Connections Between Total Search and Lower bounds

FNP: $R \leq \{0, 13^* \times \{0, 13^*\}$ y is a "solution" to the (×,y) ∈ R <>> "instance" X

membership in R testable in P, 1yl = poly(1x1)

given x, find y

TENP:

$$\phi_R := " \forall x \exists y \quad s.t. (x, y) \in R "$$
 is a true theorem

Shownon: "for any function
$$f$$
, r.v. X ,
 $H(f(X)) \leq H(X)$

This work:

⇒ Computational Advantage Nonconstructivity (of a certain PHP) (low-space simulation) of RAM

Contrapositive:

Uniform Lower Bound => Constructivity (time-space tradeoff) (polytime witnessing for) PHP

"Uniform instances" of PHP: C,D defined for all n by a pair of poly-time TMs

Main Theorem:

If there is an "effective counterexample" to PHP, uniform instance C, P s.t. no poly-time algorithm can find x s.t. D(((x)) + X

then there is a universal simulation of RAM computation in small space and near-linear time

 (1) For every pair C, D of poly-time TMs
 s.t. |C(x)|=(x1-1, |D(x)| = |x|+1 one is ' there is a poly(n) time algorithm to construct $\chi \in [0,13]^n$ s.t. $D(C(\chi)) \neq \chi$ is 7 true: For large enough T(n), every $T=2^{-1}$ T-time RAM computation can be simulated in T^{1+E} time, T^E space on 1-tape TM

Setup:

- Fix E>0

- Let Mbe RAM machine running in time T

Let
$$W = T^{\epsilon}$$
, focus on C_{W} , D_{W} :
 $W = U$
 W

W

 2^k W-bits W-bits W-bits D ワ K W-bits

T W-bits W-bits W-bits D ワ logT W-bits

OW OW X, X, X, X Xz

Time spent: logT · (time to evaluate) = logT · poly(TE) $= T^{O(\varepsilon)}$

Recap:

- Simulate a T-time machine using "virtual RAM" data structure
- Data Struc. uses a "counterexample to PHP" on imputs of length $W = T^{\epsilon}$

- All operations run in time $T^{O(E)}$ and space $T^{O(E)}$, and faithfully maintain the memory assuming PHP "fails" for C,D

Taking
$$E \rightarrow 0$$
 we get simulation
in time $T^{l+\epsilon}$, space T^{ϵ}
for asbitrarily small $\epsilon > 0$

Contrapositive:

IF such a simulation fails, we witness the PHP for C, D.

i.e. (ocate an π s.t. $D(C(\pi)) \neq \chi$

Interesting Uniform Instances of PHP:

Large Primes: [PWW '88]

solutions yield 32n-bit primes of magnitude > 2ⁿ

Hard Truth Tables

Solutions are hard truth tables Nondeterministic Tradeoffs:

Thm: If T-time nonedeterministic machines can not be simulated by 1-tope nondeterminstic machines in: - TItE time Premise is - T^e space known for 7=0(n), we - TE noudeterministic guesses need for $T = 2^{\Omega(n)}$ then $E^{NP} \neq size(\frac{2}{2n})$

"Lossy Code" as a search problem:

-lies in TFNP (EPWPP SPPP, EAPEPP) -lies in FZPP

given C, D as circuits, find π s.t. $D(C(\chi)) \neq \chi$

(an't show Lossy Code captures
"full derandomization" (pr BPP)
without proving
$$BPP \subseteq NP \dots$$

R-Lossy Code:

Find x s.t. $Pr[O(C(x)) = x] < \frac{1}{2}$

Compression algorithm randomized, and we seek a string with low probability of succesful compression

 $\Pr[E(x)=1]$ approximate pr BPP: given 5 n input: sample of n-bit strings of size no Choose a random reconstruct column (hybrid Missing n^{ro} index), find a fixing of leftover column bits allowing E to predict column from the others, output table w/ column removed and some small advice

to approximate Pr[E(x)=1], then C compresses it w.h.p.

Application:
(another) easy proof that hitting sets
$$\Rightarrow$$
 prBPP = P
(1) for $x \, s.t.$ $\Pr[D \circ C(x,r) = x] \ge \frac{1}{2}$,
we can find $r \, s.t.$ $D \circ C(x,r) = x$
in any hitting set
 $\frac{1}{2}$, $\frac{1}{$