Meta-Mathematics of Complexity Lower Bounds

Rahul Santhanam (University of Oxford)

Plan of the Talk

- Barriers to Circuit Complexity Lower Bounds
 - Natural Proofs and Meta-Complexity
 - Proof Complexity Generators and Razborov's Conjectures
- Barriers to Proof Complexity Lower Bounds
- Future Directions

Plan of the Talk

- Barriers to Circuit Complexity Lower Bounds
 - Natural Proofs and Meta-Complexity
 - Proof Complexity Generators and Razborov's Conjecture
- Barriers to Proof Complexity Lower Bounds
- Future Directions

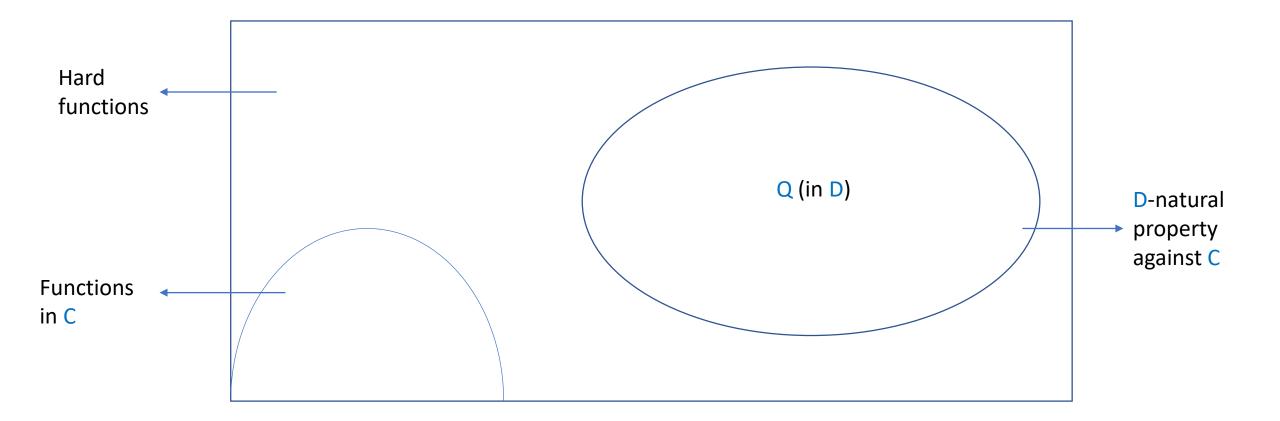
Lower Bounds and Meta-mathematics

- Lower bounds (in circuit complexity, algebraic complexity, proof complexity etc.) are often very hard to prove
- In this best of all possible worlds, we might not have lower bounds yet, but at least we have barriers...
- Meta-mathematics of lower bounds: studies logical difficulty of proving lower bounds
- Reasons for doing meta-mathematics
 - Guides us away from lower bound techniques that are inherently limited
 - Can itself be a source of lower bound ideas

Lower Bounds in Circuit Complexity

- Are there explicit functions that require super-polynomial Boolean circuits?
- Lots of progress in the 80s on restricted circuit models: AC⁰, AC⁰[p], monotone circuits
- Frontier hasn't expanded much since then
- Frontier problems
 - Lower bounds for ACC⁰ (constant-depth circuits with modular gates of arbitrary modulus)
 - Lower bounds for depth-2 TC⁰
- Various meta-mathematical approaches: relativization [BGS75], algebrization [AW09], natural proofs [RR97]

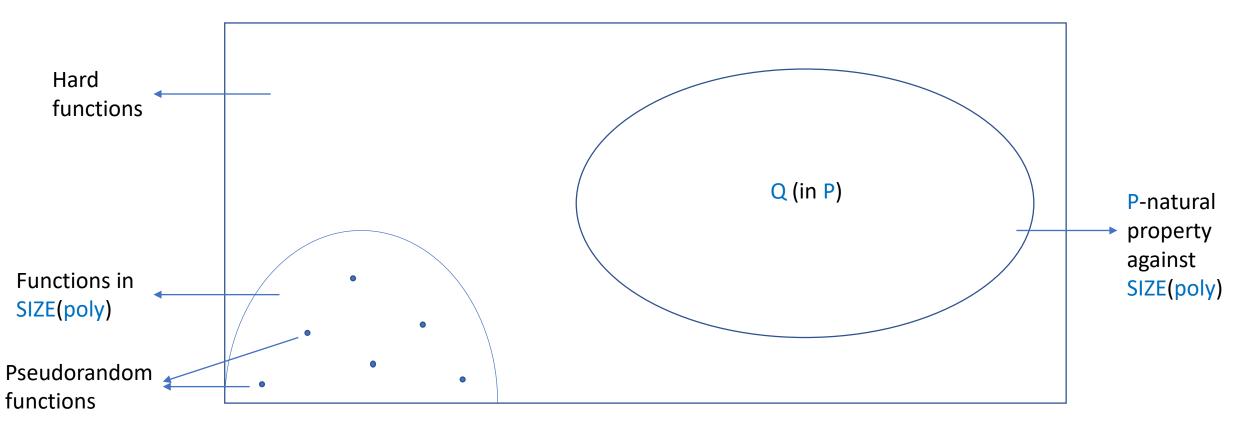
- Given a complexity class D and a circuit class C, a D-natural proof against C is a property Q of Boolean functions (represented by their truth tables of size N) such that:
 - Constructivity: Q in D
 - Usefulness: Q(F) = 1 => F not in C
 - Density: At least a 1/N^{O(1)} fraction of Boolean functions F satisfy Q



- Given a complexity class D and a circuit class C, a D-natural proof against C is a property Q of Boolean functions (represented by their truth tables of size N) such that:
 - Constructivity: Q in D
 - Usefulness: Q(F) = 1 => F not in C
 - Density: At least a 1/N^{O(1)} fraction of Boolean functions F satisfy Q
- Razborov and Rudich observed that standard circuit lower bound proofs against restricted circuit classes yield P-natural proofs against C
- Main theorem [RR97]: If exponentially hard one-way functions exist, there are no P-natural proofs against SIZE(poly)

Natural Proofs: Proof of Main Theorem

Lemma [GGM86]: If exponentially hard one-way functions exist, then there is pseudorandom function family in SIZE(poly) against SIZE(2^{O(n)})



Q distinguishes random from pseudorandom, and is poly-time computable. Contradiction!

- A lesson from natural proofs: traditional "slice and measure" techniques are unlikely to be able to prove strong lower bounds
- An interesting feature of [RR97]: the difficulty of showing circuit lower bounds follows from a *circuit lower bounds assumption*

Meta-Complexity

- Meta-complexity studies the computational complexity of problems that are themselves about complexity
- Minimum Circuit Size Problem (MCSP)
 - Input: A Boolean function F on n bits, given by its truth table of size N=2ⁿ. Also a parameter s <= N
 - Output: Yes iff F has a Boolean circuit of size at most s
- Time-Bounded Kolmogorov Complexity Problem (K^t): here t is some fixed polynomial time bound
 - Input: A string X of length N and a parameter s <= N
 - Output: Yes iff there is a program p of size at most s such that U(p, ε) outputs X in at most t(N) steps
- MCSP[s] denotes the version where s is a fixed function of N

Solving MCSP on Average

- A natural distribution over inputs to MCSP[s] is the uniform distribution over N-bit strings
- We say MCSP[s] is zero-error easy on average if there is an efficient algorithm that
 - Always outputs 0, 1 or '?'
 - Never outputs the wrong answer on any input
 - Outputs the correct answer for at least a 1/poly(N) fraction of inputs
- Proposition: P-Natural proofs useful against SIZE(s) exists iff MCSP[s] is zero-error easy on average

Perspective: Chaitin's Theorem

- Theorem [C74]: For any sound formal system F, there is a constant c such that F cannot prove any statement of the form "K(x) > c"
- Proof sketch: If there are large enough c for which we can show "K(x) > c" in F, then we can find the first such x for which such a proof exists using a program of size log(c) + O(1). Contradiction.
- Chaitin's theorem states that formal systems of *unbounded* computational power cannot prove non-trivial lower bounds on *time-unbounded* Kolmogorov complexity
- When studying meta-mathematics of lower bounds, we are interested in whether resource-bounded formal systems can prove non-trivial lower bounds on resource-bounded versions of Kolmogorov complexity

Plan of the Talk

- Barriers to Circuit Complexity Lower Bounds
 - Natural Proofs and Meta-Complexity
 - Proof Complexity Generators and Razborov's Conjecture
- Barriers to Proof Complexity Lower Bounds
- Future Directions

Beyond Natural Proofs

- Natural proofs have been enormously influential in complexity theory
 - Extremely useful heuristically in evaluating the power of a lower bound technique
 - Are key to understanding connections between learning, pseudorandomness and meta-mathematics of lower bounds
- But the concept has some issues
 - Definition somewhat ad hoc (dictated by the cryptographic hardness result that can be shown)
 - Natural proofs aren't really proofs in a formal mathematical sense
 - This meta-mathematical approach doesn't directly model the hard function for which the lower bound is shown

Provability of Circuit Lower Bounds

- A related but more formal approach: study the difficulty of proving "F is a hard function" in various logical theories/proof systems
- This approach was taken by Razborov [R95], who formalized this statement in the context of bounded arithmetic and propositional proof complexity, and showed that certain weak propositional proof systems (comparable in power to Resolution) cannot prove such a statement for *any* function F
- Further conjectures along these lines in [R97], [ABRW02], [K04], [R15]

Formalization: Circuit Lower Bound Tautologies

- Let F be a Boolean function on n variables given by its truth table, and s be a size bound
- tt(F,s) is a propositional tautology stating that for all circuits C of size s, C does not compute F
 - This can be expressed as a DNF of size O(2ⁿ poly(s)), which is the disjunction of 2ⁿ DNFs φ_x, one for each x ∈ {0,1}ⁿ, where φ_x expresses C(x) ≠ F(x)
 - Propositional variables encode the circuit C

Propositional Proof Complexity

- Studies the power of propositional proof systems (pps) to prove propositional tautologies (TAUT)
- A pps (resp. non-uniform pps) R is a poly-time (resp. poly-size) computable binary relation s.t.

• $\exists y R(\phi, y) \text{ iff } \phi \in TAUT$

- An R-proof of a tautology φ is a string y such that R(φ,y) holds. The R-proofsize of φ is the smallest size of an R-proof of φ
- We seek to understand, for various ppses R and natural families of tautologies {φ_n}, how R-proofsize(φ_n) grows with |φ_n|

Are Circuit Lower Bound Tautologies Hard?

- Question: Given a pps Q, for which Boolean functions F and size bounds s does tt(F,s) have short Q-proofs?
- [R95a] implies that essentially all known explicit circuit lower bounds can be shown in Extended Frege, and often in Frege or weaker systems
- An even more significant barrier than the Natural Proofs barrier would be if EF could not show any non-trivial lower bounds for general circuits
- We seem far from proving *any* interesting EF lower bounds, but perhaps we could get conditional results for EF as well as unconditional results for weaker Q (where we have lower bounds)?

Conjecture X

- Conjecture: For *every* Boolean function F on n variables, tt(F, n^{ω(1)}) does not have EF-proofs of polynomial size
- I do not give a reference because while Razborov has mentioned this conjecture in talks, it does not seem to have appeared in published work
- Also, Krajicek has posed closely related conjectures in [K01,K01a]
- Conjecture X for Q: For *every* Boolean function F on n variables, tt(F, n^{ω(1)}) does not have Q-proofs of polynomial size

Pseudo-Random Generators for Propositional Proof Systems

- [ABRW02] define and study the notion of a pseudo-random generator (PRG) for a pps Q
 - A mapping G from n bits to m bits, where m > n, is called a PRG for Q if the propositional formula encoding G(x) ≠ y does not have poly-size Q-proofs for any x of length n and y of length m
- Conjecture X for Q holds if the *truth-table generator* mapping a circuit of size $n^{\omega(1)}$ on n variables to the corresponding truth table of size 2^n is a PRG for Q
 - Indeed, it suffices to construct a PRG for Q that is succinctly computable from its n-bit seed

Relationship to Razborov's Conjectures

- Razborov [R15] states 2 conjectures Conjecture 1 and Conjecture 2 – that are related to what we consider
 - Conjecture 1 states that the Nisan-Wigderson PRG based on any poly-time predicate that is hard on average for poly-size formulas is a PRG for Frege
 - Conjecture 2 states the Nisan-Wigderson PRG based on an NP ∩ coNP predicate that is hard on average for poly-size Boolean circuits is a PRG for EF
- Under the assumption that P does not have poly-size formulas on average, Conjecture 1 implies Conjecture X for Frege

What is Known

- [R95] showed that Conjecture X is true for any pps Q with feasible interpolation under standard cryptographic assumptions
- [R04] showed unconditionally that Conjecture X is true for Res
- [R15] showed unconditionally that Conjecture X is true for Res(o(log log(n))) and PCR
- If NEXP does not have poly-size circuits, there is a pps Q such that Conjecture X does not hold for Q

An Observation

- Observation: Conjecture X holds iff there is no polynomial-time algorithm that finds EF-proofs of tt(F, n^{ω(1)}) for infinitely many F
- Proof sketch:
 - Let F on n variables be such a function with truth table y of length $N = 2^n$ and let w be a Q-proof of size poly(N) for tt(F, $n^{\omega(1)}$)
 - Note that yw is the truth table of a Boolean function F' on O(n) variables that requires circuits of size $n^{\omega(1)}$ (assuming wlog that |w| is a power of 2)
 - A short proof that tt(F', n^{ω(1)}) holds can be generated efficiently from a short proof that tt(F, n^{ω(1)}) holds, i.e., from w

Plan of the Talk

- Barriers to Circuit Complexity Lower Bounds
 - Natural Proofs and Meta-Complexity
 - Proof Complexity Generators and Razborov's Conjectures
- Barriers to Proof Complexity Lower Bounds
- Future Directions

What is Known about Proof Complexity Lower Bounds?

- Super-polynomial lower bounds are known only for relatively weak ppses
 - Haken [H85] showed lower bounds on Resolution proofs of the Pigeonhole Principle
 - Ajtai [A94] showed lower bounds on AC⁰-Frege proofs of the Pigeonhole Principle
 - No non-trivial lower bounds are known for the Frege or Extended Frege ppses
- On the one hand, proof complexity lower bounds have historically been harder to show than circuit complexity lower bounds
- On the other hand, there is almost no work on formally justifying their difficulty

Which Tautologies are Believed to be Hard?

- Can we find a sequence of poly-time constructible tautologies $\{\phi_n\}$, $|\phi_n| = n$, such that $\{\phi_n\}$ is hard for *every* pps R?
 - No! We can define a pps R which simply computes the sequence for itself, exploiting poly-time constructibility, and accepts all such tautologies with proofs of size zero
- Moral: We should use *randomness* when generating hard instances
- Candidate Hard distributions
 - Random k-DNFs with Δn clauses, for large enough Δ
 - Random circuit lower bound tautologies, expressing that a random Boolean function does not have small Boolean circuits (Rudich's Conjecture)

Meta-mathematics of Proof Complexity

 For candidate hard distributions, formalize and study the question of whether proof complexity lower bounds for formulas sampled from this distributions are hard to show

Main Results of [PS19]: An Informal Statement

- In the results below, "candidate hard instances" = random circuit lb tautologies
- Conditional Result: If candidate hard instances are hard for every nonuniform pps, then there is a pps R for which R-proofsize lower bounds on candidate hard instances are hard to prove (for every non-uniform pps)
 - Proof complexity lower bounds are hard because they are *true*
- Unconditional Result: There is a non-uniform pps R for which R-proofsize lower bounds on candidate hard instances are hard to prove (for every non-uniform pps)
 - Proof by "win-win" argument: If assumption of Conditional Result holds, we can apply the result to get our conclusion. If not, then consider the non-uniform pps R for which candidate instances are not hard. For this R, lower bound proofs *do not exist*, and hence conclusion holds

Formalization: Metamathematics of Proof Complexity

- How do we formalize the notion that a proof complexity lower bound is hard to prove?
- It is natural to use the meta-mathematical interpretation of ppses, and insist that the proof complexity lower bound, appropriately formalized, is *itself* provable in some pps
- Indeed, known proof complexity lower bounds such as those for Resolution and AC⁰-Frege have short proofs in the Extended Frege proof system when appropriately formalized [CP90, BPU92]

Formalization: Proof Complexity Lower Bound Formulas

- Given a pps R, a propositional formula φ and a size bound t,
 R-pflb(φ,t) is a propositional formula asserting that φ does not have
 R-proofs of size t
 - This can be expressed as a DNF of size poly(|φ|+t), where the propositional variables encode a candidate R-proof of φ of size t, and the DNF encodes a simulation of the verifier for R to check that the candidate proof is invalid
- Similar formalization for non-uniform pps R

Formal Statement of Main Results [PS19]

- Theorem 1: If Rudich's Conjecture holds, then there is a constant d and a pps R such that for every non-uniform pps Q, with high probability over choice of F, R-pflb(tt(F,n^d), m^d) does not have poly-size Q-proofs (where m = |tt(F,n^d)|)
- Theorem 2: If Rudich's Conjecture holds, then there is a constant d and a pps R such that for every non-uniform pps Q, with high probability over choice of random k-DNF φ, R-pflb(φ, m^d) does not have poly-size Q-proofs (where m = |φ|)
- Theorem 3 (Unconditional Result): There is a non-uniform pps R such that for every non-uniform pps Q, with high probability over choice of F, R-pflb(tt(F,n^d), m^d) does not have poly-size Q-proofs (where m = |tt(F,n^d)|)

A Slide about the Proofs

- Intuitively, the idea for Theorem 1 is that Rudich's Conjecture allows us to show the existence of *pseudorandom* tautologies, i.e., randomlooking tautologies that have short proofs in some pps R. Because pseudorandom tautologies have short R-proofs, R-proofsize lower bounds *do not hold* for such tautologies
- On the other hand, Rudich's Conjecture implies that super-polynomial <u>R-proofsize</u> lower bounds *do hold* for random tautologies. If these lower bounds have short proofs in some pps Q, this allows us to distinguish random from pseudorandom – a contradiction!
- The proof of Theorem 2 builds on work of [HS17] on average-case reductions from SAT to MCSP

Perspective: Circuit Complexity vs Proof Complexity

- There are few direct connections between circuit complexity and proof complexity, but there are various similarities
 - There is a rough analogy between proving circuit lower bounds for a circuit class C and proof complexity lower bounds for the system C-Frege where lines of the proof are circuits from C
 - Some of the best proof complexity lower bounds, eg., for AC⁰-Frege, are inspired by circuit lower bound techniques
- Theorems 1 and 3 can be thought of as giving an analogue of the natural proofs barrier for proof complexity

Natural Proofs vs Results of [PS19]

Natural Proofs Barrier

- Rules out efficient *algorithms* for hardness of random Boolean functions
- Is conditional on the existence of one-way functions
- Applies even to restricted circuit classes such as TC⁰

Our Results

- Rule out efficient *proofs* for hardness of random tautologies
- Are unconditional
- Apply only to strong proof systems and not to systems such as EF

Using a Proof System Against Itself

• Is it true in general for strong enough pps R that R finds it hard to prove R-proofsize lower bounds (cf. [P20])?

Iterated Lower Bounds Hypothesis [ST21]

- - $\phi_0 = \phi$
 - $\phi_{n+1} = R-pflb(\phi_n, |\phi_n|^{\omega(1)})$
- Iterated Lower Bounds Hypothesis [ST21]: For any reasonable strong enough pps R, the sequence of formulas $\{\varphi_n\}$ is a sequence of hard tautologies for R
- The Hypothesis holds for Resolution, by applying non-automatability results of [AM20, G19], and show that a constant number of iterations preserves hardness for random truth table formulas for strong R, using ideas of [PS19]

Can the Ideal Proof System Prove Lower Bounds against Itself?

- Ideal Proof System (IPS) of Grochow and Pitassi [GP18] is an algebraic proof system where proofs are algebraic circuits witnessing that a set of polynomial equations has no common zero
- Theorem [ST21]: There is an explicit sequence of formulas ψ_n conjectured to be hard for IPS such that VNP \neq VP iff IPS cannot efficiently prove lower bounds against itself for the formulas ψ_n
- This gives an *equivalence* between proof complexity lower bounds and algebraic complexity lower bounds
 - Moreover, the equivalence works for any reasonable algebraic proof system at least as strong as IPS

[PS19] vs [ST21]

Barrier of [ST21]

- Rules out efficient proofs for hardness of explicit formulas
- Is conditional on $VNP \neq VP$
- Applies to the well-studied proof system IPS

Barrier of [PS19]

- Rules out efficient proofs for hardness of random tautologies
- Is unconditional
- Applies only to strong (non-constructive) proof systems and not to systems such as EF

Plan of the Talk

- Barriers to Circuit Complexity Lower Bounds
 - Natural Proofs and Meta-Complexity
 - Proof Complexity Generators and Razborov's Conjectures
- Barriers to Proof Complexity Lower Bounds
- Future Directions

Barriers: Pragmatic Questions

- Is there a good explanation of why current fixed-polynomial circuit lower bounds (for formulas, branching programs, circuits etc.) are stuck where they are?
- What are the limits of lifting results?

Barriers: Conceptual Questions

- Is there any complexity-theoretic evidence that proving lower bounds for Frege or EF is hard?
- Is there a plausible hardness assumption which implies that algebraic natural proofs do not exist?

Barriers: Technical Questions

- Falsify the Iterated Lower Bound's Hypothesis, eg., for AC⁰-Frege
- Prove Conjecture X for AC⁰-Frege