Connections Between Total Search and Lower bounds

FNP:

$$
\begin{aligned}
& R \leq\{0,1\}^{*} \times\{0,1\}^{*} \\
& (x, y) \in R \Leftrightarrow \begin{array}{c}
y \text { is a "solution" } \\
\text { to the } \\
\text { "instance" } x
\end{array}
\end{aligned}
$$

membership in R testable in $P,|y| \leq$ poly $(|x|)$
given x, find y

TFNP:
$\phi_{R}:=" \forall x \exists y$ s.t. $(x, y) \in R "$ is a true theorem
complexity of search problem R ss
"constructivity" of theorem ϕ_{R}
non-constructivity typically seen as purely negative but can be useful!
insight of cryptography:
nonconstructive theorems can have
"effective counterexamples" which let us bypass information-theoretic barriers

Shannon: "for any function f, riv. X,

$$
H(f(x)) \leq H(x)
$$

Yo:
No,

This work:

Nonconstructivity \Rightarrow Computational Advantage
(of a certain PHP) (Iow-space simulation) of RAM

Contrapositive:
Uniform Lower Bound \Rightarrow Constructivity (time-space tradeoff) $\binom{$ polytime witnessing for) }{ PHP }

"Uniform instances" of PHP: C, D defined for all n by a pair of poly-time TM

Main Theorem:
If there is an "effective counterexample" to PHP,
then there is a universal simulation of RAM computation in small space and near-linear time
(1) For every pair C,D of poly-time TM s.t. $|C(x)|=|x|-1,|D(x)|=|x|+1$ there is a poly (n) time algorithm to construct $x \in\{0,1\}^{n}$ s.t. $D(C(x)) \neq x$
(2) For large enough $T(n)$, every

$$
{ }^{*} T=2^{\Omega(n)}
$$

T-time RAM computation can be simulated in $T^{1+\varepsilon}$ time, T^{ε} space on 1 -tape $T M$

Setup:

- Fix $\varepsilon>0$
- Let M be RAM machine running in time τ

Let $W=T^{\varepsilon}$, focus on C_{w}, D_{w} :

these are simply restrictions of our "uniform instance" to inputs of length W

y is $W=T^{\varepsilon}$ bits long, but represents $\geqslant T$ bits of "memory"

To make this "virtual memory" work we need 3 operations:
(1) Innitialize: set all memory cells to 0
(2) Access: Read $i^{\text {th }}$ memory cell
(3) Update: Set $i^{\text {th }}$ cell to $b \in\{0,1\}$

Innitialize:
(1)

(2)

(3)

result:

Time spent:
$\log T \cdot\binom{$ time to evaluate }{$C / D}$ $=\log T \cdot \operatorname{poly}\left(T^{\varepsilon}\right)$

$$
=T^{O(\varepsilon)}
$$

Access:
given $i \in[T]$, access itu cell by following the path:

Update: Set position 100 to value $s \in\{0,1\}^{W}$
(1)

(2)
 z_{1}
C
x

$ฟ$

C
y^{\prime}

Recap:

- Simulate a T-time machine using "virtual RAM" data structure
- Data Struc. uses a "counterexample to PHP" on inputs of length $W=T^{\varepsilon}$
- All operations run in time $T^{O(\varepsilon)}$ and space $T^{O(\varepsilon)}$, and faithfully maintain the memory assuming PHP "fails" for C,D

Taking $\varepsilon \rightarrow 0$ we get simulation in time $T^{1+\varepsilon}$, space T^{ε} for arbitrarily small $\varepsilon>0$

Contrapositive:
If such a simulation fails, we witness the PHP for C, D.
i.e. locate an x s.t. $D(C(x)) \neq x$

Interesting Uniform Instances of PHP:

Large Primes: [PWW '88]

solutions yield $32 n$-bit primes of magnitude $>2^{n}$
(1) n-bit primes can be constructed in poly(n) time "pseutodeterministically"
one $\{$ on a quantum computer
is true:
(2) T-time RAM machines can be simulated in time $T^{1+\varepsilon}$, space T^{ε} on a quantum computer

$$
\begin{aligned}
& \left(\leq T^{\varepsilon} \text { quoits }\right)
\end{aligned}
$$

Hard Truth Tables

Nondeterministic Tradeoffs:

Tho:
If T-time nonedeterministic machines can not be simulated by 1-tape nondeterminstic machines in:

- Tier time
$-T^{\varepsilon}$ space
- T^{ε} nondeterministic guesses
then $E^{N P} \notin \operatorname{size}\left(2^{n} / 2 n\right)$
Premise is known for $T=O(n)$, we need for

$$
T=2^{\Omega(n)}
$$

Question: Can we get more unlikely simulations
from "effective counterexamples" to other principles?
perhaps this phenomenon is unique to derandomization problems...
"Lossy Code" as a search problem:

- lies in TFNP

$$
(\in P W P P \leq P P P, \in A P E P P)
$$

- lies in FZPP
given C, D as circuits,
find x st. $D(C(x)) \neq \chi$

Can't show Lossy Code captures "full derandomization" (pr BPP) without proving $B P P \subseteq N P \ldots$

But a slight modifaction of the problem is indeed equivalent to prEP!

R-Lossy Code:

Compression algorithm randomized, and we seek a string with (ow probability of successful compression

Find x st.

$$
\operatorname{Pr}[D(C(x))=x]<1 / 2
$$

Thm: R-Lossy Code complete for prBPP \rightarrow straight-forward application of Yao's "next-bit upredictable \approx pseudosaudom" lemma

input: sample of n-bit
strings of size n^{10}

Yo's Lemma: if
 fails
to approximate $\operatorname{Pr}[E(x)=1]$, then C compresses it w.h.p.

Application:
(another) easy proof that hitting sets \Rightarrow prEP $=P$

(1) for x st. $\operatorname{Pr}[\operatorname{DoC}(x, r)=x] \geqslant 1 / 2$, we can find r s.t. $D_{0} C(x, r)=x$ in any hitting set
\triangle construct circuit $E(x)$ which outputs 1 if it fails to find such r, o else. x non-solution $\Rightarrow E(x)=0$
(2) w.p. $\geqslant 1 / 2$ over $x, x \notin \operatorname{RANGE}(D)$, so no such r exists, so $E(x)=1$ \rightarrow hitting set for E finds such x

