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Lifting Theorems in Complexity Theory

 Many new results in proof and circuit complexity using lifting theorems

[GP12, GPW14, GLMWZ15, CLRS16, LRS16, RPRC16, PR17, KMR17, PR18, dRNV 16, GGKS18, GKRS18, dRMNPR18, dRMNPRV20, FGGR2022, LMMPZ22]

 These results rely on a fairly sophisticated set of equivalences and formal
relationships between different computational models:

* Proof Systems, Query Algorithms, Communication Protocols, Circuit Models

* Results generalize and extend classic lower bound technigues (such as monotone
feasible interpolation)

* Place the complexity of total search problems at center stage!



Lifting Theorem: Basic Ildea

Communication Model

Query Model

Protocol simulates Query

For “complex” g

this is best strategy!
£:10.1)" = (0.1} = [ DESE Strdiedy Fogh: X'X Y" — {0,1)

g:.: XXY— {0,1}isa“complex gadget”

Complexity Preserving Simulations!



What This Talk Is About

e Query-to-communication lifting theorems for search problems S C .7 X 0

* Survey some basic ideas from lifting theorems for tree-like and dag-like models,
motivate "why” the connection should hold.

 Connections to other areas, like TFNP.

 Based on recent SIGACT Complexity Column;

SIGACT News Complexity Theory Column, March 2022
Proofs, Circuits, and Communication

S.F. de Rezende! M. Goos? R. Robere?

2022



Part 1

Total Search Problems

and

Concrete Complexity



Lifting Schema

All equivalences are “complexity preserving”

Proof System Query Model Communication Model

Circuit Model

Equivalence Equivalence

Lifting

F=C/A-NC, S(F) € {0,1}"x O SE) e g"t XIX YT = 0 fis a boolean
g:XXY— {0,1}is a“complex gadget” function related to
F is an unsatisfiable CNF S(F) o g"

e.g. Tree-like Resolution e.g. Decision Trees e.g. Communication Protocols e.g. Monotone Boolean Formulas
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Total Search Problems

e« S C X O is atotal search problem if for all x € [ there is an 0 € O such that
(x,0) € 9.

e Foranyx € lletS(x) :={o€ O : (x,0) € S}
o Study total search problems with verifiable solutions in various algorithmic models.

» Classical TFNP
Verify (x, 0) € S using polynomial time Turing Machines

. Black-Box TFNP%

Verify (x, 0) € S using log?V

n-depth decision trees

« Communication TFNP‘¢

Verify (x, 0) € S using log?)

n-depth communication protocols



Black-Box TFNP

« & =13, C10,1}"XO0,},n sequence of total search problems
» O, finite, reasonably bounded in size (e.g. | O, | = nO(l)).

. & € TENPY if for every n, 0 € O, there is a decision tree T, of depth log”! n
that, given query access to x € {0,1}" verifies if (x,0) € §,

- Canonical Example: Unsatisfiable log”!) n-width CNF F = C; A--AC,, define

S(F) C {0,1}" % [m]

Given x € {0,1}", find i € [m] such that C(x) = 0.



False Clause Search Problem
S(F) C {0,1}" x [m]

Given x € {0,1}", find i € [m] such that C(x) = 0.

 IfS C {0,1}" X O, then define (written as CNF)

F¢(x) = /\ =7 (x) = “x has no solution”

0€0,
1 is low-depth decision tree so ¢ is bounded-width CNF
» Not hard to see that S(F) is essentially the same as S(F)

. Thus can redefine TENP¥ = LW(F) }.en & F, is unsat and bounded width |



False Clause Search and Proof Complexity

Proof System Query Model

Equivalence

F=C/ A ANC, S(F) C{0,1}"x O

F is an unsatisfiable CNF

« Query complexity of S(F) is very closely related to the complexity of refuting F
* |Let’s quickly review one example: decision trees and tree-like Resolution

 Can be generalized to rectangle dags and Resolution



Decision Trees for S(F)

e Size: Number of nodes
S(F) C {0,1}" % [m]

 Depth: Length of longest path Given x € {0,1}", find i € [m] such that Ci(x) = 0.

e Given boolean assignment,
follow unigue path consistent
with that assignment, output violated
clause.

 Decision tree for S(F) is essentially the
DPLL method for solving SAT. Xy X VRL XV Ry o Ky

F=X1/\()_CIVX2)/\()72\/X3)/\)_C3



Resolution Proofs

. N
* Lines are clauses. /\ R
» New lines deduced using Xy KA
e ResolutionRule:CVvx,DVxECVD / \ / .,\ _—

« Weakening: C- CvVv D / "\

 Length: Number of lines. Ynﬁ’ Xz, X
* Depth: Length of longest path. / '\
* Proof is tree-like if each clause is X X,V Xq N Xg

used at most once.

* |nput clauses can be copied any number Example. F = x; Ax, A (X} VX, V) A (X5 V x,) A (B3 V Xy)

of times Length: 10, Depth: 4



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for S(F)

PNy YN
AN PN

X]\IXJL X \/7(3 X‘ ’;(—]\/)(O,L 7}_\/)(3 ;{3

F=X1/\()_CIVX2)/\()_CZ\/X3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for S(F)

A Variable Resolved = Variable Queried
/\M (%a)
/C \ /[ S\ :

X]\/X;L X \/X'b x‘ ’;(—]\/)(9\ -)_(-;L\/)(3 ;Z}

F=X1/\()_CIV)C2)/\()TZVX3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for S(F)

'L Partial assignment falsifies
‘ corresponding clause
O ) &

X]\/X;L X \/X'b x‘ ’;(—]\/)(9\ -)_(-;L\/)(3 _723

F=X1/\()_CIV)C2)/\()TZVX3)/\)_C3



Tree-Like Resolution = Decision Trees

Tree-Like Resolution of F Decision Tree for S(F)

’L Partial assignment falsifies (weakening)
of corresponding clause
O ; ¢
L %
Xa Ka_

s

F=X1/\()_61Vx2)/\()_CZVX3)/\)_C3



Tree-Like Resolution = Decision Trees

Theorem. Let F' be an unsatisfiable CNF formula. Then

Size O(s), depth O(d) Tree-like Res. refutation of F
if and only if

Size 0O(s), depth O(d) Decision Tree for S(F')

Correspondence is stronger: essentially the same object!



Lifting Schema

All equivalences are “complexity preserving”

Circuit Model

Proof System Query Model Communication Model

Equivalence Equivalence

Lifting

F=C/A-NC, S(F) € {0,1}"x O SE) e g": XIX YT =0 fis a boolean
g:XXY— {0,1}isa“complex gadget” function related to
F is an unsatisfiable CNF S(F) o g"



Communication TFNP

e & =15, C X"XY")XO,},n sequence of communication total search problems
. X, Y, O, finite, O, reasonably bounded in size (e.g. | O, | = n%WD).

« & € TFENP® if for every n there is a monochromatic rectangle cover &% of S, of at most
quasipolynomial size (equiv. polylogarithmic non-deterministic protocols)

This means U R=X"XY"and VR € #£do € O,s.t. oisvalid for all (x,y) € R
REXA

» Canonical Example: Given f : {0,1}" — {0,1,*}, define the KW-Game [KW90]:

KW(f) € f1(1) x f71(0) x [n]
Given x € f~1(1),y € £ X0), find i € [n] such that x; # .



Karchmer-Wigderson Games
» Let f:{0,1}" — {0,1,*}
» (Total) f monotone if x < y (coordinate-wise) implies f(x) < f(y)

o (Partial) f monotone if it has a total monotone extension

 f has an associated total search problem [KW 90]

KW(f) (1) xf7(0) X [n]
Givenx € f~1(1),y € £ 10), find i € [n] such that X F Y

Circuit Complexity of f = Communication Complexity of KW(f)



Karchmer-Wigderson Games
» Let f:{0,1}" — {0,1,*}
» (Total) f monotone if x < y (coordinate-wise) implies f(x) < f(y)

o (Partial) f monotone if it has a total monotone extension

» Monotone f has an associated total search problem [KW 90]

mKW(f) € f~'(1) x f~'(0) x [n]
Givenx € f~1(1),y € £ 10), find i € [n] such that X; >y

Mon. Circuit Complexity of f = Mon. Communication Complexity of KW(f)



Monotone KW-Games are Canonical

mKW(f) € f~'(1) x f7(0) x [n]
Givenx € f~1(1),y € f~1(0), find i € [n] such that X; >V,

e Every & € TFENP® is a mKW game in disguise!

« If§ C UX VX O withrect. cover £ = {U; X V;} _, thenletf: {0,1}" — {0,1}:
» flx)=1ifthereisaue€ X"st.forallie|r], x, =1 < ue U,
» flx) =0ifthereisave Y'st. forallie|r], x, =0 < veyV

e f(x) =™ otherwise

» Well defined since if x satisfies both conditions then (u, v) is not covered by A



Monotone KW-Games are Canonical

mKW(f) € f~'(1) x f7(0) x [n]
Givenx € f~1(1),y € f~1(0), find i € [n] such that X; >V,

e Every & € TFENP® is a mKW game in disguise!

« If§ C UX VX O withrect. cover £ = {U; X V;} _, thenletf: {0,1}" — {0,1}:
» flx)=1ifthereisaue€ X"st.forallie|r], x, =1 < ue U,
» flx) =0ifthereisave Y'st. forallie|r], x, =0 < veyV
e f(x) =™ otherwise

 With this definition, mMKW( f) is equivalent to S!



KW Games and Circuit Complexity

Circuit Model

Communication Model

Equivalence

S(F)eg" 1 XEXY' > 6 fis a boolean
g: XXY— {0,1}isa“complex gadget” function related to
S(F) e g"

 Karchmer and Wigderson famously showed that the deterministic communication
complexity of (m)KW(f) captures (monotone) circuit depth [KW 90]

« Razborov later showed that PLS captures (monotone) circuit size! [Razb 95]



Formulas = Communication

Boolean Formula for f Protocol for KW(f)

i I
O 1
O L O 1
X Xa, Ko, Ky 1 9

2 &

f= (xl /\Xz)V.X3 VX4



Formulas = Communication

Boolean Formula for f Protocol for KW(f)

X X 4 4

l -} 3 Y 1 9
1 1 0 0 E A
0 1 0 0

f= (xl /\Xz)V.X3 VX4



Formulas = Communication

Boolean Formula for f Protocol for KW(f)

f= (xl /\Xz)V.X3 VX4

=



Formulas = Communication

Boolean Formula for f Protocol for KW(f)

. -

I:h V gates L;h 0 A
ar O 1

O L O 1

f= (xl /\Xz)V.X3 VX4



Formulas = Communication

Boolean Formula for f Protocol for KW(f)

SN
= n

Reverse Direction Also Works!

f= (xl /\Xz)V.X3 VX4



Formulas = Communication

Theorem.
Letf: {0,1}" — {0,1,*} be a partial boolean function. Then

Size O(s), depth O(d) Boolean formula for f
if and only if

Size O(s), depth O(d) communication protocol for KW( f)

Correspondence is stronger: essentially the same object!



Formulas = Communication

Theorem.
Letf: {0,1}" — {0,1,*} be a partial monotone boolean function. Then

Size O(s), depth O(d) monotone Boolean formula for f
If and only if

Size O(s), depth O(d) communication protocol for mKW(f)

Correspondence is stronger: essentially the same object!



Alternate Perspective: Rectangle DAGs

e LetS C X" X Y" X O be a total search problem

» A rectangle DAG for S is a directed acyclic graph
G = (V, E) with a unique root node such that o ~_

» Every vertex is a rectangle in X" X Y" —

e Rootis X" X Y" / \

* | eaves are monochrome (consistent with one
solution)

o If R has children R{,R, > RC R UR,




Rectangle DAGs vs KW-Games

Let mF(f) denote the minimum size of any monotone formula computing f.

Theorem [KW90]. Rectangle Tree Size of mMKW,= ©@(mF(f))

Let mC(f) denote the minimum size of any monotone circuit computing 7.

Theorem [R95, S16, GGKS17]. Rectangle DAG Size of mMKW;= O(mC(f))

 Rectangle DAG:

e RootisX XY

* | eaves are monochrome (consistent with one solution)

e If R has children R;,R, > R C R, UR,



Query Models and Communication Models

Bottom-up models (proofs, circuits)
are captured by

Top-down algorithms (decision trees, comm. protocols)

Search(F) and mKW(f)

 Capture the complexity of these processes

» Are canonical examples of their respective TFNP classes



Part 2

Relating Query to Communication



Lifting Schema

Circuit Model

Proof System Query Model Communication Model

Equivalence Equivalence

Lifting

F=C/A-NC, S(F) C {0,1}"x O SE) e g": XIX YT =0 fis a boolean
g:XXY— {0,1}isa“complex gadget” function related to
F is an unsatisfiable CNF S(F) o g"

First, we need to discuss how to relate S(F') for unsatisfiable F* with communication search problems.



Lifting Schema

Circuit Model

Proof System Query Model Communication Model

Equivalence Equivalence

F=C/A-NC, S(F) C {0,1}"x O SE) e g": XIX YT =0 fis a boolean
g:XXY— {0,1}isa“complex gadget” function related to
F is an unsatisfiable CNF S(F) o g"

First, we need to discuss how to relate S(F) for unsatisfiable F’ with communication search problems.



“Feasible Interpolation”

Many interesting results from relating two worlds

Here Is the simplest way to turn a query problem into a communication problem.

If & C {0,1}" X O is a query search problem, let [n] = X U Y be variable partition
Define %1 C {0,1}* x {0,1}* X O as a communication problem, so

. Alice gets x € {0,1}%, Bob gets y € {0,1}", solutions are $*¥(x,y) = S(xy)
Translates circuit lower bounds to proof lower bounds

* Closely related to classical feasible interpolation results [K97, P97, BPROO,...]
* Construction underlies Cutting Planes lbs for random CNFs [FPPR 16, HP16]



From Proofs to Communication

Search(F) C {0,1}" x [m] F=C/ACA---NC, Searchy y(F) C {0,1}* x {0,1}" X [m]
unsatisfiable CNF
] (0,1}7
J Cl(z) — O Cl C4
partition
C,(2) =0 In] =XUY
{0,1}" j - (0,17

] C3(Z) = ()

\ J & Cs

G2) =0 (011X x {0,1}Y




From Proofs to Communication

e Let ' =C; AC, A --- A C,, be an unsatisfiable CNF on variables z, ..., Z,.
« S(F):Givenz € {0,1}", findi € [m] such that C(z) = 0.
- Forany partition X U Y = [n], 5y ,(F) C {0,114 % {0,1}" x [m]:

. Givenx € {0,1}%, y € {0,1}", find i € [m] such that C,(xy) = 0.

« Observation: Since (; is a clause, the set Combinatorial

Rectangle!

R = {(x,y) € (0,114 x {0,1}" : C.(xy) =0} /
= {x e {0,1}*: Cl.X(x) =0} x{ye {0,1}": CiY(y) =0}

» Thus clauses of F yield a rectangle covering of Sy y(F)



MCSP-SAT / Unsatisfiability Certificate

- Every communication total search problem is equivalent to mKW,for
some partial monotone boolean function f: {0,1}" — {0,1,*}

» What is the boolean function corresponding to Sy ,(F)?
 [FPPR 17, HP 17] Gave independent (essentially equivalent) answers.
» [FPPR 17] mCSPSAT := monotone generalization of SAT
« IMCSPSAT appears in many works on lifting [GP12, GPW14, O15,...])

« [HP 17] certy := unsatisfiability certificate of I



Unsatisfiability Certificate [HP 17]

« F=C,AC, A -+ AC, unsat. CNF, X U Y = [n] partition of variables

e LetC; = Cl.X Vv CiY (partition clauses according to X, Y')

. Define certy = certy>” : {0,1}" — {0,1} by

{ 1 /\ CZ.X is satisfiable

l: ZiZO

0 /\ CiY is satisfiable

i . Zi=1
% otherwise

certp(z) =



Unsatisfiability Certificate [HP 17]

« F=C,AC, A -+ AC, unsat. CNF, X U Y = [n] partition of variables
e LetC; = Cl.X Vv CiY (partition clauses according to X, Y')
. Define certy = certy>” : {0,1}" — {0,1} by

<1 %) <3 e 1 /\ CZX Is satisfiable

l: Zl-=0

0 /\ Cl.Y is satisfiable

certp(z) =
i . Zi=1
* otherwise

(CYVCHACYVCHA(CTVCI)ACTVCY)



Unsatisfiability Certificate [HP 17]

« F=C,AC, A -+ AC, unsat. CNF, X U Y = [n] partition of variables

e LetC; = Cl.X Vv CiY (partition clauses according to X, Y')
. Define certy = certy>” : {0,1}" — {0,1} by

71 =1 7, =0 =1 24=0 1 /\ CZ-X is satisfiable

l: Zl-=0

(CYVCHACYV CHA(CTV ) A(CEVCY)

\ / certp(z) = l 0 /\ Cl.Y is satisfiable
1:z=1

Satisfiable? |
a otherwise



Unsatisfiability Certificate [HP 17]

« F=C,AC, A -+ AC, unsat. CNF, X U Y = [n] partition of variables

e LetC; = Cl.X Vv CiY (partition clauses according to X, Y')
. Define certy = certy>” : {0,1}" — {0,1} by

71 =1 7, =0 =1 24=0 1 /\ CZ-X is satisfiable

l: Zl-=0

(CYVCACYVCHA(CTV ) A(CTVCY)

\ / certp(z) = l 0 /\ Cl.Y IS satisfiable
1:z=1

Satisfiable? |
K otherwise



Unsatisfiability Certificate [HP 17]

e F=C,ACy, A -+ AC, unsat. CNF, X U Y = [n] partition of variables
e LetC; = CZ.X Vv Cl-Y (partition clauses according to X, Y')
. Define certy = certy>” : {0,1}" — {0,1} by

71 =1 7, =0 =1 24=0 1 /\ Cl-X is satisfiable

l: Zl-=0

(CYVCH NGV CHA(CT V) A(CyVCY)
0 /\ Cl.Y is satisfiable

certp(z) =
i:Zizl
If both satisfiable then the whole formula is satisfiable! |
* otherwise



Feasible Interpolation

Theorem [HP17]. Let F be any unsatisfiable CNF, and let X, Y be any variable
partition.

If there is a Resolution refutation of F of size s, then there is a monotone circuit
computing certy = Cert)lg’y of size O(s).



Theorem [HP17]. Let [ be any unsatisfiable CNF, and let X, ¥ be any variable partition.

If there is a Resolution refutation of F’ of size s, then there is a monotone circuit computing
certy = certy” of size O(s).

Proof. Given size-s Resolution refutation of F, give size-s Rectangle DAG for mKW gt

1 1
7N N
D; D, Dfv DY DfvD/ N
N SN » N SN rectangle
C, D, C. partition X, Y CXvel pXvpY cXve! Ry =D(xy) SN SN
> >
/N RN Pt
D, Cs DXvD! cfvcy
/N AN o~
G & cXvcl cXvce

. Root rectangle is {0,1}* x {0,1}F
« Leaves are defining rectangles for mKW g,

- If D; deduced from D, D, by resolution, then K; € R; U R;

- Equivalently, if D,(x,y) = O then either D{(x,y) = 0 or D(x,y) = 0.



Monotone Feasible Interpolation

 [HP17] “Standard” feasible interpolation (in [K97] sense) can be deduced from this result.

« [FPPR17, HP17] Key idea enabling Cutting Planes lower bounds for random w(1)-CNFs.

* Using this idea, one can deduce monotone feasible interpolation results for many proof systems
and related monotone circuit models. (Proof of I size s = Monotone circuit for certy of size SO(I))

Resolution = Monotone Circuits [HP17, prior result K97]

Tree-Like Resolution = Monotone Formulas [Same as above]

Cutting Planes = Real Monotone Circuits [HP17b, prior results K97, P97, BPR95]
Nullstellensatz = Monotone Span Programs [Follows ideas of PR18, prior result PS96]

Sherali-Adams = Weak MLP Gate/Linear Separation Complexity [FGGR21, prior H20]



Lifting Schema

Circuit Model

Proof System Query Model Communication Model

Equivalence

Lifting

Equivalence

F=C A NG, S(F) C {0,1}"x O S(E)egh: XX~ 0 fis aboolean
g:XXY— {0,1}isa“complex gadget” function related to
F is an unsatisfiable CNF S(F) o g"



Lifting Theorems

* Query-to-communication lifting theorems give the other direction
e & C{0,1}*X O isaquerysearch problem, g : XX Y — {0,1}"is a gadget
e DefineSeg CX"XY'XOby(Sog)x,y) =8(g"(x,y))

 Alice gets x € X", Bob gets y € Y", evaluate z = g"(x, y) and solve &'(2)

o |f g “complex” then Alice and Bob’s best strategy is to simulate the query strategy

Theorem. [RM 99, GPW 14]
Let & C {0,1}" X O be a search problem, let Ind,,, : [m] X {0,1}" — {0,1} by
Ind,(x,y) =y.lfm= n%W then

FP“(S o Ind,,) = O(FPY(S) - log m)



Lifting?
By combining this together with the earlier reductions, we get the following theorem:

Theorem [GPW14]. Let I be an unsatisfiable CNF formula. There is a function g
(Index) and a monotone boolean function fF,g such that

mF(fr,) = ) Q(Dres(F)(log|gl))

e mF denotes monotone formula size

» Monotone circuit for certg,,» of size s = Proof of F with degree O(log s/log| g|)

 Many (not all) proof systems have well-defined notions of degree (depth, width,
polynomial degree, etc.)



Lower Bounds?

 |s the function that we get from lifting interesting at all?

o Surprisingly, yes!

o fF,g — cert;{;; depends on the formula Fand gadget g : X X Y — {0,1}

» Number of input variables: N = O(| F| \X\W(F))

« Examples:

« F'= Ind, then fF,g is layered st-connectivity STCONN
» F'= Pebg then fr , is generation GEN

» Changing g modifies the instances of the function produced.



Proof Sketch

Theorem. [RM 99, GPW 14]
Let & C {0,1}" X O be a search problem, let Ind,, : [m] X {0,1}" — {0,1} by
Ind,(x,y) =y.Ilfm= n°W then

FP(S o Ind,,) = O(FPY(S) - log m)

 Simulation Argument
* One direction (query implies communication) is easy.

» Starting from a communication protocol for & o Ind of complexity ¢, extract a query
algorithm making O(c/log m) queries.

« To do this, we approximate an arbitrary rectangle R into “structured” rectangles
which are “approximately” of the form pg”_d(x, y) for some restriction



Proof = Circuit Lifting

Proof Complexity Size

Tree-Like
Resolution Size

Resolution Size

Nullstellensatz
Monomial Size

Sherali-Adams
Monomial Size

Sums-of-Squares
Monomial Size

Proof Complexity
Degree

Resolution Depth

Resolution Width

Nullstellensatz Degree

Sherali-Adams Degree

SOS Degree

Circuit Complexity
Measure

Monotone Formula Size

Monotone Circuit Size

Monotone Span
Program Size

Linear Extension
Complexity

Semidefinite Extension
Complexity

Gadget

Index,
Low-Discrepancy

Index

Any High Rank

Index, Inner Product*

Index™

Citation

[Folklore, RM99,
GPW14, CKFMP19]

[GGKS17]

[PR18, dRMNPR20]

[GLMW14, CLRS14,
KMR17]
(Incomplete)

[LRS15]
(Incomplete)



and

Future Directions



TFNP Classes

PLS n”PPA[;S\ /

|
PLS N PPAD

|

FP



Query TFNP Classes

Resolution [BKT 14]

Low-Coeff. Sherali-Adams
[HGMPRST 22]

* PPADSY
Reversible Resolution / \
= Ma[xlgesw I;esolijtionﬂ > SOPLdt PPA
HGMPRST 22 /v

TENP*
| FINE

PLSY N PPADS””

EOPL%

Ddt

[, Nullstellensatz [BCEIP 98, GKRS 18]

Low-Coeff. Z-Nullstellensatz
IGKRS 18, HGMPRST 22]

_

Reversible Resolution w/Terminals

1 4
PLSY n PPAD%

|

v [HGMPRST 22]

FPdt 4 ¥ Tree Resolution [Folklore]



Communication TFNP
JLENG

RN

PLS PPPe PPA
2 T 2

PPADS

TN

SOPL“ PPAD™

PLS““ n PPADS‘¢

EOPL"

|
PLS“ n PPAD*

|

FP™




Communication TFNP
JLENG

Boolean Circuits I, Span Programs [GKRS 18]
[R95, K97, S 17] /

PLS PPPe PPA
2 T $

PPADS

TN

SOPL“ PPAD™

PLS““ n PPADS‘¢

EOPL"

|
PLS“ n PPAD*

|
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TFNP Program in Proof and Circuit Complexity

* Allin all, this suggests a research program!

« Use TFNP classes to characterize circuit and proof classes.

* Relate these classes by feasible interpolation and lifting theorems

* Use intuition from one setting to prove results in the other setting.

 Many TFNP classes are not characterized in either setting.

* |Intersection theorems are particularly interesting!

* Reversible Resolution = Resolution N Sherali-Adams* [HGMPRST 22]



Other “Shapes”

« The TFNP®“ classes capture communication reductions to proof systems, but this
does not capture all proof systems.

 Prominent Example: Cutting Planes

 Pudlak [Pud97], building on Krajicek [Kra97] proved a feasible interpolation

theorem for Cutting Planes using real monotone circuits, used this to prove the
first exponential size lower bounds

* By lifting to real communication protocols, we can prove cutting planes lower
bounds [Kra98, BEGJ0O, dRNV16, HP18, GGKS20]

» Lifting theorem uses triangles instead of rectangles



Open Problems

« What TFNP problem captures Sums-of-Squares?

e Characterize the communication variants of other classical classes.

 \What about Cutting Planes, Lovasz-Shrijver? (These are somehow different.)

» Res(CP)? Or what about Res(Lin)?
 What about NOF lifting theorems??

» Characterize more circuit and proof classes using [FNP classes.

* (Can this approach (communication and query complexity) say anything novel
about very powerful proof systems?

 What about non-monotone complexity? Can anything be said?
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Thanks for Listening!



