Merge Resolution: QBF proofs with inbuilt strategies

Meena Mahajan

The Institute of Mathematical Sciences, Homi Bhabha National Institute, Chennai, India.

04 July 2022 (Mathematical Approaches to Lower Bounds: Complexity of Proofs and Computation)

(ICMS, Edinburgh. 04-08 July 2022)

ICMS: 04 Jul 2022

Meena Mahajan

イロト 不同 トイヨト イヨト

Joint work Olaf Beyersdorff, Joshua Blinkhorn, Tomáš Peitl, and Gaurav Sood.

Results reported in

- STACS 2019 / Journal of Automated Reasoning 2021,
- FSTTCS 2020 / ECCC TR 2020-188,
- SAT 2022.

<ロ> <四> <四> <四> <三</td>

• SAT: Satisfiability.

eg. Is there an assignment to x, y, z satisfying all the clauses $(x \lor y \lor z), (x \lor \neg y \lor \neg z), (\neg x \lor y \lor \neg z), (\neg x \lor \neg y \lor z)?$

- Quintessential NP-complete problem.
- Very hard in theory.

In practice – a solved problem! Many good SAT solvers around.

<ロ> <四> <四> <四> <三</td>

• SAT: Satisfiability.

eg. Is there an assignment to x, y, z satisfying all the clauses $(x \lor y \lor z), (x \lor \neg y \lor \neg z), (\neg x \lor y \lor \neg z), (\neg x \lor \neg y \lor z)?$

- Quintessential NP-complete problem.
- Very hard in theory.

In practice – a solved problem! Many good SAT solvers around.

• Ambitious ongoing programs to design good solvers for problems harder than SAT.

イロト イボト イヨト イヨト 二日

• Focus of this talk: QBF.

QBF: Quantified Boolean Formulas

- $\bullet\,$ We consider ${\rm QBFs}$ that are
 - totally quantified (no unbound variables),
 - in prenex form,
 - with inner propositional formula in CNF.
- e.g. Is this formula true?

$$\exists e \ \forall u \ \exists c \ \exists d \quad (\neg \ e \lor c)(e \lor d)(\neg \ u \lor c)(u \lor d)(\neg \ c \lor \neg \ d)$$

イロト イ団ト イヨト イヨト 二百

Meena Mahajan

QBF: Quantified Boolean Formulas

- \bullet We consider ${\rm QBFs}$ that are
 - totally quantified (no unbound variables),
 - in prenex form,
 - with inner propositional formula in CNF.
- e.g. Is this formula true?

$$\exists e \ \forall u \ \exists c \ \exists d \quad (\neg \ e \lor c)(e \lor d)(\neg \ u \lor c)(u \lor d)(\neg \ c \lor \neg \ d)$$

• QBF subsumes SAT. eg. Is this QBF true?

 $\exists x \exists y \exists z (x \lor y \lor z) \land (x \lor \neg y \lor \neg z) \land (\neg x \lor y \lor \neg z) \land (\neg x \lor \gamma \lor \forall z)$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─ 臣

QBF: Quantified Boolean Formulas

- \bullet We consider ${\rm QBFs}$ that are
 - totally quantified (no unbound variables),
 - in prenex form,
 - with inner propositional formula in CNF.
- e.g. Is this formula true?

$$\exists e \ \forall u \ \exists c \ \exists d \quad (\neg \ e \lor c)(e \lor d)(\neg \ u \lor c)(u \lor d)(\neg \ c \lor \neg \ d)$$

• QBF subsumes SAT. eg. Is this QBF true?

 $\exists x \exists y \exists z (x \lor y \lor z) \land (x \lor \neg y \lor \neg z) \land (\neg x \lor y \lor \neg z) \land (\neg x \lor \gamma \lor \lor z)$

 $\bullet~\mathrm{QBF}$ more succinctly expressive than SAT; PSPACE-complete.

 $\bullet~\ensuremath{\mathsf{Quite}}$ a few $\ensuremath{\mathrm{QBF}}$ solvers developed in the last couple of decades.

<ロ> <四> <四> <四> <三</td>

- Underlying solver heuristics are formal proof systems: Runs of SAT/QBF solver on false QBFs provide proofs of unsatisfiability/falsity.
- Lower bounds in formal proof system (no short proof of unsat/falsity) ↓
 no short runs.
- Proving lower bounds proof complexity

- QBF $Q\vec{x} \cdot F(x)$
- Two players, P_{\exists} and P_{\forall} , step through quantifier prefix left-to-right. P_{\exists} picks values for \exists variables, P_{\forall} for \forall variables.

<ロ> <四> <四> <四> <三</td>

Assignment constructed on a run: \tilde{a} .

 P_{\exists} wins a run of the game if $F(\tilde{a})$ true. Otherwise P_{\forall} wins.

- $Q\vec{x} \cdot F(x)$ true if and only if P_{\exists} has a winning strategy.
- $Q\vec{x} \cdot F(x)$ false if and only if P_{\forall} has a winning strategy.

- Start with initial set of clauses.
- Derive and add clauses to set until falseness is obvious.

- Start with initial set of clauses.
- Derive and add clauses to set until falseness is obvious.
- To achieve soundness:
 - Preserve P_{\exists} winning strategies.
 - Finally derive empty clause □. (This defeats every potential P_∃ strategy.)
- To achieve completeness:
 - From a P_{\forall} winning strategy, use rules to derive \Box .

ヘロト 人間 ト 人 ヨト 人 ヨトー

• e.g. Two rules that preserve P_{\exists} winning strategies:

* Resolution:
$$\frac{x \lor A \quad \overline{x} \lor B}{A \lor B}$$

* Universal reduction: $\frac{A \lor u}{A} (var(u) \text{ is universal, and right of all variables in } A)$

> <ロ > < 団 > < 言 > < 言 > く 言 > こ の へ (や Meena Mahajan

• e.g. Two rules that preserve P_{\exists} winning strategies:

* Resolution:
$$\frac{x \lor A \quad \overline{x} \lor B}{A \lor B}$$

* Universal reduction: $\frac{A \lor u}{A} (var(u) \text{ is universal, and right of all variables in } A)$

 The QURes proof system (a.k.a. Res+∀Red): Resolution + Universal Reduction.

More sophisticated rules

 Creating tautologies can be unsound. Refutation of True QBF? ∀u∃x(x ∨ u)(¬x ∨ ¬u).

More sophisticated rules

Creating tautologies can be unsound.
 Refutation of True QBF? ∀u∃x(x ∨ u)(¬x ∨ ¬u).

$$\underbrace{\begin{array}{ccc}
 x \lor u & \neg x \lor \neg u \\
 \underline{u \lor \neg u} \\
 \underline{u} \\
 \hline
 \end{array}$$

• Creating seeming tautologies can be meaningful and sound. $\exists x \forall u (x \lor u) (\neg x \lor \neg u)$

イロト イ団ト イヨト イヨト 二百

$$\frac{x \lor u \quad \neg x \lor \neg u}{\underbrace{u^*}_{\Box}}$$

More sophisticated rules

 Creating tautologies can be unsound. Refutation of True QBF? ∀u∃x(x ∨ u)(¬x ∨ ¬u).

Creating seeming tautologies can be meaningful and sound.
 ∃x∀u(x ∨ u)(¬x ∨ ¬u)

$$\frac{x \lor u \quad \neg x \lor \neg u}{\underline{u^*}}$$

- Long-Distance QResolution LDQRes, and generalisations LQU⁺Res:
 - Allow u and $\neg u$ to be combined into u^* , provided u right of pivot.
 - Disallow resolution with pivot x if u < x and antecedents contain "conflicting" $u, \neg u, u^*$.

イロト イボト イヨト イヨト 二日

- In Res+∀Red, preserving P_∃ winning strategies ⇒ soundness.
 In more sophisticated systems?
- Strategy extraction:
 From refutation, extract a P_∀ winning strategy.
- Already quite complex for LDQRes. To keep it manageable, LDQRes syntax also blocks some seemingly sound steps.

イロト イ団ト イヨト イヨト 二百

 The key idea: Preserve and Augment partial P_∀ winning strategies. Construct partial strategies for P_∀ explicitly, building up to a winning strategy.

Meena Mahajan

 The key idea: Preserve and Augment partial P_∀ winning strategies. Construct partial strategies for P_∀ explicitly, building up to a winning strategy.

example

$$\exists x \forall u \exists y \forall v (x \lor u \lor y \lor \neg v) (x \lor u \lor \neg y \lor v) (\neg x)$$

$$\frac{(x \lor u \lor y \lor \neg v)}{(x \lor y), (u = 0, v = 1)} \quad \frac{(x \lor u \lor \neg y \lor v)}{(x \lor \neg y), (u = 0, v = 0)}$$

$$\frac{(x), (u = 0, v = \text{if } y = 0 \text{ then } 1 \text{ else } 0)}{(\Box), (u = 0, v = \text{if } y = 0 \text{ then } 1 \text{ else } 0)} \quad (\neg x), ()$$

▲ロト ▲御 ト ▲注 ト ▲注 ト 一注

Meena Mahajan

A new QBF proof system: MRes (cont'd)

• Syntax of lines in proof:

- For $u \in X_{\forall}$, the function h_u depends only on $x \in X_{\exists}$, x < u.
- Desired Invariant (expressing partial winning strategy): For all assignments α to X_∃, if α falsifies C, then α, *h
 _u*(α) falsifies some axiom clause.
- If $C = \Box$, this gives a P_{\forall} winning strategy soundness.
- Rule:
 - Resolution on clause part, provided for each u ∈ X_∀, h¹_u and h²_u "compatible".
 - Augmenting functions through if-then-else.

- Fix a P_{\forall} winning strategy \vec{h} .
- Start with trivial / constant strategies at initial clauses.

イロト イ団ト イヨト イヨト 二日

Meena Mahajan

- Perform appropriate resolutions to build up \vec{h} .
- Show: all required resolutions satisfy compatibility.

How to represent partial strategies?

- Crucially affects refutation size.
- If-then-else augmentation naturally leads to decision trees. Too large for many strategies.
- Circuits, Branching Programs, Binary Decision Diagrams BDDs: more compact.

But hard to check compatibility.

ヘロト 人間 ト 人 ヨト 人 ヨト

How to represent partial strategies?

- Crucially affects refutation size.
- If-then-else augmentation naturally leads to decision trees. Too large for many strategies.
- Circuits, Branching Programs, Binary Decision Diagrams BDDs: more compact. But hard to check compatibility.
- Our choice:

Binary Decision Diagrams

a more stringent compatibility check.

• Even though functional equivalence sufficient for soundness, we require isomorphism.

Easy to check for BDDs.

Keeps strategy-storage overhead under control.

イロト 不得下 イヨト イヨト 二日

$\exists x \forall u \exists t \ (x \lor u \lor t)(\bar{x} \lor \bar{u} \lor t)(\bar{t})$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 > へ C Meena Mahajan

$\exists x \forall u \exists t \ (x \lor u \lor t)(\bar{x} \lor \bar{u} \lor t)(\bar{t})$

Meena Mahajan

900

イロト イ団ト イヨト イヨト 二百

A non-refutation in MergeRes

A true QBF: $\forall u \exists t \ (\bar{u} \lor t)(u \lor \bar{t}).$

A true QBF: $\forall u \exists t \ (\bar{u} \lor t)(u \lor \bar{t})$. An unsound refutation?

Meena Mahajan

A true QBF: $\forall u \exists t \ (\bar{u} \lor t)(u \lor \bar{t})$. An unsound refutation?

Not a valid refutation.

u cannot depend on t because u is quantified before t.

The Equality Formulas EQ_n : $\exists x_1, \ldots, x_n, \forall u_1, \ldots, u_n, \exists t_1, \ldots, t_n$

$$\begin{array}{ll} P_i: & (x_i \lor u_i \lor t_i) & i \in [n] \\ N_i: & (\overline{x}_i \lor \overline{u}_i \lor t_i) & i \in [n] \\ L: & (\overline{t}_1, \dots, \overline{t}_n) \end{array}$$

・ロト・日ト・ヨト・ヨー シへへ Meena Mahajan

The Equality Formulas $EQ_n : \exists x_1, \ldots, x_n, \forall u_1, \ldots, u_n, \exists t_1, \ldots, t_n$

$$\begin{array}{ll} P_i: & (x_i \lor u_i \lor t_i) & i \in [n] \\ N_i: & (\overline{x}_i \lor \overline{u}_i \lor t_i) & i \in [n] \\ L: & (\overline{t}_1, \dots, \overline{t}_n) \end{array}$$

<ロト < 書 > < 書 > く き > き > うへぐ Meena Mahajan

• False QBF. \forall -player has unique winning strategy $u_i = x_i \forall i$.

The Equality Formulas $EQ_n : \exists x_1, \ldots, x_n, \forall u_1, \ldots, u_n, \exists t_1, \ldots, t_n$

$$\begin{array}{lll} P_i: & (x_i \lor u_i \lor t_i) & i \in [n] \\ N_i: & (\overline{x}_i \lor \overline{u}_i \lor t_i) & i \in [n] \\ L: & (\overline{t}_1, \dots, \overline{t}_n) \end{array}$$

- False QBF. \forall -player has unique winning strategy $u_i = x_i \forall i$.
- Hard in expansion-based systems $\forall Exp+Res$ and IR.
- Hard in reduction-based systems Q-Res and QU-Res.
- Easy in LDQRes (even reductionless LDQRes)

< ロト < 回 ト < 差 ト < 差 ト 三 差</p>

The Equality Formulas EQ_n : $\exists x_1, \ldots, x_n, \forall u_1, \ldots, u_n, \exists t_1, \ldots, t_n$

$$\begin{array}{lll} P_i: & (x_i \lor u_i \lor t_i) & i \in [n] \\ N_i: & (\overline{x}_i \lor \overline{u}_i \lor t_i) & i \in [n] \\ L: & (\overline{t}_1, \dots, \overline{t}_n) \end{array}$$

- False QBF. \forall -player has unique winning strategy $u_i = x_i \forall i$.
- Hard in expansion-based systems $\forall Exp+Res$ and IR.
- Hard in reduction-based systems Q-Res and QU-Res.
- Easy in LDQRes (even reductionless LDQRes)
- Easy in MergeRes ... even regular and treelike

▲ロト ▲御 ト ▲注 ト ▲注 ト 一注

Where MRes scores ... (2)

The SquaredEquality Formulas

 $SqEQ_n: \exists x_1, \ldots, x_n, \exists y_1, \ldots, y_n, \forall u_1, \ldots, u_n, \forall v_1, \ldots, v_n, \exists \{t_{i,j} \mid i, j \in [n]\}$

$$\begin{array}{ll} (x_i \lor u_i \lor y_j \lor v_j \lor t_{i,j}) & i, j \in [n] \\ (x_i \lor u_i \lor \bar{y}_j \lor \bar{v}_j \lor t_{i,j}) & i, j \in [n] \\ (\bar{x}_i \lor \bar{u}_i \lor y_j \lor v_j \lor t_{i,j}) & i, j \in [n] \\ (\bar{x}_i \lor \bar{u}_i \lor \bar{y}_j \lor \bar{v}_j \lor t_{i,j}) & i, j \in [n] \\ & \bigvee_{i,j} \bar{t}_{i,j} \end{array}$$

• False QBF. \forall -player has unique winning strategy $u_i = x_i \forall i, v_j = y_j \forall j$.

The SquaredEquality Formulas

 $SqEQ_n: \exists x_1, \ldots, x_n, \exists y_1, \ldots, y_n, \forall u_1, \ldots, u_n, \forall v_1, \ldots, v_n, \exists \{t_{i,j} \mid i, j \in [n]\}$

$$\begin{array}{ll} (x_i \lor u_i \lor y_j \lor v_j \lor t_{i,j}) & i, j \in [n] \\ (x_i \lor u_i \lor \bar{y}_j \lor \bar{v}_j \lor t_{i,j}) & i, j \in [n] \\ (\bar{x}_i \lor \bar{u}_i \lor y_j \lor v_j \lor t_{i,j}) & i, j \in [n] \\ (\bar{x}_i \lor \bar{u}_i \lor \bar{y}_j \lor \bar{v}_j \lor t_{i,j}) & i, j \in [n] \\ & \bigvee_{i,j} \bar{t}_{i,j} \end{array}$$

- False QBF. \forall -player has unique winning strategy $u_i = x_i \forall i, v_j = y_j \forall j$.
- Hard in reductionless LDQRes
- Easy in MergeRes ... even regular and treelike.

• MRes stores P_{\forall} winning strategies explicitly. Hence

No small representation in underlying model $$\Downarrow$$

no short refutation

• If function *f* is

- hard in underlying model, but
- has small circuit C.

then we can craft a small false QBF

 $Q_{f,C}$: $\exists \vec{x} \forall u \exists \vec{t} \quad (u \neq t_m) (\vec{t} \text{ encodes gate values of } C(\vec{x}))$

・ロト・日本・モート・モー うへぐ

Unique winning strategy for P_{\forall} is $u = f(\vec{x})$. Hence $Q_{f,C}$ has no short refutations. eg QParity.

- General MRes? No unconditional lower bounds known for BDD size.

<ロ> <四> <四> <四> <三</td>

• Lower bounds for general MRes: find another weakness.

- Lower bounds for general MRes: find another weakness.
- To make verification easy, we impose isomorphim requirement - more stringent than needed for soundness.

□ > < ⊕ > < E > < E > < E

Meena Mahajan

• Building isomorphic partial strategies not always easy.

- Lower bounds for general MRes: find another weakness.
- To make verification easy, we impose isomorphim requirement - more stringent than needed for soundness.
- Building isomorphic partial strategies not always easy.
- We show: the KBKF-Iq formulas, easy in QURes but hard for LDQRes, are also hard for MRes.

<ロ> <四> <四> <四> <三</td>

Meena Mahajan

Formula	tweak	hardness
QParity		QURes
LQParity	duplicate clauses	
	$C \rightarrow C \lor z, C \lor \neg z$	LDQRes
QUParity	duplicate z	
	$z \rightarrow z_1 \lor z_2; \neg z \rightarrow \neg z_1 \lor \neg z_2$	LQU^+Res
MParity	weaken some clauses	LQU^+Res
	add some new clauses	easy for MRes

<ロト < 回 ト < 巨 ト < 三 ト < 三 ト の へ (?) Meena Mahajan

Formula	hardness
KBKF	QRes
KBKF-lq	QRes, LDQRes, IRM, MRes
KBKF-lq-weak	easy in MRes
KBKF-lq-split	hard for IRM
	easy in MRes

<ロ > < 回 > < 言 > < 言 > く 言 > こ の < ぐ Meena Mahajan

KBKF-lq	hard for MRes
KBKF-lq-split	easy in MRes

- But KBKF-Iq is a restriction of KBKF-Iq-split.
- So MRes is not "closed under restrictions".

Shortest refutation size of $\Phi|_{x=b}$ > Shortest refutation size of Φ . MRes is an unnatural proof system. Perhaps not suited for implementing as solver.

イロト イ団ト イヨト イヨト 二百

KBKF-lq	hard for MRes
KBKF-Iq-weak	easy in MRes

- But KBKF-Iq-weak is just a weakening of KBKF-Iq.
- Why not add a weakening rule to the proof system?

<<p>(日)

Meena Mahajan

• Weakening itself needs to be defined carefully!

<ロ> <四> <四> <四> <三</td>

- Invariant maintained.
- Note: Changing $h_u = *$ to any h'_u would be sound. But hard to analyse/control size.

- MRes: only merge resolution, no weakening.
- $MResW_{\exists}$: Merge resolution, only existential weakening.
- \bullet MResW_{\forall}: Merge resolution, only universal (strategy) weakening.

<ロ> <四> <四> <四> <三</td>

• MResW: Merge resolution, any weakening.

- MRes: only merge resolution, no weakening.
- $MResW_{\exists}$: Merge resolution, only existential weakening.
- MResW $_{\forall}$: Merge resolution, only universal (strategy) weakening.

イロト 不得 トイヨト イヨト

• MResW: Merge resolution, any weakening.

We show:

- $MRes_{\forall}$ does not simulate $MRes_{\exists}$.
- Regular MRes does not simulate Regular MRes_∀.
- eFrege+ \forall Red simulates MResW.

The overall landscape

ICMS: 04 Jul 2022

Meena Mahajan

• MResW is sound and complete for Dependency QBF (DQBF), a more succinctly expressive formalism that is NEXPTIME-complete.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─ 臣

Meena Mahajan

MRes is provably not complete for DQBF.
 So weakening really helps.

● ∀-Expansion, ∀-Reduction, existing paradigms for resolution-based QBF proof systems.

Merge-Resolution: a new approach.

- Builds strategies into proofs with compact representations.
- Lines in the proof have a clear semantic meaning.
- Enables some sound inference steps blocked in existing systems.
- Exponentially more powerful than LQU⁺Res, IRM on some formulas.
- Exponentially weaker than LQU⁺Res on other formulas.
- Unnatural: restrictions may need exponentially larger proofs.
- Weakening adds power for QBFs, also makes the system complete for DQBFs.

イロト 不得下 イヨト イヨト 一臣

 Can other representations of partial strategies be used more advantageously?
 Two conflicting requirements: succinct representations, and ease of checking equivalence.

<ロ> <四> <四> <四> <三</td>

Meena Mahajan

 Can the search for a P_∀ winning strategy, and the goal of preserving a P_∃ winning strategy, somehow be interleaved to any advantage?

- Can other representations of partial strategies be used more advantageously?
 Two conflicting requirements: succinct representations, and ease of checking equivalence.
- Can the search for a P_∀ winning strategy, and the goal of preserving a P_∃ winning strategy, somehow be interleaved to any advantage?

Thank you

◆ロト ◆聞 ト ◆注 ト ◆注 ト 一注

Meena Mahajan