Lifting Theorems: A Survey

Robert Robere

School of Computer Science
McGill University

Mathematical Approaches to Lower Bounds:
Complexity of Proofs and Computation
ICMS Edinburgh
July 6, 2022

What is a Lifting Theorem?

- Let's ask the expert...

DALL-E mini
Al model generating images from any prompt!

DALL-E mini
Al model generating images from any prompt!

Thanks for Listening!

Lifting Theorems: A Survey

Robert Robere

School of Computer Science
McGill University

Mathematical Approaches to Lower Bounds:
Complexity of Proofs and Computation
ICMS Edinburgh
July 6, 2022

Lifting Theorems in Complexity Theory

- Many new results in proof and circuit complexity using lifting theorems [GP12, GPW14, GLMWZ15, CLRS16, LRS16, RPRC16, PR17, KMR17, PR18, dRNV 16, GGKS18, GKRS18, dRMNPR18, dRMNPRV20, FGGR2022, LMMPZ22]
- These results rely on a fairly sophisticated set of equivalences and formal relationships between different computational models:
- Proof Systems, Query Algorithms, Communication Protocols, Circuit Models
- Results generalize and extend classic lower bound techniques (such as monotone feasible interpolation)
- Place the complexity of total search problems at center stage!

Lifting Theorem: Basic Idea

$f:\{0,1\}^{n} \rightarrow\{0,1\}$

Protocol simulates Query

For "complex" g this is best strategy!

Communication Model

$$
f \circ g^{n}: X^{n} \times Y^{n} \rightarrow\{0,1\}
$$

$g: X \times Y \rightarrow\{0,1\}$ is a "complex gadget"

What This Talk Is About

- Query-to-communication lifting theorems for search problems $S \subseteq \mathscr{J} \times \mathcal{O}$
- Survey some basic ideas from lifting theorems for tree-like and dag-like models, motivate "why" the connection should hold.
- Connections to other areas, like TFNP.
- Based on recent SIGACT Complexity Column:

Part 1

Total Search Problems

and

Concrete Complexity

Lifting Schema

All equivalences are "complexity preserving"

Lifting Schema

All equivalences are "complexity preserving"

Proof System

$$
F=C_{1} \wedge \cdots \wedge C_{m}
$$

F is an unsatisfiable CNF

$S(F) \subseteq\{0,1\}^{n} \times \mathcal{O}$

Communication Model

$$
S(F) \circ g^{n}: X^{n} \times Y^{n} \rightarrow \mathcal{O}
$$

$g: X \times Y \rightarrow\{0,1\}$ is a "complex gadget"

f is a boolean function related to $S(F) \circ g^{n}$

Total Search Problems

- $S \subseteq I \times O$ is a total search problem if for all $x \in I$ there is an $o \in O$ such that $(x, o) \in S$.
- For any $x \in I$ let $S(x):=\{o \in O:(x, o) \in S\}$
- Study total search problems with verifiable solutions in various algorithmic models.
- Classical TFNP

Verify $(x, o) \in S$ using polynomial time Turing Machines

- Black-Box TFNP ${ }^{d t}$

Verify $(x, o) \in S$ using $\log ^{O(1)} n$-depth decision trees

- Communication TFNP ${ }^{c c}$

Verify $(x, o) \in S$ using $\log ^{O(1)} n$-depth communication protocols

Black-Box TFNP

- $\mathcal{S}=\left\{S_{n} \subseteq\{0,1\}^{n} \times O_{n}\right\}_{n \in \mathbb{N}}$ sequence of total search problems
- O_{n} finite, reasonably bounded in size (e.g. $\left|O_{n}\right|=n^{O(1)}$).
- $\mathcal{S} \in \mathrm{TFNP}^{d t}$ if for every $n, o \in O_{n}$ there is a decision tree T_{o} of depth $\log ^{O(1)} n$ that, given query access to $x \in\{0,1\}^{n}$ verifies if $(x, o) \in S_{n}$
- Canonical Example: Unsatisfiable $\log ^{O(1)} n$-width CNF $F=C_{1} \wedge \cdots \wedge C_{m}$, define

$$
S(F) \subseteq\{0,1\}^{n} \times[m]
$$

Given $x \in\{0,1\}^{n}$, find $i \in[m]$ such that $C_{i}(x)=0$.

False Clause Search Problem

$$
\begin{gathered}
\qquad(F) \subseteq\{0,1\}^{n} \times[m] \\
\text { Given } x \in\{0,1\}^{n}, \text { find } i \in[m] \text { such that } C_{i}(x)=0 .
\end{gathered}
$$

- If $S \subseteq\{0,1\}^{n} \times O_{n}$ then define (written as CNF)

$$
F_{S}(x)=\bigwedge_{o \in O_{n}} \neg T_{o}(x)=" x \text { has no solution" }
$$

- T_{o} is low-depth decision tree so F_{S} is bounded-width CNF
- Not hard to see that $S(F)$ is essentially the same as $S\left(F_{S}\right)$
- Thus can redefine $\operatorname{TFNP}^{d t}=\left\{\left\{S\left(F_{n}\right)\right\}_{n \in \mathbb{N}}: F_{n}\right.$ is unsat and bounded width $\}$

False Clause Search and Proof Complexity

F is an unsatisfiable CNF

- Query complexity of $S(F)$ is very closely related to the complexity of refuting F
- Let's quickly review one example: decision trees and tree-like Resolution
- Can be generalized to rectangle dags and Resolution

Decision Trees for $S(F)$

- Size: Number of nodes
- Depth: Length of longest path
- Given boolean assignment, follow unique path consistent with that assignment, output violated clause.
- Decision tree for $S(F)$ is essentially the DPLL method for solving SAT.

$$
S(F) \subseteq\{0,1\}^{n} \times[m]
$$

Given $x \in\{0,1\}^{n}$, find $i \in[m]$ such that $C_{i}(x)=0$.

$$
F=x_{1} \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right) \wedge \bar{x}_{3}
$$

Resolution Proofs

- Lines are clauses.
- New lines deduced using
- Resolution Rule: $C \vee x, D \vee \bar{x} \vdash C \vee D$
- Weakening: $C \vdash C \vee D$
- Length: Number of lines.
- Depth: Length of longest path.
- Proof is tree-like if each clause is used at most once.
- Input clauses can be copied any number of times

Example. $F=x_{1} \wedge x_{2} \wedge\left(\bar{x}_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{3} \vee x_{4}\right) \wedge\left(\bar{x}_{3} \vee \bar{x}_{4}\right)$ Length: 10, Depth: 4

Tree-Like Resolution \equiv Decision Trees

Tree-Like Resolution of F

Decision Tree for $S(F)$

$$
F=x_{1} \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right) \wedge \bar{x}_{3}
$$

Tree-Like Resolution \equiv Decision Trees

Tree-Like Resolution of F
Decision Tree for $S(F)$

$$
F=x_{1} \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right) \wedge \bar{x}_{3}
$$

Tree-Like Resolution \equiv Decision Trees

Tree-Like Resolution of F
Decision Tree for $S(F)$

$$
F=x_{1} \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{2} \vee x_{3}\right) \wedge \bar{x}_{3}
$$

Tree-Like Resolution \equiv Decision Trees

Tree-Like Resolution of F
Decision Tree for $S(F)$

Tree-Like Resolution \equiv Decision Trees

Theorem. Let F be an unsatisfiable CNF formula. Then
Size $O(s)$, depth $O(d)$ Tree-like Res. refutation of F
if and only if
Size $O(s)$, depth $O(d)$ Decision Tree for $S(F)$

Correspondence is stronger: essentially the same object!

Lifting Schema

All equivalences are "complexity preserving"

f is a boolean function related to $S(F) \circ g^{n}$

Communication TFNP

- $\mathcal{S}=\left\{S_{n} \subseteq\left(X^{n} \times Y^{n}\right) \times O_{n}\right\}_{n \in \mathbb{N}}$ sequence of communication total search problems
- X, Y, O_{n} finite, O_{n} reasonably bounded in size (e.g. $\left|O_{n}\right|=n^{O(1)}$).
- $\mathcal{S} \in \mathrm{TFNP}^{c c}$ if for every n there is a monochromatic rectangle cover \mathscr{R} of S_{n} of at most quasipolynomial size (equiv. polylogarithmic non-deterministic protocols)

$$
\text { This means } \bigcup_{R \in \mathscr{R}} R=X^{n} \times Y^{n} \text { and } \forall R \in \mathscr{R} \exists o \in O_{n} \text { s.t. } o \text { is valid for all }(x, y) \in R
$$

- Canonical Example: Given $f:\{0,1\}^{n} \rightarrow\{0,1, *\}$, define the KW-Game [KW90]:

$$
\mathrm{KW}(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times[n]
$$

Given $x \in f^{-1}(1), y \in f^{-1}(0)$, find $i \in[n]$ such that $x_{i} \neq y_{i}$

Karchmer-Wigderson Games

- Let $f:\{0,1\}^{n} \rightarrow\{0,1, *\}$
- (Total) f monotone if $x \leq y$ (coordinate-wise) implies $f(x) \leq f(y)$
- (Partial) f monotone if it has a total monotone extension
- f has an associated total search problem [KW 90]

$$
\mathrm{KW}(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times[n]
$$

Given $x \in f^{-1}(1), y \in f^{-1}(0)$, find $i \in[n]$ such that $x_{i} \neq y_{i}$

Circuit Complexity of $f \equiv$ Communication Complexity of $\mathrm{KW}(f)$

Karchmer-Wigderson Games

- Let $f:\{0,1\}^{n} \rightarrow\{0,1, *\}$
- (Total) f monotone if $x \leq y$ (coordinate-wise) implies $f(x) \leq f(y)$
- (Partial) f monotone if it has a total monotone extension
- Monotone f has an associated total search problem [KW 90]

$$
\begin{gathered}
\operatorname{mKW}(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times[n] \\
\text { Given } x \in f^{-1}(1), y \in f^{-1}(0) \text {, find } i \in[n] \text { such that } x_{i}>y_{i}
\end{gathered}
$$

Mon. Circuit Complexity of $f \equiv$ Mon. Communication Complexity of $\mathrm{KW}(f)$

Monotone KW-Games are Canonical

$$
m K W(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times[n]
$$

Given $x \in f^{-1}(1), y \in f^{-1}(0)$, find $i \in[n]$ such that $x_{i}>y_{i}$

- Every $\mathcal{S} \in \operatorname{TFNP}^{c c}$ is a mKW game in disguise!
- If $S \subseteq U \times V \times O$ with rect. cover $\mathscr{R}=\left\{U_{i} \times V_{i}\right\}_{i=1}^{r}$ then let $f:\{0,1\}^{r} \rightarrow\{0,1\}$:
- $f(x)=1$ if there is a $u \in X^{n}$ s.t. for all $i \in[r], x_{i}=1 \Longleftrightarrow u \in U_{i}$
- $f(x)=0$ if there is a $v \in Y^{n}$ s.t. for all $i \in[r], x_{i}=0 \Longleftrightarrow v \in V_{i}$
- $f(x)=$ * otherwise
- Well defined since if x satisfies both conditions then (u, v) is not covered by \mathscr{R} !

Monotone KW-Games are Canonical

$$
m K W(f) \subseteq f^{-1}(1) \times f^{-1}(0) \times[n]
$$

Given $x \in f^{-1}(1), y \in f^{-1}(0)$, find $i \in[n]$ such that $x_{i}>y_{i}$

- Every $\mathcal{S} \in \operatorname{TFNP}^{c c}$ is a mKW game in disguise!
- If $S \subseteq U \times V \times O$ with rect. cover $\mathscr{R}=\left\{U_{i} \times V_{i}\right\}_{i=1}^{r}$ then let $f:\{0,1\}^{r} \rightarrow\{0,1\}$:
- $f(x)=1$ if there is a $u \in X^{n}$ s.t. for all $i \in[r], x_{i}=1 \Longleftrightarrow u \in U_{i}$
- $f(x)=0$ if there is a $v \in Y^{n}$ s.t. for all $i \in[r], x_{i}=0 \Longleftrightarrow v \in V_{i}$
- $f(x)=$ * otherwise
- With this definition, $\mathrm{mKW}(f)$ is equivalent to S !

KW Games and Circuit Complexity

f is a boolean function related to $S(F) \circ g^{n}$

- Karchmer and Wigderson famously showed that the deterministic communication complexity of (m$) \mathrm{KW}(f)$ captures (monotone) circuit depth [KW 90]
- Razborov later showed that PLS ${ }^{c c}$ captures (monotone) circuit size! [Razb 95]

Formulas \equiv Communication

Formulas \equiv Communication

Theorem.

Let $f:\{0,1\}^{n} \rightarrow\{0,1, *\}$ be a partial boolean function. Then
Size $O(s)$, depth $O(d)$ Boolean formula for f
if and only if
Size $O(s)$, depth $O(d)$ communication protocol for $\mathrm{KW}(f)$

Correspondence is stronger: essentially the same object!

Formulas \equiv Communication

Theorem.

Let $f:\{0,1\}^{n} \rightarrow\{0,1, *\}$ be a partial monotone boolean function. Then

$$
\text { Size } O(s) \text {, depth } O(d) \text { monotone Boolean formula for } f
$$ if and only if

Size $O(s)$, depth $O(d)$ communication protocol for mKW (f)

Correspondence is stronger: essentially the same object!

Alternate Perspective: Rectangle DAGs

- Let $S \subseteq X^{n} \times Y^{n} \times O$ be a total search problem
- A rectangle DAG for S is a directed acyclic graph $G=(V, E)$ with a unique root node such that
- Every vertex is a rectangle in $X^{n} \times Y^{n}$
- Root is $X^{n} \times Y^{n}$
- Leaves are monochrome (consistent with one solution)
- If R has children $R_{1}, R_{2} \Rightarrow R \subseteq R_{1} \cup R_{2}$

Rectangle DAGs vs KW-Games

Let $\mathrm{mF}(f)$ denote the minimum size of any monotone formula computing f.

Theorem [KW90]. Rectangle Tree Size of $\mathrm{mKW}_{f}=\Theta(\mathrm{mF}(f))$
Let $\mathrm{mC}(f)$ denote the minimum size of any monotone circuit computing f.
Theorem [R95, S16, GGKS17]. Rectangle DAG Size of $\mathrm{mKW}_{f}=\Theta(\mathrm{mC}(f))$

- Rectangle DAG:
- Root is $X \times Y$
- Leaves are monochrome (consistent with one solution)
- If R has children $R_{1}, R_{2} \Rightarrow R \subseteq R_{1} \cup R_{2}$

Query Models and Communication Models

Bottom-up models (proofs, circuits)

are captured by
Top-down algorithms (decision trees, comm. protocols)
Search (F) and mKW(f)

- Capture the complexity of these processes
- Are canonical examples of their respective TFNP classes

Part 2

Relating Query to Communication

Lifting Schema

f is a boolean function related to $S(F) \circ g^{n}$

First, we need to discuss how to relate $S(F)$ for unsatisfiable F with communication search problems.

Lifting Schema

f is a boolean function related to $S(F) \circ g^{n}$

First, we need to discuss how to relate $S(F)$ for unsatisfiable F with communication search problems.

"Feasible Interpolation"

- Many interesting results from relating two worlds
- Here is the simplest way to turn a query problem into a communication problem.
- If $\mathcal{S} \subseteq\{0,1\}^{n} \times O$ is a query search problem, let $[n]=X \cup Y$ be variable partition
- Define $\mathcal{S}^{X, Y} \subseteq\{0,1\}^{X} \times\{0,1\}^{Y} \times O$ as a communication problem, so
- Alice gets $x \in\{0,1\}^{X}$, Bob gets $y \in\{0,1\}^{Y}$, solutions are $\mathcal{S}^{X, Y}(x, y)=\mathcal{S}(x y)$
- Translates circuit lower bounds to proof lower bounds
- Closely related to classical feasible interpolation results [K97, P97, BPR00, ...]
- Construction underlies Cutting Planes Ibs for random CNFs [FPPR 16, HP16]

From Proofs to Communication

$\operatorname{Search}(F) \subseteq\{0,1\}^{n} \times[m]$

$F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ unsatisfiable CNF

From Proofs to Communication

- Let $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ be an unsatisfiable CNF on variables z_{1}, \ldots, z_{n}.
- $S(F)$: Given $z \in\{0,1\}^{n}$, find $i \in[m]$ such that $C_{i}(z)=0$.
- For any partition $X \cup Y=[n], S_{X, Y}(F) \subseteq\{0,1\}^{X} \times\{0,1\}^{Y} \times[m]$:
- Given $x \in\{0,1\}^{X}, y \in\{0,1\}^{Y}$, find $i \in[m]$ such that $C_{i}(x y)=0$.
- Observation: Since C_{i} is a clause, the set

$$
\begin{aligned}
R_{i} & =\left\{(x, y) \in\{0,1\}^{X} \times\{0,1\}^{Y}: C_{i}(x y)=0\right\} \\
& =\left\{x \in\{0,1\}^{X}: C_{i}^{X}(x)=0\right\} \times\left\{y \in\{0,1\}^{Y}: C_{i}^{Y}(y)=0\right\}
\end{aligned}
$$

- Thus clauses of F yield a rectangle covering of $S_{X, Y}(F)$

mCSP-SAT / Unsatisfiability Certificate

- Every communication total search problem is equivalent to mKW_{f} for some partial monotone boolean function $f:\{0,1\}^{n} \rightarrow\{0,1, *\}$
- What is the boolean function corresponding to $S_{X, Y}(F)$?
- [FPPR 17, HP 17] Gave independent (essentially equivalent) answers.
- [FPPR 17] mCSPSAT := monotone generalization of SAT
- (mCSPSAT appears in many works on lifting [GP12, GPW14, O15,...])
- [HP 17] cert ${ }_{F}:=$ unsatisfiability certificate of F

Unsatisfiability Certificate [HP 17]

- $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ unsat. CNF, $X \cup Y=[n]$ partition of variables
- Let $C_{i}=C_{i}^{X} \vee C_{i}^{Y}$ (partition clauses according to X, Y)
- Define $\operatorname{cert}_{F}=\operatorname{cert}_{F}^{X, Y}:\{0,1\}^{m} \rightarrow\{0,1\}$ by

$$
\operatorname{cert}_{F}(z)= \begin{cases}1 & \bigwedge_{i: z_{i}=0} C_{i}^{X} \text { is satisfiable } \\ 0 & \bigwedge_{i: z_{i}=1} C_{i}^{Y} \text { is satisfiable } \\ * & \text { otherwise }\end{cases}
$$

Unsatisfiability Certificate [HP 17]

- $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ unsat. CNF, $X \cup Y=[n]$ partition of variables
- Let $C_{i}=C_{i}^{X} \vee C_{i}^{Y}$ (partition clauses according to X, Y)
- Define $\operatorname{cert}_{F}=\operatorname{cert}_{F}^{X, Y}:\{0,1\}^{m} \rightarrow\{0,1\}$ by

Unsatisfiability Certificate [HP 17]

- $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ unsat. CNF, $X \cup Y=[n]$ partition of variables
- Let $C_{i}=C_{i}^{X} \vee C_{i}^{Y}$ (partition clauses according to X, Y)
- Define $\operatorname{cert}_{F}=\operatorname{cert}_{F}^{X, Y}:\{0,1\}^{m} \rightarrow\{0,1\}$ by

Unsatisfiability Certificate [HP 17]

- $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ unsat. CNF, $X \cup Y=[n]$ partition of variables
- Let $C_{i}=C_{i}^{X} \vee C_{i}^{Y}$ (partition clauses according to X, Y)
- Define $\operatorname{cert}_{F}=\operatorname{cert}_{F}^{X, Y}:\{0,1\}^{m} \rightarrow\{0,1\}$ by

$$
\begin{gathered}
z_{1}=1 \\
\left(C_{1}^{X} \vee C_{1}^{Y}\right) \wedge\left(C_{2}^{X} \vee C_{2}^{Y}\right) \wedge\left(C_{3}^{X} \vee C_{3}^{Y}\right) \wedge\left(C_{4}^{X} \vee C_{4}^{Y}\right)
\end{gathered} \quad \operatorname{cert}_{F}(z)=\left\{\begin{array}{l}
1 \\
\bigwedge_{i: z_{i}=0} C_{i}^{X} \text { is satisfiable } \\
0
\end{array} \bigwedge_{i: z_{i}=1} C_{i}^{Y}\right. \text { is satisfiable }
$$

Unsatisfiability Certificate [HP 17]

- $F=C_{1} \wedge C_{2} \wedge \cdots \wedge C_{m}$ unsat. CNF, $X \cup Y=[n]$ partition of variables
- Let $C_{i}=C_{i}^{X} \vee C_{i}^{Y}$ (partition clauses according to X, Y)
- Define $\operatorname{cert}_{F}=\operatorname{cert}_{F}^{X, Y}:\{0,1\}^{m} \rightarrow\{0,1\}$ by

$$
\begin{aligned}
& \quad z_{1}=1 \quad z_{2}=0 \quad z_{3}=1 \quad z_{4}=0 \\
& \left(C_{1}^{X} \vee C_{1}^{Y}\right) \wedge\left(C_{2}^{X} \vee C_{2}^{Y}\right) \wedge\left(C_{3}^{X} \vee C_{3}^{Y}\right) \wedge\left(C_{4}^{X} \vee C_{4}^{Y}\right)
\end{aligned} \quad \operatorname{cert}_{F}(z)=\left\{\begin{array}{l}
1 \\
\bigwedge_{i: z_{i}=0} C_{i}^{X} \text { is satisfiable } \\
0
\end{array} \bigwedge_{i: z_{i}=1} C_{i}^{Y}\right. \text { is satisfiable }
$$

Feasible Interpolation

Theorem [HP17]. Let F be any unsatisfiable CNF, and let X, Y be any variable partition.

If there is a Resolution refutation of F of size s, then there is a monotone circuit

Theorem [HP17]. Let F be any unsatisfiable CNF, and let X, Y be any variable partition.
If there is a Resolution refutation of F of size s, then there is a monotone circuit computing $\operatorname{cert}_{F}=\operatorname{cert}_{F}^{X, Y}$ of size $O(s)$.

Proof. Given size-s Resolution refutation of F, give size- s Rectangle DAG for $\mathrm{mKW}_{\text {cert }_{F}}$

- Root rectangle is $\{0,1\}^{X} \times\{0,1\}^{Y}$
- Leaves are defining rectangles for $\mathrm{mKW}_{\text {cert }_{F}}$
- If D_{i} deduced from D_{j}, D_{k} by resolution, then $R_{i} \subseteq R_{j} \cup R_{k}$
- Equivalently, if $D_{i}(x, y)=0$ then either $D_{j}(x, y)=0$ or $D_{k}(x, y)=0$.

Monotone Feasible Interpolation

- [HP17] "Standard" feasible interpolation (in [K97] sense) can be deduced from this result.
- [FPPR17, HP17] Key idea enabling Cutting Planes lower bounds for random $\omega(1)$-CNFs.
- Using this idea, one can deduce monotone feasible interpolation results for many proof systems and related monotone circuit models. (Proof of F size $s \Rightarrow$ Monotone circuit for cert ${ }_{F}$ of size $S^{O(1)}$)
- Resolution \Rightarrow Monotone Circuits [HP17, prior result K97]
- Tree-Like Resolution \Rightarrow Monotone Formulas [Same as above]
- Cutting Planes \Rightarrow Real Monotone Circuits [HP17b, prior results K97, P97, BPR95]
- Nullstellensatz \Rightarrow Monotone Span Programs [Follows ideas of PR18, prior result PS96]
- Sherali-Adams \Rightarrow Weak MLP Gate/Linear Separation Complexity [FGGR21, prior H20]

Lifting Schema

Proof System

$$
F=C_{1} \wedge \cdots \wedge C_{m}
$$

F is an unsatisfiable CNF

Query Model

$S(F) \subseteq\{0,1\}^{n} \times \mathcal{O}$

Communication Model

$$
S(F) \circ g^{n}: X^{n} \times Y^{n} \rightarrow \mathcal{O}
$$

$g: X \times Y \rightarrow\{0,1\}$ is a "complex gadget"

Circuit Model

f is a boolean function related to $S(F) \circ g^{n}$

Lifting Theorems

- Query-to-communication lifting theorems give the other direction
- $\mathcal{S} \subseteq\{0,1\}^{n} \times O$ is a query search problem, $g: X \times Y \rightarrow\{0,1\}^{n}$ is a gadget
- Define $\mathcal{S} \circ g \subseteq X^{n} \times Y^{n} \times O$ by $(\mathcal{S} \circ g)(x, y)=\mathcal{S}\left(g^{n}(x, y)\right)$
- Alice gets $x \in X^{n}$, Bob gets $y \in Y^{n}$, evaluate $z=g^{n}(x, y)$ and solve $\mathcal{S}(z)$
- If g "complex" then Alice and Bob's best strategy is to simulate the query strategy

Theorem. [RM 99, GPW 14]
Let $\mathcal{S} \subseteq\{0,1\}^{n} \times O$ be a search problem, let $\operatorname{Ind}_{m}:[m] \times\{0,1\}^{m} \rightarrow\{0,1\}$ by
$\operatorname{Ind}_{m}(x, y)=y_{x}$. If $m=n^{O(1)}$ then

$$
\mathrm{FP}^{c c}\left(\mathcal{S} \circ \operatorname{Ind}_{m}\right)=\Theta\left(\mathrm{FP}^{d t}(\mathcal{S}) \cdot \log m\right)
$$

Lifting?

- By combining this together with the earlier reductions, we get the following theorem:

Theorem [GPW14]. Let F be an unsatisfiable CNF formula. There is a function g (Index) and a monotone boolean function $f_{F, g}$ such that

$$
\mathrm{mF}\left(f_{F, g}\right)=2^{\Omega\left(D_{\text {Res }}(F)(\log |g|)\right)}
$$

- mF denotes monotone formula size
- Monotone circuit for $\operatorname{cert}_{F_{\circ} g^{n}}$ of size $s \Longrightarrow$ Proof of F with degree $O(\log s / \log |g|)$
- Many (not all) proof systems have well-defined notions of degree (depth, width, polynomial degree, etc.)

Lower Bounds?

- Is the function that we get from lifting interesting at all?
- Surprisingly, yes!
- $f_{F, g}=\operatorname{cert}_{F_{\circ} g^{n}}^{X, Y}$ depends on the formula F and gadget $g: X \times Y \rightarrow\{0,1\}$
- Number of input variables: $N=O\left(|F||X|^{w(F)}\right)$
- Examples:
- $F=$ Ind $_{n}$ then $f_{F, g}$ is layered st-connectivity STCONN
- $F=P e b_{G}$ then $f_{F, g}$ is generation $G E N$
- Changing g modifies the instances of the function produced.

Proof Sketch

Theorem. [RM 99, GPW 14]

Let $\mathcal{S} \subseteq\{0,1\}^{n} \times O$ be a search problem, let $\operatorname{Ind}_{m}:[m] \times\{0,1\}^{m} \rightarrow\{0,1\}$ by
$\operatorname{Ind}_{m}(x, y)=y_{x}$. If $m=n^{O(1)}$ then

$$
\operatorname{FP}^{c c}\left(\mathcal{S} \circ \operatorname{Ind}_{m}\right)=\Theta\left(\mathrm{FP}^{d t}(\mathcal{S}) \cdot \log m\right)
$$

- Simulation Argument

- One direction (query implies communication) is easy.
- Starting from a communication protocol for $\mathcal{S} \circ$ Ind of complexity c, extract a query algorithm making $O(c / \log m)$ queries.
- To do this, we approximate an arbitrary rectangle R into "structured" rectangles which are "approximately" of the form $\rho g^{n-d}(x, y)$ for some restriction

Proof \Rightarrow Circuit Lifting

Proof Complexity Size	Proof Complexity Degree	Circuit Complexity Measure	Gadget	Citation
Tree-Like Resolution Size	Resolution Depth	Monotone Formula Size	Index, Low-Discrepancy	[Folklore, RM99, GPW14, CKFMP19]
Resolution Size	Resolution Width	Monotone Circuit Size	Index	[GGKS17]
Nullstellensatz Monomial Size	Nullstellensatz Degree	Monotone Span Program Size	Any High Rank	[PR18, dRMNPR20]
Sherali-Adams Monomial Size	Sherali-Adams Degree	Linear Extension Complexity	Index, Inner Product**	[GLMW14, CLRS14, KMR17] (Incomplete)
Sums-of-Squares Monomial Size	SOS Degree	Semidefinite Extension Complexity	Index*	[LRS15] [Incomplete)

Part 3

TFNP

and

Future Directions

TFNP Classes

Query TFNP Classes

Communication TFNP

Communication TFNP

Communication TFNP

Query TFNP

Communication TFNP

TFNP Program in Proof and Circuit Complexity

- All in all, this suggests a research program!
- Use TFNP classes to characterize circuit and proof classes.
- Relate these classes by feasible interpolation and lifting theorems
- Use intuition from one setting to prove results in the other setting.
- Many TFNP classes are not characterized in either setting.
- Intersection theorems are particularly interesting!
- Reversible Resolution = Resolution \cap Sherali-Adams* [HGMPRST 22]

Other "Shapes"

- The TFNP ${ }^{c c}$ classes capture communication reductions to proof systems, but this does not capture all proof systems.
- Prominent Example: Cutting Planes
- Pudlak [Pud97], building on Krajicek [Kra97] proved a feasible interpolation theorem for Cutting Planes using real monotone circuits, used this to prove the first exponential size lower bounds
- By lifting to real communication protocols, we can prove cutting planes lower bounds [Kra98, BEGJ00, dRNV16, HP18, GGKS20]
- Lifting theorem uses triangles instead of rectangles

Open Problems

- What TFNP problem captures Sums-of-Squares?
- Characterize the communication variants of other classical classes.
- What about Cutting Planes, Lovasz-Shrijver? (These are somehow different.)
- Res(CP)? Or what about Res(Lin)?
- What about NOF lifting theorems?
- Characterize more circuit and proof classes using TFNP classes.
- Can this approach (communication and query complexity) say anything novel about very powerful proof systems?
- What about non-monotone complexity? Can anything be said?

Query TFNP

Communication TFNP

Thanks for Listening!

