A hierarchy of propositional proof systems

Pavel Pudlák

Mathematical Institute, Czech Academy of Sciences, Prague ¹

Mathematical Approaches to Lower Bounds: Complexity of Proofs and Computation, Edinburgh, 4 -8 July 2022

¹supported by EPAC, grant 19-27871X of the Czech Grant Agency

Overview

- 1. The lattice of propositional proof systems
- 2. Proof systems of theories
- 3. Jump operators
- 4. Transfinite progressions
- 5. How to define the supremum of a countable sequence

The lattice of propositional proof systems

P₁ ≤_p P₂ if P₂ polynomially simulates P₁
 P₁ <_p P₂ if P₁ ≤_p P₂ but not otherwise

The lattice of propositional proof systems

P₁ ≤_p P₂ if P₂ polynomially simulates P₁
 P₁ <_p P₂ if P₁ ≤_p P₂ but not otherwise

Fact. \leq_p is a lattice ordering.

The lattice of propositional proof systems

Fact. \leq_p is a lattice ordering.

Conjecture (1980's)

This lattice \mathcal{L} does not have the top element.

Proof systems of theories

Definition

Let T be a f.o. theory, polynomially axiomatized. The strong proof system of T, Q_T is defined by

- 1. translate propositions by replacing propositional variables p_i with $x_i = 0$;
- 2. interpret f.o. proofs of such formulas as proofs of the propositions.

Proof systems of theories

Definition

Let T be a f.o. theory, polynomially axiomatized. The strong proof system of T, Q_T is defined by

- 1. translate propositions by replacing propositional variables p_i with $x_i = 0$;
- 2. interpret f.o. proofs of such formulas as proofs of the propositions.
- **Fact.** Strong proof systems of theories are cofinal in \mathcal{L} .

Proof systems of theories

Definition

Let T be a f.o. theory, polynomially axiomatized. The strong proof system of T, Q_T is defined by

- 1. translate propositions by replacing propositional variables p_i with $x_i = 0$;
- 2. interpret f.o. proofs of such formulas as proofs of the propositions.
- **Fact.** Strong proof systems of theories are cofinal in \mathcal{L} .

Definition

The weak proof system P_T of a theory T is the strongest proof system whose soundness is provable in T. It exists only for some theories.

Jump operators

1. Adding consistency:

$$Q_T \mapsto Q_{T+Con(T)}$$

Conjecture (J. Mycielski and P.P., 1984) Adding consistency is a jump operator, i.e.,

 $Q_T <_p Q_{T+Con(T)}$

Jump operators

1. Adding consistency:

$$Q_T \mapsto Q_{T+Con(T)}$$

Conjecture (J. Mycielski and P.P., 1984) Adding consistency is a jump operator, i.e.,

 $Q_T <_p Q_{T+Con(T)}$

Proposition (Krajíček)

Let T be a theory for which P_T is defined. Then $P_{T+Con(T)}$ is defined too and

$$P_{T+Con(T)} \equiv_p Q_T.$$

2. Implicit proof system

Definition (J. Krajíček, 2004)

The implicit proof system of P, denoted by iP, proof is a pair (C, D) where C is a circuit defining a (possibly exponential size) proof in P and D is a P-proof of the correctness of C.

2. Implicit proof system

Definition (J. Krajíček, 2004)

The implicit proof system of P, denoted by iP, proof is a pair (C, D) where C is a circuit defining a (possibly exponential size) proof in P and D is a P-proof of the correctness of C.

Conjecture

Implicitation is a jump operator, i.e.,

 $P <_P iP$

Transfinite progressions

1. Transfinite iterations of consistency.

For a theory T and an ordinal α , define T_{α}^{Con} by

$$\begin{array}{l} \bullet \quad T_0^{Con} := T, \\ \bullet \quad T_{\alpha+1}^{Con} := T_{\alpha}^{Con} + Con(T_{\alpha}^{Con}); \\ \bullet \quad \text{for limit } \lambda, \ T_{\lambda}^{Con} := \bigcup_{\alpha < \lambda} \ T_{\alpha}^{Con}. \end{array}$$

Transfinite progressions

1. Transfinite iterations of consistency.

For a theory T and an ordinal α , define T_{α}^{Con} by

$$T_0^{Con} := T, T_{\alpha+1}^{Con} := T_{\alpha}^{Con} + Con(T_{\alpha}^{Con}); For limit $\lambda, T_{\lambda}^{Con} := \bigcup_{\alpha < \lambda} T_{\alpha}^{Con}.$$$

2. Transfinite iterations of implicitation.

For a proof system *P* and an ordinal α , define $i_{\alpha}P$ by

$$\blacktriangleright i_0 P := P,$$

$$\blacktriangleright i_{\alpha+1}P := i(i_{\alpha}P);$$

• for limit
$$\lambda$$
, $i_{\lambda}P := \sup_{\alpha < \lambda} i_{\alpha}P$.

How to define the supremum of a countable sequence of proof systems

How to define the supremum of a countable sequence of proof systems

Definition $P = \sup_i \{P_i\}$ iff

1. there exists a polynomial time algorithm A such that

 $P_i = P(A(\overline{i}, d));$

2. there exist a polynomial time algorithms B^{ind} , B^{pr} such that

$$P(d) = P_{B^{ind}(d)}(B^{pr}(d)).$$

How to define the supremum of a countable sequence of proof systems

Definition $P = \sup_i \{P_i\}$ iff

1. there exists a polynomial time algorithm A such that

$$P_i = P(A(\overline{i}, d));$$

2. there exist a polynomial time algorithms B^{ind} , B^{pr} such that

$$P(d) = P_{B^{ind}(d)}(B^{pr}(d)).$$

Definition (simple version)

 $\{P_i\}$ p-simulates $\{Q_i\}$ iff

there exists a polynomial time algorithm A such that

$$Q_i(d) = P_i(A(C(\overline{i}, d))).$$

Proposition

lf

Proposition

lf

Proof.
Let
$$P := \sup_{i} \{P_i\}$$
 and $Q := \sup_{i} \{Q_i\}$.
 $Q(d) = Q_{B_Q^{ind}(d)}(B_Q^{pr}(d)) =$
 $P_{B_Q^{ind}}(C(B_Q^{ind}(d), B_Q^{pr}(d))) =$
 $P(A_P(B_Q^{ind}(d), C(B_Q^{ind}(d), B_Q^{pr}(d)))).$

My goal

- 1. define a transfinite progression of proof system based on the implicitation jump up to ϵ_0
- 2. show that ω implicitation jumps equal one consistency jump
- 3. characterize strong (and weak) proof systems of fragments of *PA*

My goal

- 1. define a transfinite progression of proof system based on the implicitation jump up to ϵ_0
- 2. show that ω implicitation jumps equal one consistency jump
- 3. characterize strong (and weak) proof systems of fragments of *PA*

thank you