
Connections Between

Total Search and

Lower bounds



FNP :

Rs {0,1 }
#
✗ {0,13¥

y is
,

a
"solution"

(X , Y ) c- R ⇔ to the
" instance

"
✗

membership in R testable in P, lyl≤poly (1×1)

given i , find y



TFNP :

for : =
"

V-x-Jys.t.CI/y)--R
"

is a true theorem

complexity of search problem R

SS

"constructively " of theorem ∅,}



non - constructiuity typically
seen as

pur-elyngeativeb.it
can be useful !



insight of cryptography :

nonconstructive theorems
can have

"
effective counterexamples

"

which let us bypass
information - theoretic barriers



Shanny :
" for any function £, riv.

X
,

HHCXD ≤ It (X )

n -11

¥: ×
.

"

No
,

" "
n



Thiswork.NO
nconstroctiuity ⇒ Computational Advantage
(of a certain PHP) (low -space simulation)

of RAM

Contrapositive :

Uniform Lower Bound ⇒ constructivity
(time -space tradeoff) (polytime witnessing

for)
PHP



Bijective weak
n bitsPHP : Doc =/ Idn""I

↓
↑ decompress

111 Fist . DCCCX))≠X
N- l bits

↑ compress k
'""
R bits



"

Uniform instances
"
of PHP :

GO defined for all n by

a pair of poly
-time TMS



Maintheorem.IS
there is an "effective counterexample

"

to PHP
, uniform instance GO

sit. no poly- time algorithm
can find ✗ sit . OCCCXDFX

then there is a universal simulation

of RAM computation in small space
and near

-linear time



(1) For every pair GD of poly - time TMS
s.to/Clx)I--lXl-I , 101×71=1211+1

one {is there is a poly (n) time algorithm to

true: construct ✗ c- {od}
" sat . DCCCX)) =/✗

\

(2) For large enough
"

Tcu)
, every *

1- = zrcn)

T - time RAM computation
can be simulated in

THE time
,
TE space on 1-tape TM



setups

- Fix E > 0

- Let M be RAM machine

running in time T



Let W=TE
,
focus on Cw

, Ow :

↑ TY

/ \ i
w w w

these are simply restrictions of our

"uniform instance
"

to inputs of length W



"

¥"i- f-
Y☐
w - bits



} lost
W
!
bits

.



"tree""

y is W= Te

bits long,

≥ T bits

of "

memory
"

seed "



To make this "virtual memory
"

work we need 3 operations :

(1) Initialize : Set all memory
cells to 0

(2) ltccessi Read it"
memory cell

(3) Update : Set ith cell to be {0,13



Innitialize :

Xi Xz

↑
✗3

↑ ↑
(1) ② (2) ② (3) ②
IT IT A
OW OW XI XI Xz Xz



result:

OW OW . . .
. _

is 0W

TIFF Timespe
☒
xi\|xiÉx, bgT•( time to evaluate)CID

% =/ogtupolycte)

= 1-
OLE)

↑

✗3



Acog
.

'

given i
c- [T]
,

access

ith cell by
following the path :



Update : set position 100 to value sea,Bw

(1) Z (z,

✗→ s Zi

¥
≥

€
£3
②¥¥:€



Re-co.ve
- Simulate a T- time machine using
"virtual RAM " data structure

- Data struc. uses a
"counterexample to PHP "

on inputs of length W=TE

- All operations run in time 1-
◦(E) and

space 1-
◦⇔
,
and faithfully maintain

the memory assuming PHP "fails" for GD



Taking E. →0 we get simulation

in time THE
, space Te

for arbitrarily small e > 0



Contrapositive :

IF such a simulation fails
,

we witness the PHP for GD .

i. e. locate an x sat . OCCCX))≠X



t#tignitmItan_PtP :



LargePrimes: [PWW
'

88]

ntlogn -14

\ ""
_ig solutions yield 32N - bit

primes of magnitude > 2h¥"%n
-13

"""
ntlogntt



(1) n
-bit primes can be constructed

in poly(n) time
"pseudodeterministically

"

one on a quantum computer

is true:{ (2) T - time RAM machines can

be simulated in time THE, space TE

on a quantum computer ↑
(≤ TE qubits)



Ny""ᵈtab
,

1111 / solutions
are hard

circuits truth tables

1) / N- I ←
description of
circuit for our

truth table

Éitsynthesi

11111
N=2"



Nondeterministictradeffs :

Thmi

If T-time nonedeterministic machines

can not be simulated by 1- tape

nondeterministic machines in :

- THE time
Premise is

- TE space known for

T=O(n), we
- TE nondeterministic guesses need for

1-= zrcn)then ENP ≠ size(2%n)



Questions can we get more

unlikely simulations

from "effective counterexamples
"

to other principles?

perhaps this phenomenon
is unique to derandomization

problems . . .



✗
Lossy Code

"

as a search problem :

""
- lies in TFNP☒ ( c- PWPPSPPP, c- APEPP)

- lies in FZPPii.
given GO as circuits,
find X sit . OCCCX)) =/X



Can't show Lossy code captures
"full derandomization

" (propp)

without proving BPP ≤ NP * . .

But a slight modification of the

problem is indeed equivalent
to prBPP !



R - Lossy Code :

Compression algorithm randomized
,"

and we seek a string
☐ with low probability of

n- i -
- - -1ft successful compression

n
- -1.1ft
) internal

← randomness

✗
p

of C

find x s.t.

Pg[OCCLXD =x]sYz



Thin: R - Lossy code complete for yrBPP

↳ straight -forward application of

Yao's "next -bit unpredictable ≈ pseudorandom
"

lemma



PROPP : given ,
approximate Pr [EM=D

✗

÷ ⇒:÷;÷÷:÷÷:::fixing of leftover
⇒ Missing

bits allowing

* µ, .µ?⃝output table w/
column removed



Yaoishmma: if ii.¥ fails

to approximate Pr [Efx)-1], then

C compresses
it why.



Application :

(another) easy proof that hitting sets ⇒ propp=P

(1) for x sit . Prr [ Doccxir)=X] ≥ Yz,
psi we can find r sit. Dollar)=X

"
in any hitting set

11¥ r ↳ construct circuit Efx) which
outputs 1 if it fails to

find such r, 0
else .

X non-solution ⇒ ECX) = 0

(2) w -p . ≥ Yz over X, ✗ ¢ RANGE(D),
so no such r exists, so Efx)= I

↳ hitting set for E finds such ✗


