖯

𝖳𝖥𝖭𝖯

∩



Other “Shapes”
• The  classes capture communication reductions to proof systems, but this 

does not capture all proof systems.


• Prominent Example: Cutting Planes 

• Pudlak [Pud97], building on Krajicek [Kra97] proved a feasible interpolation 
theorem for Cutting Planes using real monotone circuits, used this to prove the 
first exponential size lower bounds 

• By lifting to real communication protocols, we can prove cutting planes lower 
bounds [Kra98, BEGJ00, dRNV16, HP18, GGKS20]


• Lifting theorem uses triangles instead of rectangles

𝖳𝖥𝖭𝖯cc



Open Problems
• What  problem captures Sums-of-Squares?


• Characterize the communication variants of other classical classes.


• What about Cutting Planes, Lovasz-Shrijver? (These are somehow different.)


•  Or what about  


• What about NOF lifting theorems?


• Characterize more circuit and proof classes using  classes.


• Can this approach (communication and query complexity) say anything novel 
about very powerful proof systems?


• What about non-monotone complexity? Can anything be said?

𝖳𝖥𝖭𝖯

𝖱𝖾𝗌(𝖢𝖯)? 𝖱𝖾𝗌(𝖫𝗂𝗇)?

𝖳𝖥𝖭𝖯



Thanks for Listening!

𝖳𝖥𝖭𝖯cc

𝖯𝖯𝖠cc

𝖥𝖯cc

𝖯𝖯𝖠𝖣cc

𝖯𝖯𝖯cc𝖯𝖫𝖲cc

𝖯𝖯𝖠𝖣𝖲cc

𝖲𝖮𝖯𝖫cc

=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣𝖲cc

𝖤𝖮𝖯𝖫cc

=

𝖯𝖫𝖲cc ∩ 𝖯𝖯𝖠𝖣cc

𝖳𝖥𝖭𝖯dt

𝖯𝖯𝖠dt

𝖥𝖯dt

𝖯𝖯𝖠𝖣dt

𝖯𝖯𝖯dt𝖯𝖫𝖲dt

𝖯𝖯𝖠𝖣𝖲dt

𝖲𝖮𝖯𝖫dt

=

𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣𝖲dt

𝖤𝖮𝖯𝖫dt

=

𝖯𝖫𝖲dt ∩ 𝖯𝖯𝖠𝖣dt

Query TFNP Communication TFNP
Feasible Interpolation 

Proof Upper Bounds  Circuit Upper Bounds⟹

Lifting Theorems 
Proof Lower Bounds  Circuit Lower Bounds⟹


