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Lower Bounds and Meta-mathematics

• Lower bounds (in circuit complexity, algebraic complexity, proof 
complexity etc.) are often very hard to prove

• In this best of all possible worlds, we might not have lower bounds 
yet, but at least we have barriers…

• Meta-mathematics of lower bounds: studies logical difficulty of 
proving lower bounds

• Reasons for doing meta-mathematics
• Guides us away from lower bound techniques that are inherently limited
• Can itself be a source of lower bound ideas



Lower Bounds in Circuit Complexity

• Are there explicit functions that require super-polynomial Boolean 
circuits?

• Lots of progress in the 80s on restricted circuit models: AC0, AC0[p], 
monotone circuits

• Frontier hasn’t expanded much since then
• Frontier problems

• Lower bounds for ACC0 (constant-depth circuits with modular gates of 
arbitrary modulus)

• Lower bounds for depth-2 TC0 

• Various meta-mathematical approaches: relativization [BGS75], 
algebrization [AW09], natural proofs [RR97]



Natural Proofs

• Given a complexity class D and a circuit class C, a D-natural proof 
against C is a property Q of Boolean functions (represented by their 
truth tables of size N) such that:

• Constructivity: Q in D
• Usefulness: Q(F) = 1  =>  F not in C
• Density:  At least a 1/NO(1) fraction of Boolean functions F satisfy Q
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Natural Proofs

• Given a complexity class D and a circuit class C, a D-natural proof 
against C is a property Q of Boolean functions (represented by their 
truth tables of size N) such that:

• Constructivity: Q in D
• Usefulness: Q(F) = 1  =>  F not in C
• Density:  At least a 1/NO(1) fraction of Boolean functions F satisfy Q

• Razborov and Rudich observed that standard circuit lower bound 
proofs against restricted circuit classes yield P-natural proofs against C

• Main theorem [RR97]: If exponentially hard one-way functions exist, 
there are no P-natural proofs against SIZE(poly)



Natural Proofs: Proof of Main Theorem
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Lemma [GGM86]: If exponentially hard one-way functions exist, then there is 
pseudorandom function family in SIZE(poly) against SIZE(2O(n))

Q distinguishes random from pseudorandom, 
and is poly-time computable. Contradiction!
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Natural Proofs

• A lesson from natural proofs: traditional “slice and measure” 
techniques are unlikely to be able to prove strong lower bounds

• An interesting feature of [RR97]: the difficulty of showing circuit lower 
bounds follows from a circuit lower bounds assumption



Meta-Complexity

• Meta-complexity studies the computational complexity of problems that 
are themselves about complexity

• Minimum Circuit Size Problem (MCSP)
• Input: A Boolean function F on n bits, given by its truth table of size N=2n. Also a 

parameter s <= N
• Output: Yes iff F has a Boolean circuit of size at most s 

• Time-Bounded Kolmogorov Complexity Problem (Kt): here t is some fixed 
polynomial time bound

• Input: A string X of length N and a parameter s <= N
• Output: Yes iff there is a program p of size at most s such that U(p, ε) outputs X in at 

most t(N) steps
• MCSP[s] denotes the version where s is a fixed function of N



Solving MCSP on Average

• A natural distribution over inputs to MCSP[s] is the uniform 
distribution over N-bit strings

• We say MCSP[s] is zero-error easy on average if there is an efficient 
algorithm that

• Always outputs 0, 1 or ‘?’
• Never outputs the wrong answer on any input
• Outputs the correct answer for at least a 1/poly(N) fraction of inputs

• Proposition: P-Natural proofs useful against SIZE(s) exists iff MCSP[s]
is zero-error easy on average



Perspective: Chaitin’s Theorem

• Theorem [C74]: For any sound formal system F, there is a constant c such 
that F cannot prove any statement of the form “K(x) > c”

• Proof sketch: If there are large enough c for which we can show “K(x) > c” 
in F, then we can find the first such x for which such a proof exists using a 
program of size log(c) + O(1). Contradiction.

• Chaitin’s theorem states that formal systems of unbounded computational 
power cannot prove non-trivial lower bounds on time-unbounded
Kolmogorov complexity

• When studying meta-mathematics of lower bounds, we are interested in 
whether resource-bounded formal systems can prove non-trivial lower 
bounds on resource-bounded versions of Kolmogorov complexity
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Beyond Natural Proofs

• Natural proofs have been enormously influential in complexity theory
• Extremely useful heuristically in evaluating the power of a lower bound 

technique
• Are key to understanding connections between learning, pseudorandomness

and meta-mathematics of lower bounds

• But the concept has some issues
• Definition somewhat ad hoc (dictated by the cryptographic hardness result 

that can be shown)
• Natural proofs aren’t really proofs in a formal mathematical sense
• This meta-mathematical approach doesn’t directly model the hard function 

for which the lower bound is shown



Provability of Circuit Lower Bounds

• A related but more formal approach: study the difficulty of proving “F 
is a hard function” in various logical theories/proof systems

• This approach was taken by Razborov [R95], who formalized this 
statement in the context of bounded arithmetic and propositional 
proof complexity, and showed that certain weak propositional proof 
systems (comparable in power to Resolution) cannot prove such a 
statement for any function F

• Further conjectures along these lines in [R97], [ABRW02], [K04], [R15] 



Formalization: Circuit Lower Bound 
Tautologies

• Let F be a Boolean function on n variables given by its truth table, and 
s be a size bound

• tt(F,s) is a propositional tautology stating that for all circuits C of size 
s, C does not compute F

• This can be expressed as a DNF of size O(2n poly(s)), which is the disjunction 
of 2n DNFs φx, one for each x ∈ {0,1}n, where φx expresses C(x) ≠ F(x)

• Propositional variables encode the circuit C



Propositional Proof Complexity

• Studies the power of propositional proof systems (pps) to prove 
propositional tautologies (TAUT)

• A pps (resp. non-uniform pps) R is a poly-time (resp. poly-size) 
computable binary relation s.t.

• ∃ y  R(φ,y)  iff φ ∈ TAUT

• An R-proof of a tautology φ is a string y such that R(φ,y) holds. The R-
proofsize of φ is the smallest size of an R-proof of φ

• We seek to understand, for various ppses R and natural families of 
tautologies {φn}, how R-proofsize(φn) grows with |φn|



Are Circuit Lower Bound Tautologies Hard?

• Question: Given a pps Q, for which Boolean functions F and size 
bounds s does tt(F,s) have short Q-proofs?

• [R95a] implies that essentially all known explicit circuit lower bounds 
can be shown in Extended Frege, and often in Frege or weaker 
systems

• An even more significant barrier than the Natural Proofs barrier 
would be if EF could not show any non-trivial lower bounds for 
general circuits

• We seem far from proving any interesting EF lower bounds, but 
perhaps we could get conditional results for EF as well as 
unconditional results for weaker Q (where we have lower bounds)?



Conjecture X

• Conjecture: For every Boolean function F on n variables, tt(F, nω(1)) 
does not have EF-proofs of polynomial size

• I do not give a reference because while Razborov has mentioned this 
conjecture in talks, it does not seem to have appeared in published 
work

• Also, Krajicek has posed closely related conjectures in [K01,K01a]
• Conjecture X for Q: For every Boolean function F on n variables, tt(F, 

nω(1)) does not have Q-proofs of polynomial size



Pseudo-Random Generators for Propositional 
Proof Systems

• [ABRW02] define and study the notion of a pseudo-random generator 
(PRG) for a pps Q

• A mapping G from n bits to m bits, where m > n, is called a PRG for Q if the 
propositional formula encoding G(x) ≠ y does not have poly-size Q-proofs for 
any x of length n and y of length m

• Conjecture X for Q holds if the truth-table generator mapping a circuit 
of size nω(1) on n variables to the corresponding truth table of size 2n is 
a PRG for Q

• Indeed, it suffices to construct a PRG for Q that is succinctly computable from 
its n-bit seed



Relationship to Razborov’s Conjectures 

• Razborov [R15] states 2 conjectures – Conjecture 1 and Conjecture 2 
– that are related to what we consider

• Conjecture 1 states that the Nisan-Wigderson PRG based on any poly-time 
predicate that is hard on average for poly-size formulas is a PRG for Frege

• Conjecture 2 states the Nisan-Wigderson PRG based on an NP ∩ coNP
predicate that is hard on average for poly-size Boolean circuits is a PRG for EF

• Under the assumption that P does not have poly-size formulas on 
average, Conjecture 1 implies Conjecture X for Frege



What is Known

• [R95] showed that Conjecture X is true for any pps Q with feasible 
interpolation under standard cryptographic assumptions

• [R04] showed unconditionally that Conjecture X is true for Res
• [R15] showed unconditionally that Conjecture X is true for Res(o(log 

log(n))) and PCR
• If NEXP does not have poly-size circuits, there is a pps Q such that 

Conjecture X does not hold for Q



An Observation

• Observation: Conjecture X holds iff there is no polynomial-time 
algorithm that finds EF-proofs of tt(F, nω(1)) for infinitely many F 

• Proof sketch: 
• Let F on n variables be such a function with truth table y of length N = 2n and 

let w be a Q-proof of size poly(N) for tt(F, nω(1))
• Note that yw is the truth table of a Boolean function F’ on O(n) variables that 

requires circuits of size nω(1) (assuming wlog that |w| is a power of 2) 
• A short proof that tt(F’, nω(1)) holds can be generated efficiently from a short 

proof that tt(F, nω(1)) holds, i.e., from w
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What is Known about Proof Complexity Lower 
Bounds?

• Super-polynomial lower bounds are known only for relatively weak 
ppses

• Haken [H85] showed lower bounds on Resolution proofs of the Pigeonhole 
Principle 

• Ajtai [A94] showed lower bounds on AC0-Frege proofs of the Pigeonhole 
Principle

• No non-trivial lower bounds are known for the Frege or Extended Frege ppses
• On the one hand, proof complexity lower bounds have historically 

been harder to show than circuit complexity lower bounds
• On the other hand, there is almost no work on formally justifying 

their difficulty



Which Tautologies are Believed to be Hard?

• Can we find a sequence of poly-time constructible tautologies {φn}, 
|φn| = n, such that {φn} is hard for every pps R?

• No! We can define a pps R which simply computes the sequence for itself, 
exploiting poly-time constructibility, and accepts all such tautologies with 
proofs of size zero

• Moral: We should use randomness when generating hard instances
• Candidate Hard distributions

• Random k-DNFs with Δn clauses, for large enough Δ
• Random circuit lower bound tautologies, expressing that a random Boolean 

function does not have small Boolean circuits (Rudich’s Conjecture)



Meta-mathematics of Proof Complexity

• For candidate hard distributions, formalize and study the question of 
whether proof complexity lower bounds for formulas sampled from 
this distributions are hard to show



Main Results of [PS19]: An Informal 
Statement

• In the results below, “candidate hard instances” = random circuit lb 
tautologies

• Conditional Result: If candidate hard instances are hard for every non-
uniform pps, then there is a pps R for which R-proofsize lower bounds on 
candidate hard instances are hard to prove (for every non-uniform pps)

• Proof complexity lower bounds are hard because they are true
• Unconditional Result: There is a non-uniform pps R for which R-proofsize

lower bounds on candidate hard instances are hard to prove (for every 
non-uniform pps)

• Proof by “win-win” argument: If assumption of Conditional Result holds, we can 
apply the result to get our conclusion. If not, then consider the non-uniform pps R for 
which candidate instances are not hard. For this R, lower bound proofs do not exist, 
and hence conclusion holds



Formalization: Metamathematics of Proof 
Complexity

• How do we formalize the notion that a proof complexity lower bound 
is hard to prove?

• It is natural to use the meta-mathematical interpretation of ppses, 
and insist that the proof complexity lower bound, appropriately 
formalized, is itself provable in some pps

• Indeed, known proof complexity lower bounds such as those for 
Resolution and AC0-Frege have short proofs in the Extended Frege
proof system when appropriately formalized [CP90, BPU92]



Formalization: Proof Complexity Lower Bound 
Formulas

• Given a pps R, a propositional formula φ and a size bound t,               
R-pflb(φ,t) is a propositional formula asserting that φ does not have 
R-proofs of size t

• This can be expressed as a DNF of size poly(|φ|+t), where the propositional 
variables encode a candidate R-proof of φ of size t, and the DNF encodes a 
simulation of the verifier for R to check that the candidate proof is invalid

• Similar formalization for non-uniform pps R



Formal Statement of Main Results [PS19]

• Theorem 1: If Rudich’s Conjecture holds, then there is a constant d and a 
pps R such that for every non-uniform pps Q, with high probability over 
choice of F, R-pflb(tt(F,nd), md) does not have poly-size Q-proofs (where m = 
|tt(F,nd)|)

• Theorem 2: If Rudich’s Conjecture holds, then there is a constant d and a 
pps R such that for every non-uniform pps Q, with high probability over 
choice of random k-DNF φ, R-pflb(φ, md) does not have poly-size Q-proofs 
(where m = |φ|)

• Theorem 3 (Unconditional Result): There is a non-uniform pps R such that 
for every non-uniform pps Q, with high probability over choice of F,            
R-pflb(tt(F,nd), md) does not have poly-size Q-proofs (where m = |tt(F,nd)|)



A Slide about the Proofs

• Intuitively, the idea for Theorem 1 is that Rudich’s Conjecture allows 
us to show the existence of pseudorandom tautologies, i.e., random-
looking tautologies that have short proofs in some pps R. Because 
pseudorandom tautologies have short R-proofs, R-proofsize lower 
bounds do not hold for such tautologies

• On the other hand, Rudich’s Conjecture implies that super-polynomial 
R-proofsize lower bounds do hold for random tautologies. If these 
lower bounds have short proofs in some pps Q, this allows us to 
distinguish random from pseudorandom – a contradiction!

• The proof of Theorem 2 builds on work of [HS17] on average-case 
reductions from SAT to  MCSP



Perspective: Circuit Complexity vs Proof 
Complexity

• There are few direct connections between circuit complexity and 
proof complexity, but there are various similarities

• There is a rough analogy between proving circuit lower bounds for a circuit 
class C and proof complexity lower bounds for the system C-Frege where lines 
of the proof are circuits from C

• Some of the best proof complexity lower bounds, eg., for AC0-Frege, are 
inspired by circuit lower bound techniques

• Theorems 1 and 3 can be thought of as giving an analogue of the 
natural proofs barrier for proof complexity



Natural Proofs vs Results of [PS19]
Natural Proofs Barrier

• Rules out efficient algorithms for 
hardness of random Boolean 
functions

• Is conditional on the existence of 
one-way functions

• Applies even to restricted circuit 
classes such as TC0

Our Results

• Rule out efficient proofs 
for hardness of random 
tautologies

• Are unconditional
• Apply only to strong 

proof systems and not to 
systems such as EF



Using a Proof System Against Itself

• Is it true in general for strong enough pps R that R finds it hard to 
prove R-proofsize lower bounds (cf. [P20])?



Iterated Lower Bounds Hypothesis [ST21]

• Given a pps R and a formula φ that does not have short R-proofs, 
define the iterated lower bound formulas as follows:

• φ0 = φ
• φn+1 = R-pflb(φn, |φn|ω(1))

• Iterated Lower Bounds Hypothesis [ST21]: For any reasonable strong 
enough pps R, the sequence of formulas {φn} is a sequence of hard 
tautologies for R

• The Hypothesis holds for Resolution, by applying non-automatability
results of [AM20, G19] , and show that a constant number of 
iterations preserves hardness for random truth table formulas for 
strong R, using ideas of [PS19]



Can the Ideal Proof System Prove Lower 
Bounds against Itself?

• Ideal Proof System (IPS) of Grochow and Pitassi [GP18] is an algebraic 
proof system where proofs are algebraic circuits witnessing that a set 
of polynomial equations has no common zero

• Theorem [ST21]: There is an explicit sequence of formulas ψn
conjectured to be hard for IPS such that VNP ≠ VP iff IPS cannot 
efficiently prove lower bounds against itself for the formulas ψn

• This gives an equivalence between proof complexity lower bounds 
and algebraic complexity lower bounds

• Moreover, the equivalence works for any reasonable algebraic proof system 
at least as strong as IPS 



[PS19] vs [ST21]
Barrier of [ST21]

• Rules out efficient proofs for 
hardness of explicit formulas

• Is conditional on VNP ≠ VP
• Applies to the well-studied proof 

system IPS

Barrier of [PS19]

• Rules out efficient 
proofs for hardness of 
random tautologies

• Is unconditional
• Applies only to strong 

(non-constructive) proof 
systems and not to 
systems such as EF
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Barriers: Pragmatic Questions

• Is there a good explanation of why current fixed-polynomial circuit 
lower bounds (for formulas, branching programs, circuits etc.) are 
stuck where they are?

• What are the limits of lifting results?



Barriers: Conceptual Questions

• Is there any complexity-theoretic evidence that proving lower bounds 
for Frege or EF is hard?

• Is there a plausible hardness assumption which implies that algebraic 
natural proofs do not exist?



Barriers: Technical Questions

• Falsify the Iterated Lower Bound’s Hypothesis, eg., for AC0-Frege
• Prove Conjecture X for AC0-Frege
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