Depth lower bounds in Stabbing Planes

Nicola Galesi

Department of Computer, Control and Management Engineering "A.Ruberti" Sapienza, Rome

Mathematical approaches to lower bounds: complexity of proofs and computations - ICMS, Edinburgh

July 6, 2022
Joint work with: Stefan Dantchev, Abdul Ghani, Barnaby Martin

Branch-\&-Cut

Let $\mathbf{A x} \geq \mathbf{b}$ be a system of linear inequalities defining a polytope \mathcal{P}. Stabbing Planes (also Branch-\&-Cut) is a method implementing the search for an integer point inside \mathcal{P} by :

- branching \mathcal{P} into smaller polytopes $P_{1} \ldots P_{k}$ such that every integer solution of \mathcal{P} lies in at least one of P_{1}, \ldots, P_{k};
- cut. Add further cutting planes to refine P_{1}, \ldots, P_{k} and recurse the search on the smaller refined polytopes.

Stabbing Planes

Assume $\mathbf{A x} \geq \mathbf{b}$ does not admit integral points.
As a proof system Stabbing Planes can be seen as DPLL where instead of querying a variable x and splitting the two cases $x=1$ and $x=0$, we query a pair $Q=(\mathbf{c x}, d)$ with $c_{i}, b \in \mathbb{Z}$ and split according to the two cases $c x \leq d$ and $c x \geq d+1$. The search terminates when we reach the empty polytope \emptyset.

Example

Definition of Stabbing Planes

[Beame Fleming Impagliazzo Kolokolova Pankratov Pitassi Robere 19], [Fleming Göös, Impagliazzo Pitassi Robere Tan Wigderson 21]
Let $\mathcal{F}:=\mathbf{A x} \geq \mathbf{b}$ be an unsatisfiable system of linear inequalities. A Stabbing Planes (SP) refutation of \mathcal{F} is a directed binary tree \mathcal{T} such that

- Internal Nodes, are labelled with a pair (\mathbf{c}, d) with $\mathbf{c} \in \mathbb{Z}^{n}, d \in \mathbb{Z}$. The right outgoing edge is labelled with $\mathbf{c x} \leq d$, and the left outgoing edge is labelled with its integer negation $\mathbf{c x} \geq d+1$.
- Leaves. Each leaf node ℓ of \mathcal{T} is labelled with a conic combination of inequalities in \mathcal{F} with the inequalities along the path leading to an unfeasible $L P$, equivalent to $0 \geq 1$.

Example and measures of complexity

An example of a tree proof with the LPs on the leaves.

\mathcal{F} the initial inequalities,
SP Complexity measures
Size of $\mathcal{T}=\#$ of nodes in the tree \mathcal{T}
Depth of $\mathcal{T}=$ depth of the tree \mathcal{T}

Relation with Cutting Planes $C P$

Cutting Planes (CP) refutation system for unfeasible families of integer linear inequalities, is a Hilbert-style system equipped with boolean axioms $0 \leq x \leq 1$ and two inference rules:

$$
\begin{aligned}
\text { Linear Combination } & \frac{\mathbf{a x} \geq \mathbf{c}}{\alpha \mathbf{a x}+\beta \mathbf{b} \mathbf{x} \geq \alpha \mathbf{b}+\beta \boldsymbol{d}} \\
\text { Rounding } & \frac{\alpha \mathbf{a x} \geq b}{\mathbf{a x} \geq\lceil b / \alpha\rceil}
\end{aligned}
$$

with $\mathbf{a}, \mathbf{b} \in \mathbb{Z}^{n}$, and $c, d, \alpha, \beta \in \mathbb{Z}$.

CP complexity measures

Proof: $L_{1}, \ldots, L_{k-1}, 0 \geq 1$, or the usual associated DAG with $0 \geq 1$ as the only sink node.

Size: \# of inequalities in the proof.
Rank = maximal number of applications of the rounding rule along a path from an axiom to $0 \geq 1$ in the DAG.

Known results and $S P$ proof strenght

Important SP results obtained in [Beame et al.], [Fleming et al.]

- SP poly simulates $C P$
- CP quasipoly simulates $S P^{*}$
- $S P$ poly equivalent to treelike-Res $(C P)$

To our work, more important, are the following results

- There are quasipolynomial size and $O\left(\log ^{2} n\right)$-depth $S P$ proofs for Tseitin contradictions $\mathrm{Ts}(G)$ over a graph G with n nodes.
- There exists a family of formulas which requires $S P$ proofs of depth $\Omega\left(\frac{n}{\log ^{2} n}\right)$.
This result uses similar techniques used for treelike $C P$: reduce shallow $S P$ proofs to efficient real communication protocols for certain functions, which instead does not admit efficient protocols.

Motivations of our work

- PHP_{n}^{m} can be refuted in $S P$ with depth $O(\log n)$ (and poly size, of course)
- $\mathrm{Ts}(G)$ can be refuted in depth $O\left(\log ^{2} n\right)$. This bound is conjectured optimal in [Beame et al.]
- The $\Omega\left(\frac{n}{\log ^{2} n}\right)$ lower bound is for a lifted family of formulas $\mathrm{Ts}(G) \circ g$, with G an expander graph.

No technique not using communication complexity was known to prove depth lower bounds, for example for PHP or Ts (G).

CNF Formulas and inequalities

From CNFs to set of linear inequalities

$$
\bigvee_{i} x_{i} \vee \bigvee_{j} \bar{y}_{j} \mapsto \sum_{i} x_{i}+\sum_{j}\left(1-y_{j}\right) \geq 1
$$

Tseitin contradictions

For a graph $G=(V, E)$ with a charging function $\omega: V \rightarrow\{0,1\}$ satisfying $\sum_{v \in V} \omega(v)=1 \bmod 2$, the Tseitin contradiction $\mathrm{Ts}(G, \omega)$ is the CNF equivalent of

$$
\sum_{e \in E, e \ni v} x_{e}=\omega(v) \bmod 2 \quad v \in V
$$

where x_{e} ranges over $e \in E$.

Our Results

Our Results

- $\Omega(\log n)$ depth lower bounds for $P H P_{n}^{m}, \operatorname{Ts}\left(K_{n}\right), \operatorname{Ts}\left(H_{n}\right)$ and for $L O P_{n}$.
- an incomparability result for rank in $C P$ and depth in $S P$.

Despite the fact that SP proofs cannot be balanced [Beame et al.], that is
size $S S P$ proofs cannot be transformed into poly (S) size and polylog(S) depth SP proofs

Yet, since $S P$ is a treelike system,
One can prove depth lower bounds by proving size lower bounds

\mathcal{F} the initial inequalities,
$Q=(\mathbf{c x}, d)$ and $\operatorname{slab}(Q)=\left\{x \in \mathbb{R}^{n} \mid d<\mathbf{c x}<d+1\right\}$
(1) Figure out a large family of non integral points satisfying \mathcal{F} (admissible points), i.e. in the initial polytope;
(2) Argue that each slab excludes only a limited number of admissible points;
(3) Observe that at the leaves the polytopes are \emptyset.

First approach: the antichain method

A toy example: the simple PHP.
SPHP $_{n}$ is the following set of unsatisfiable inequalities:

$$
\begin{gathered}
\sum_{i=1}^{n} x_{i} \geq 2 \\
x_{i}+x_{j} \leq 1 \text { (for all } i \neq j \in[n] \text {) }
\end{gathered}
$$

Lemma
For $n \geq 3, \mathrm{SPHP}_{n}$
(1) can be refuted in depth $\Theta(\log n)$ in SP, and
(2) has a rank 1 CP refutation.

A toy example: SPHP_{n}

$C P$ rank is 1
Let $S:=\sum_{i=1}^{n} x_{i}$ (so we have $S \geq 2$).

$\mathrm{SPHP}_{n}-$ Fact 1

$S P$ depth is $\Omega(\log n)$
We prove that $S P$ size is $\Omega(\sqrt[4]{n})$. The proof consists of four main ingredients

Fact (1)

Define the set of admissible non-integral points and prove its largeness.

```
for SPHP }\mp@subsup{}{n}{}\mathrm{ .
D={0,1/2}
\mp@subsup{\mathcal{A}}{n}{}={\mathbf{s}\in\mp@subsup{D}{}{n}|\mathrm{ at least 4 coordinates in s are }\frac{1}{2}}
|\mathcal{A}}
```


SPHP_{n} - Fact 2

Fact (2)

Argue that at each slab not many admissible points are lost.

for SPHP $_{n}$.

$\mathbf{a} \in \mathbb{R}^{n}, Q=(\mathbf{a}, b), D=\left\{0, \frac{1}{2}\right\}$.
$w(\mathbf{a})=$ number of of non-zero coordinates in a
We want to bound the number of $\mathbf{s} \in A_{n}$ such that $b<\mathbf{a s}<b+1$ and we count the number of $\mathbf{s} \in A_{n}$ such that as $=q, q \in \mathbb{Q}$.

Sperner's theorem Let $[t]^{n}$ be equipped with the pointwise ordering $\preceq(\mathbf{a} \preceq \mathbf{b}$ iff $a_{i} \leq b_{i}$ for all $\left.i\right)$. Any antichain A on $[t]^{n}$ has size $|A| \leq \frac{t^{n}}{\sqrt{n}}$.

Observation Let $l_{\mathbf{a}}=\left\{i \in[n] \mid a_{i} \neq 0\right\}$, so that $\left|l_{\mathbf{a}}\right|=w(\mathbf{a})$. The solutions \mathbf{s} to as $=q$ form an antichain on $D^{\text {/a }}$ on the following pointwise order \preceq_{D} :

$$
\mathbf{s} \preceq_{D} \mathbf{t} \text { iff } \begin{cases}s_{i} \leq t_{i} & \text { if } a_{i}>0 \\ t_{i} \leq s_{i} & \text { if } a_{i}<0\end{cases}
$$

Conclusion Each slab Q removes at most $\frac{|D|^{w(\mathbf{a})}}{\sqrt{w(\mathbf{a})}}=\frac{2^{w(\mathbf{a})}}{\sqrt{w(\mathbf{a})}}$ points from A_{n}.

SPHP_{n} - Fact 3

Let \mathcal{T} be a $S P$ proof of $S P H P_{n}$.
Let $w_{\mathcal{T}}=\min _{Q \in \mathcal{T}} w(Q)$

Fact (3)

Lower bound the size of a SP proof \mathcal{T} in terms of the $w_{\mathcal{T}}$.

$$
|\mathcal{T}| \geq \Omega\left(\sqrt{w_{\mathcal{T}}}\right)
$$

for SPHP $_{n}$.

$$
|\mathcal{T}| \geq \frac{\left|A_{n}\right|}{\frac{2^{2}}{\sqrt{\boldsymbol{w}_{\mathcal{T}}}}}, \quad \text { By Fact } 2
$$

SPHP_{n} - Fact 4

Fact (4)

Conclude the size lower bound proof showing that $w_{\mathcal{T}} \geq \Omega(t(n))$, for a suitable function t.

for SPHP $_{n}$.

Let $t=t(n)\left(\sqrt[4]{n}\right.$ for $\left.\mathrm{SPHP}_{n}\right)$ be a parameter.

$$
\Sigma_{\mathcal{T}}=\left\{Q \in \mathcal{T} \mid w(Q) \leq t^{2}\right\}
$$

(1) $\left|\Sigma_{\mathcal{T}}\right| \geq t: \checkmark$;
(2) $\left|\Sigma_{\mathcal{T}}\right|=0: \checkmark$, by Fact 3 ;
(3) $0<\left|\Sigma_{\mathcal{T}}\right|<t$.

SPHP_{n} - Fact 4

for SPHP ${ }_{n}$.

Case 3

(1) Each query $Q \in \Sigma_{\mathcal{T}}$ involves at most t^{2} variables, hence in total at most t^{3} variables X. Define ρ by setting $x=0$ for $x \in X$.
(2) Consider $\mathcal{T} \upharpoonright \rho$ and reiterate the argument.
(3) At each iteration at least one query disappears
(4) Set $t(n)$ in such a way, that the number of iterations is at least $\Omega(t(n))$.

Other results obtained by the antichain method

PHP ${ }_{n}^{m}, m>n$

- n. of vars $O(m n)$
- Size bound : $\Omega\left(n^{1 / 4}\right)$
- Depth lower bounds: $\Omega(\log n)$
- $D=\left\{0, \frac{1}{2}\right\}$
- A_{n} : set of points with at least two coordinates set to $1 / 2$
$\mathrm{Ts}\left(K_{n}\right)$
- n. of vars $O\left(n^{2}\right)$
- Size lower bound: $\Omega\left(n^{1 / 4}\right)$
- Depth lower bounds: $\Omega(\log n)$
- $D=\left\{0, \frac{1}{2}, 1\right\}$
- A_{n} : set of points such that each nodes in K_{n} has at least two incident edges set to $1 / 2$.
$L O P_{n}$
- n. of vars $O\left(n^{2}\right)$
- Size lower bound: $\Omega\left(n^{\frac{1-\epsilon}{4}}\right)$
- Depth lower bounds: $\Omega(\log n)$
- $D=\left\{0, \frac{1}{2}, 1\right\}$
- A_{n} : Given $X \subseteq[n]$ of size $\leq n-3$, coordinates $x_{i, j}=\frac{1}{2}$ if $i, j \notin X$ and
$x_{i, j}=0,1$ according to the order or if one of $i, j \notin X$.

Second approach: the covering method

[Linial and Radhakrishnan05] studied the minimal number of hyperplanes covering all points of $\{0,1\}^{n}$. To make the problem meaningful they define essential coverings of $\{0,1\}^{n}$.

Definition

A set L of linear polynomials with real coefficients is said to be an essential cover of the cube $\{0,1\}^{n}$ if
(E1) for each $v \in\{0,1\}^{n}$, there is a $p \in L$ such that $p(v)=0$,
(E2) no proper subset of L satisfies (E1), that is, for every $p \in L$, there is a $v \in\{0,1\}^{n}$ such that p alone takes the value 0 on v, and
(E3) every variable appears (in some monomial with non-zero coefficient) in some polynomial of L.

Theorem (Linial and Radhakrishnan 05)

Any essential cover L of the cube with n coordinates satisfies $|L| \in \Omega(\sqrt{n})$.

Polynomials

Let \mathcal{T} a SP refutation of $\operatorname{Ts}\left(H_{n}\right)$.
We consider the set of polynomials

$$
\tau=\{\mathbf{a x}=b+1 / 2 \mid Q=(\mathbf{a x}, b) \in \mathcal{T}\}
$$

Grids and 4-cycles

Let C be the set of such cycles. Notice that $|C|=(n / 3)^{2}$

Admissible points

Lemma

Given $c \in C$, there is an admissible point α^{c} such that in α^{c}

- the variables of the edges in c are set to $1 / 2$;
- the rest of variables are in $\{0,1\}$.

Essentialization of a covering

Fact

Let L be a covering of $\{0,1\}^{|A|}$ (hence verifying only (E1)). There is a $L^{\prime} \subset L$ and a $A^{\prime} \subseteq A$ such that L^{\prime} is an essential covering $\{0,1\}^{\left|A^{\prime}\right|}$.

Proof.

Force (E2) and (E3) by choosing the minimal $L^{\prime} \subseteq L$ covering $\{0,1\}^{|A|}$ and limits the cube to the only variables in A with non-zero coefficients in polynomials of L^{\prime}.

We say that $\left(L^{\prime}, A^{\prime}\right)$ is an essentialization of (L, A).

Coverings

Definition

Let $c \in C$ and $p \in \tau$ with $p=\sum a_{e} x_{e}$. We say that p is odd on c if $e \in E^{\prime} \subseteq E\left(H_{n}\right)$
$\sum_{e \in E^{\prime} \cap c} a_{e}=1 \bmod 2$.

Definition

Let $c \in C$. We define $\tau^{c}=\{p \in \tau \mid p$ odd on $c\}$.

Lemma

τ^{c} covers $\{0,1\}^{|C-\{c\}|}$.

Proof.

Since α^{c} is admissible, it must be necessarily covered by some $p \in \tau$. Notice that p must be odd on c since c has 4 edges, hence p on α^{c} can be $1 / 2+b$ only if p is odd on c. Hence $p \in \tau^{c}$.

Main argument

Notice that $|\tau| \geq\left|\tau^{c}\right|$. We prove that $\left|\tau^{c}\right|=\Omega(n)$.
(1) if τ^{c} is an essential cover of $\{0,1\}^{|C-\{c\}|}$. Then by [LN] and since $|C|=O\left(n^{2}\right),\left|\tau^{c}\right|=\Omega(n)$.
(2) If τ^{c} is only a cover of $\{0,1\}^{|C-\{c\}|}$. We extract an essentialization $\left(\tau_{1}, C_{1}\right)$ of $\left(\tau^{c}, C-\{c\}\right)$ and reiterate the argument choosing another $c_{1} \in C-\left(C_{1} \cup\{c\}\right)$ until (1) holds or no cycle remain.

Let $\left(\tau_{1}, C_{1}\right), \ldots,\left(\tau_{q}, C_{q}\right)$ be the list of refined essentializations. Observe that $\tau^{c} \geq q$ by def of essentilization. Then

- if $q \geq(n / 3)^{2} / 2$, we have done
- if $q<(n / 3)^{2} / 2$, then
- $\sum_{i=1}^{q}\left|C_{i}\right| \geq(n / 3)^{2} / 2$. This is because $|C|=q+\sum_{i}\left|C_{i}\right|$
- $\tau=\sum_{i=1}^{q}\left|\tau_{i}\right|$. This is because τ_{i} 's partitions τ.
- Hence

$$
|\tau| \geq \sum_{i}\left|\tau_{i}\right| \geq \sum_{i} \sqrt{\left|C_{i}\right|} \geq \sqrt{\sum_{i}\left|C_{i}\right|}=\Omega(n)
$$

Further devolpements

Size lower bounds are poor:
(1) [Yehuda, Yehudayoff 22]. Improve [Linial Radakrishnam 05] lower bound to

Theorem (Yehuda, Yehudayoff 22)

Any essential cover L of the cube with n coordinates satisfies $|L| \in \Omega\left(n^{0.52}\right)$.

This allow to push our lower bound to $\Omega\left(n^{1.04}\right)$
(2) We have new different results for $\mathrm{Ts}\left(H_{n}\right)$ getting a truly linear size lower bound $\Omega\left(n^{2}\right)$. However still significantly far from proving that $S P$ proofs of $\mathrm{Ts}\left(H_{n}\right)$ in [Beame et al.] are optimal wrt size and depth.

