
Depth lower bounds in Stabbing Planes

Nicola Galesi

Department of Computer, Control and Management Engineering ”A.Ruberti”
Sapienza, Rome

Mathematical approaches to lower bounds: complexity of proofs
and computations - ICMS, Edinburgh

July 6, 2022

Joint work with: Stefan Dantchev, Abdul Ghani, Barnaby Martin

Nicola Galesi Depth lower bounds in Stabbing Planes



Branch-&-Cut

Let Ax ≥ b be a system of linear inequalities defining a polytope P.
Stabbing Planes (also Branch-&-Cut) is a method implementing the
search for an integer point inside P by :

branching P into smaller polytopes P1 . . .Pk such that every
integer solution of P lies in at least one of P1, . . . ,Pk ;

cut. Add further cutting planes to refine P1, . . . ,Pk and recurse
the search on the smaller refined polytopes.
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Stabbing Planes

Assume Ax ≥ b does not admit integral points.
As a proof system Stabbing Planes can be seen as DPLL where
instead of querying a variable x and splitting the two cases x = 1 and
x = 0 , we query a pair Q = (cx,d) with ci ,b ∈ Z and split according
to the two cases cx ≤ d and cx ≥ d + 1. The search terminates
when we reach the empty polytope ∅.

x

x = 0 x = 1

(cx,d)

cx ≤ d cx ≥ d + 1
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Example
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Definition of Stabbing Planes

[Beame Fleming Impagliazzo Kolokolova Pankratov Pitassi Robere
19], [Fleming Göös, Impagliazzo Pitassi Robere Tan Wigderson 21]

Let F := Ax ≥ b be an unsatisfiable system of linear inequalities. A
Stabbing Planes (SP) refutation of F is a directed binary tree T such
that

Internal Nodes, are labelled with a pair (c,d) with c ∈ Zn,d ∈ Z.
The right outgoing edge is labelled with cx ≤ d , and the left
outgoing edge is labelled with its integer negation cx ≥ d + 1.

Leaves. Each leaf node ℓ of T is labelled with a conic
combination of inequalities in F with the inequalities along the
path leading to an unfeasible LP, equivalent to 0 ≥ 1.
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Example and measures of complexity

An example of a tree proof with the LPs on the leaves.

F the initial inequalities,

SP Complexity measures

Size of T = # of nodes in the tree T

Depth of T = depth of the tree T
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Relation with Cutting Planes CP
Cutting Planes (CP) refutation system for unfeasible families of
integer linear inequalities, is a Hilbert-style system equipped with
boolean axioms 0 ≤ x ≤ 1 and two inference rules:

Linear Combination
ax ≥ c bx ≥ d
αax + βbx ≥ αc + βd

Rounding
αax ≥ b

ax ≥ ⌈b/α⌉
with a,b ∈ Zn, and c,d , α, β ∈ Z.

CP complexity measures

Proof: L1, . . . ,Lk−1,0 ≥ 1, or the usual associated DAG with 0 ≥ 1 as
the only sink node.

Size: # of inequalities in the proof.

Rank = maximal number of applications of the rounding rule along a
path from an axiom to 0 ≥ 1 in the DAG.
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Known results and SP proof strenght

Important SP results obtained in [Beame et al.], [Fleming et al.]

SP poly simulates CP

CP quasipoly simulates SP∗

SP poly equivalent to treelike-Res(CP)

To our work, more important, are the following results

There are quasipolynomial size and O(log2 n)-depth SP proofs
for Tseitin contradictions Ts(G) over a graph G with n nodes.

There exists a family of formulas which requires SP proofs of
depth Ω( n

log2 n ).
This result uses similar techniques used for treelike CP: reduce shallow SP
proofs to efficient real communication protocols for certain functions, which
instead does not admit efficient protocols.
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Motivations of our work

PHPm
n can be refuted in SP with depth O(log n) (and poly

size, of course)
Ts(G) can be refuted in depth O(log2 n).This bound is
conjectured optimal in [Beame et al.]
The Ω( n

log2 n
) lower bound is for a lifted family of formulas

Ts(G) ◦ g, with G an expander graph.

No technique not using communication complexity was known
to prove depth lower bounds, for example for PHP or Ts(G).
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CNF Formulas and inequalities

From CNFs to set of linear inequalities∨
i

xi ∨
∨

j

ȳj 7→
∑

i

xi +
∑

j

(1 − yj) ≥ 1

Tseitin contradictions
For a graph G = (V ,E) with a charging function ω : V → {0,1}
satisfying

∑
v∈V ω(v) = 1mod 2, the Tseitin contradiction Ts(G, ω) is

the CNF equivalent of∑
e∈E,e∋v

xe = ω(v) mod 2 v ∈ V ,

where xe ranges over e ∈ E .
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Our Results

Our Results

Ω(log n) depth lower bounds for PHPm
n , Ts(Kn), Ts(Hn) and for

LOPn.

an incomparability result for rank in CP and depth in SP.

Despite the fact that SP proofs cannot be balanced [Beame et al.],
that is

size S SP proofs cannot be transformed into poly(S) size and
polylog(S) depth SP proofs

Yet, since SP is a treelike system,

One can prove depth lower bounds by proving size lower bounds
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High level idea

F the initial inequalities,
Q = (cx,d) and slab(Q) = {x ∈ Rn|d < cx < d + 1}

1 Figure out a large family of non integral points satisfying F
(admissible points), i.e. in the initial polytope;

2 Argue that each slab excludes only a limited number of
admissible points;

3 Observe that at the leaves the polytopes are ∅.
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First approach: the antichain method

A toy example: the simple PHP.
SPHPn is the following set of unsatisfiable inequalities:∑n

i=1 xi ≥ 2
xi + xj ≤ 1 (for all i ̸= j ∈ [n])

Lemma
For n ≥ 3, SPHPn

1 can be refuted in depth Θ(log n) in SP, and

2 has a rank 1 CP refutation.
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A toy example: SPHPn

CP rank is 1
Let S :=

∑n
i=1 xi (so we have S ≥ 2).

x2 + x1
...

xn + x1

S + (n − 2)x1 ≤ n − 1

· · ·

x1 + xi
...

xi−1 + xi
xi+1 + xi

...
xn + x1

S + (n − 2)xi ≤ n − 1

· · ·

x1 + xn
...

xn−1 + xn

S + (n − 2)xn ≤ n − 1

−S ≤ −2
x1 ≤ (n − 3)/(n − 2)

��

· · · −S ≤ −2
xi ≤ (n − 3)/(n − 2)

��

· · · −S ≤ −2
xn ≤ (n − 3)/(n − 2)

��
x1 ≤ 0

**

· · · xi ≤ 0

��

· · · xn ≤ 0

tt∑n
i=1 xi ≤ 0

−
∑n

i=1 xi ≤ −2
0 ≤ −2
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SPHPn - Fact 1

SP depth is Ω(log n)

We prove that SP size is Ω( 4
√

n). The proof consists of four main
ingredients

Fact (1)

Define the set of admissible non-integral points and prove its
largeness .

for SPHPn.

D = {0,1/2}
An = {s ∈ Dn|at least 4 coordinates in s are 1

2}
|An| ≥ 2n − 4n3
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SPHPn - Fact 2
Fact (2)

Argue that at each slab not many admissible points are lost.

for SPHPn.

a ∈ Rn, Q = (a, b), D = {0, 1
2}.

w(a)= number of of non-zero coordinates in a
We want to bound the number of s ∈ An such that b < as < b + 1 and we
count the number of s ∈ An such that as = q, q ∈ Q.

Sperner’s theorem Let [t ]n be equipped with the pointwise ordering ⪯ (a ⪯ b
iff ai ≤ bi for all i). Any antichain A on [t ]n has size |A| ≤ tn

√
n .

Observation Let Ia = {i ∈ [n]|ai ̸= 0}, so that |Ia| = w(a). The solutions s to
as = q form an antichain on DIa on the following pointwise order ⪯D :

s ⪯D t iff
{

si ≤ ti if ai > 0
ti ≤ si if ai < 0

Conclusion Each slab Q removes at most |D|w(a)√
w(a)

= 2w(a)√
w(a)

points from An.
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SPHPn - Fact 3

Let T be a SP proof of SPHPn.
Let wT = minQ∈T w(Q)

Fact (3)

Lower bound the size of a SP proof T in terms of the wT .

|T | ≥ Ω(
√

wT )

for SPHPn.

|T | ≥ |An|
2n√
wT

, By Fact 2
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SPHPn - Fact 4

Fact (4)

Conclude the size lower bound proof showing that wT ≥ Ω(t(n)), for a
suitable function t.

for SPHPn.

Let t = t(n) ( 4
√

n for SPHPn) be a parameter.

ΣT = {Q ∈ T |w(Q) ≤ t2}

1 |ΣT | ≥ t : ✓;

2 |ΣT | = 0: ✓, by Fact 3;

3 0 < |ΣT | < t .
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SPHPn - Fact 4

for SPHPn.
Case 3

1 Each query Q ∈ ΣT involves at most t2 variables, hence in total
at most t3 variables X . Define ρ by setting x = 0 for x ∈ X .

2 Consider T ↾ρ and reiterate the argument.

3 At each iteration at least one query disappears

4 Set t(n) in such a way, that the number of iterations is at least
Ω(t(n)).
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Other results obtained by the antichain method
PHPm

n ,m > n
- n. of vars O(mn)
- Size bound : Ω(n1/4)
- Depth lower bounds: Ω(log n)
- D = {0, 1

2}
- An: set of points with at least two coordinates set to 1/2

Ts(Kn)

- n. of vars O(n2)
- Size lower bound: Ω(n1/4)
- Depth lower bounds: Ω(log n)
- D = {0, 1

2 , 1}
- An: set of points such that each nodes in Kn has at least two incident edges
set to 1/2.

LOPn

- n. of vars O(n2)

- Size lower bound: Ω(n
1−ϵ

4 )
- Depth lower bounds: Ω(log n)
- D = {0, 1

2 , 1}
- An: Given X ⊆ [n] of size ≤ n − 3, coordinates xi,j =

1
2 if i , j ̸∈ X and

xi,j = 0, 1 according to the order or if one of i , j ̸∈ X .
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Second approach: the covering method

[Linial and Radhakrishnan05] studied the minimal number of hyperplanes
covering all points of {0, 1}n. To make the problem meaningful they define
essential coverings of {0, 1}n.

Definition

A set L of linear polynomials with real coefficients is said to be an essential
cover of the cube {0, 1}n if

(E1) for each v ∈ {0, 1}n, there is a p ∈ L such that p(v) = 0,

(E2) no proper subset of L satisfies (E1), that is, for every p ∈ L, there is a
v ∈ {0, 1}n such that p alone takes the value 0 on v , and

(E3) every variable appears (in some monomial with non-zero coefficient) in
some polynomial of L.

Theorem (Linial and Radhakrishnan 05)

Any essential cover L of the cube with n coordinates satisfies |L| ∈ Ω(
√

n).
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Polynomials

Let T a SP refutation of Ts(Hn).

We consider the set of polynomials

τ = {ax = b + 1/2 | Q = (ax,b) ∈ T }
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Grids and 4-cycles

Let C be the set of such cycles. Notice that |C| = (n/3)2
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Admissible points

Lemma
Given c ∈ C, there is an admissible point αc such that in αc

the variables of the edges in c are set to 1/2;

the rest of variables are in {0,1}.
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Essentialization of a covering

Fact

Let L be a covering of {0,1}|A| (hence verifying only (E1)). There is a
L′ ⊂ L and a A′ ⊆ A such that L′ is an essential covering {0,1}|A′|.

Proof.

Force (E2) and (E3) by choosing the minimal L′ ⊆ L covering
{0,1}|A| and limits the cube to the only variables in A with non-zero
coefficients in polynomials of L′.

We say that (L′,A′) is an essentialization of (L,A).
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Coverings

Definition

Let c ∈ C and p ∈ τ with p =
∑

e∈E ′⊆E(Hn)

aexe. We say that p is odd on c if∑
e∈E ′∩c ae = 1 mod 2.

Definition

Let c ∈ C. We define τ c = {p ∈ τ | p odd on c}.

Lemma

τ c covers {0,1}|C−{c}|.

Proof.
Since αc is admissible, it must be necessarily covered by some p ∈ τ .
Notice that p must be odd on c since c has 4 edges , hence p on αc

can be 1/2 + b only if p is odd on c. Hence p ∈ τ c .
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Main argument
Notice that |τ | ≥ |τ c |. We prove that |τ c | = Ω(n).

1 if τ c is an essential cover of {0, 1}|C−{c}|. Then by [LN] and since
|C| = O(n2), |τ c | = Ω(n).

2 If τ c is only a cover of {0, 1}|C−{c}|. We extract an essentialization
(τ1,C1) of (τ c ,C − {c}) and reiterate the argument choosing another
c1 ∈ C − (C1 ∪ {c}) until (1) holds or no cycle remain.

Let (τ1,C1), . . . , (τq ,Cq) be the list of refined essentializations. Observe that
τ c ≥ q by def of essentilization. Then

if q ≥ (n/3)2/2, we have done

if q < (n/3)2/2, then∑q
i=1 |Ci | ≥ (n/3)2/2. This is because |C| = q +

∑
i |Ci |

τ =
∑q

i=1 |τi |. This is because τi ’s partitions τ .
Hence

|τ | ≥
∑

i

|τi | ≥
∑

i

√
|Ci | ≥

√∑
i

|Ci | = Ω(n)
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Further devolpements

Size lower bounds are poor:

1 [Yehuda, Yehudayoff 22]. Improve [Linial Radakrishnam 05]
lower bound to

Theorem (Yehuda, Yehudayoff 22)

Any essential cover L of the cube with n coordinates satisfies
|L| ∈ Ω(n0.52).

This allow to push our lower bound to Ω(n1.04)

2 We have new different results for Ts(Hn) getting a truly linear
size lower bound Ω(n2). However still significantly far from
proving that SP proofs of Ts(Hn) in [Beame et al.] are optimal
wrt size and depth.
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