Merge Resolution: QBF proofs with inbuilt strategies

Meena Mahajan

The Institute of Mathematical Sciences, Homi Bhabha National Institute, Chennai, India.

04 July 2022
(Mathematical Approaches to Lower Bounds:
Complexity of Proofs and Computation)
(ICMS, Edinburgh. 04-08 July 2022)

Merge Resolution: QBF proofs with inbuilt strategies

Joint work Olaf Beyersdorff, Joshua Blinkhorn, Tomáš Peitl, and Gaurav Sood.

Results reported in

- STACS 2019 / Journal of Automated Reasoning 2021,
- FSTTCS 2020 / ECCC TR 2020-188,
- SAT 2022.

Propositional Satisfiability

- SAT: Satisfiability.
eg. Is there an assignment to x, y, z satisfying all the clauses $(x \vee y \vee z),(x \vee \neg y \vee \neg z),(\neg x \vee y \vee \neg z),(\neg x \vee \neg y \vee z)$?
- Quintessential NP-complete problem.
- Very hard - in theory.

In practice - a solved problem! Many good SAT solvers around.

Propositional Satisfiability

- SAT: Satisfiability. eg. Is there an assignment to x, y, z satisfying all the clauses $(x \vee y \vee z),(x \vee \neg y \vee \neg z),(\neg x \vee y \vee \neg z),(\neg x \vee \neg y \vee z)$?
- Quintessential NP-complete problem.
- Very hard - in theory. In practice - a solved problem! Many good SAT solvers around.
- Ambitious ongoing programs to design good solvers for problems harder than SAT.
- Focus of this talk: QBF.

QBF: Quantified Boolean Formulas

- We consider QBFs that are
- totally quantified (no unbound variables),
- in prenex form,
- with inner propositional formula in CNF.
- e.g. Is this formula true?

$$
\exists e \forall u \exists c \exists d \quad(\neg e \vee c)(e \vee d)(\neg u \vee c)(u \vee d)(\neg c \vee \neg d)
$$

QBF: Quantified Boolean Formulas

- We consider QBFs that are
- totally quantified (no unbound variables),
- in prenex form,
- with inner propositional formula in CNF.
- e.g. Is this formula true?

$$
\exists e \forall u \exists c \exists d \quad(\neg e \vee c)(e \vee d)(\neg u \vee c)(u \vee d)(\neg c \vee \neg d)
$$

- QBF subsumes SAT. eg. Is this QBF true?

$$
\exists x \exists y \exists z(x \vee y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z)
$$

QBF: Quantified Boolean Formulas

- We consider QBFs that are
- totally quantified (no unbound variables),
- in prenex form,
- with inner propositional formula in CNF.
- e.g. Is this formula true?

$$
\exists e \forall u \exists c \exists d \quad(\neg e \vee c)(e \vee d)(\neg u \vee c)(u \vee d)(\neg c \vee \neg d)
$$

- QBF subsumes SAT. eg. Is this QBF true?

$$
\exists x \exists y \exists z(x \vee y \vee z) \wedge(x \vee \neg y \vee \neg z) \wedge(\neg x \vee y \vee \neg z) \wedge(\neg x \vee \neg y \vee z)
$$

- QBF more succinctly expressive than SAT; PSPACE-complete.

QBF Proof Complexity

- Quite a few QBF solvers developed in the last couple of decades.
- Underlying solver heuristics are formal proof systems: Runs of SAT/QBF solver on false QBFs provide proofs of unsatisfiability/falsity.
- Lower bounds in formal proof system (no short proof of unsat/falsity)
\Downarrow

> no short runs.

- Proving lower bounds - proof complexity

The two-player evaluation game

- QBF $Q \vec{x} \cdot F(x)$
- Two players, P_{\exists} and P_{\forall}, step through quantifier prefix left-to-right. P_{\exists} picks values for \exists variables, P_{\forall} for \forall variables.
Assignment constructed on a run: ã.
P_{\exists} wins a run of the game if $F(\tilde{a})$ true. Otherwise P_{\forall} wins.
- $Q \vec{x} \cdot F(x)$ true if and only if P_{\exists} has a winning strategy.
- $Q \vec{x} \cdot F(x)$ false if and only if P_{\forall} has a winning strategy.

How to prove that a false QBF is false

- Start with initial set of clauses.
- Derive and add clauses to set until falseness is obvious.

How to prove that a false QBF is false

- Start with initial set of clauses.
- Derive and add clauses to set until falseness is obvious.
- To achieve soundness:
- Preserve P_{\exists} winning strategies.
- Finally derive empty clause \square.
(This defeats every potential P_{\exists} strategy.)
- To achieve completeness:
- From a P_{\forall} winning strategy, use rules to derive \square.

An example QBF Proof System

- e.g. Two rules that preserve P_{\exists} winning strategies:
* Resolution: $\frac{x \vee A \quad \bar{x} \vee B}{A \vee B}$
* Universal reduction:
$\frac{A \vee u}{A}(\operatorname{var}(u)$ is universal, and right of all variables in $A)$

An example QBF Proof System

- e.g. Two rules that preserve P_{\exists} winning strategies:
* Resolution: $\frac{x \vee A \quad \bar{x} \vee B}{A \vee B}$
* Universal reduction:
$\frac{A \vee u}{A}(\operatorname{var}(u)$ is universal, and right of all variables in $A)$
- The QURes proof system (a.k.a. Res+ $\forall R e d$): Resolution + Universal Reduction.

More sophisticated rules

- Creating tautologies can be unsound. Refutation of True QBF? $\forall u \exists x(x \vee u)(\neg x \vee \neg u)$.
$\frac{x \vee u \quad \neg x \vee \neg u}{\frac{u \vee \neg u}{\frac{u}{\square}}}$

More sophisticated rules

- Creating tautologies can be unsound. Refutation of True QBF? $\forall u \exists x(x \vee u)(\neg x \vee \neg u)$.
$\frac{x \vee u \quad \neg x \vee \neg u}{\frac{u \vee \neg u}{\frac{u}{\square}}}$
- Creating seeming tautologies can be meaningful and sound. $\exists x \forall u(x \vee u)(\neg x \vee \neg u)$ $\frac{x \vee u \quad \neg x \vee \neg u}{\frac{u^{*}}{\square}}$

More sophisticated rules

- Creating tautologies can be unsound. Refutation of True QBF? $\forall u \exists x(x \vee u)(\neg x \vee \neg u)$.
$\frac{x \vee u \quad \neg x \vee \neg u}{\frac{u \vee \neg u}{\frac{u}{\square}}}$
- Creating seeming tautologies can be meaningful and sound. $\exists x \forall u(x \vee u)(\neg x \vee \neg u)$
$\frac{x \vee u \quad \neg x \vee \neg u}{\frac{u^{*}}{\square}}$
- Long-Distance QResolution LDQRes, and generalisations LQU+ Res:
- Allow u and $\neg u$ to be combined into u^{*}, provided u right of pivot.
- Disallow resolution with pivot x if $u<x$ and antecedents contain "conflicting" $u, \neg u, u^{*}$.

Proving Soundness

- In Res $+\forall$ Red, preserving P_{\exists} winning strategies \Longrightarrow soundness. In more sophisticated systems?
- Strategy extraction:

From refutation, extract a P_{\forall} winning strategy.

- Already quite complex for LDQRes.

To keep it manageable, LDQRes syntax also blocks some seemingly sound steps.

A new QBF proof system: MRes

- The key idea: Preserve and Augment partial P_{\forall} winning strategies. Construct partial strategies for P_{\forall} explicitly, building up to a winning strategy.

A new QBF proof system: MRes

- The key idea: Preserve and Augment partial P_{\forall} winning strategies.

Construct partial strategies for P_{\forall} explicitly, building up to a winning strategy.

- example

$$
\begin{aligned}
& \exists x \forall u \exists y \forall v(x \vee u \vee y \vee \neg v)(x \vee u \vee \neg y \vee v)(\neg x) \\
& \frac{(x \vee u \vee y \vee \neg v)}{(x \vee y),(u=0, v=1)} \quad \frac{(x \vee u \vee \neg y \vee v)}{(x \vee \neg y),(u=0, v=0)} \\
& \frac{(x),(u=0, v=\text { if } y=0 \text { then } 1 \text { else } 0)}{(\square),(u=0, v=\text { if } y=0 \text { then } 1 \text { else } 0)}
\end{aligned}
$$

A new QBF proof system: MRes (cont'd)

- Syntax of lines in proof:

- For $u \in X_{\forall}$, the function h_{u} depends only on $x \in X_{\exists}, x<u$.
- Desired Invariant (expressing partial winning strategy): For all assignments α to X_{\exists}, if α falsifies C, then $\alpha, \vec{h}_{u}(\alpha)$ falsifies some axiom clause.
- If $C=\square$, this gives a P_{\forall} winning strategy - soundness.
- Rule:
- Resolution on clause part, provided for each $u \in X_{\forall}, h_{u}^{1}$ and h_{u}^{2} "compatible".
- Augmenting functions through if-then-else.

Proving completeness

- Fix a P_{\forall} winning strategy \vec{h}.
- Start with trivial / constant strategies at initial clauses.
- Perform appropriate resolutions to build up \vec{h}.
- Show: all required resolutions satisfy compatibility.

How to represent partial strategies?

- Crucially affects refutation size.
- If-then-else augmentation naturally leads to decision trees.

Too large for many strategies.

- Circuits, Branching Programs, Binary Decision Diagrams BDDs: more compact.
But hard to check compatibility.

How to represent partial strategies?

- Crucially affects refutation size.
- If-then-else augmentation naturally leads to decision trees.

Too large for many strategies.

- Circuits, Branching Programs, Binary Decision Diagrams BDDs: more compact.
But hard to check compatibility.
- Our choice:

Binary Decision Diagrams

a more stringent compatibility check.

- Even though functional equivalence sufficient for soundness, we require isomorphism.
Easy to check for BDDs.
Keeps strategy-storage overhead under control.

A refutation in MergeRes

$$
\exists x \forall u \exists t \quad(x \vee u \vee t)(\bar{x} \vee \bar{u} \vee t)(\bar{t})
$$

A refutation in MergeRes

$$
\exists x \forall u \exists t \quad(x \vee u \vee t)(\bar{x} \vee \bar{u} \vee t)(\bar{t})
$$

Refutation:

A non-refutation in MergeRes

A true QBF: $\forall u \exists t(\bar{u} \vee t)(u \vee \bar{t})$.

A non-refutation in MergeRes

A true QBF: $\forall u \exists t(\bar{u} \vee t)(u \vee \bar{t})$.
An unsound refutation?

$$
\frac{\left(\begin{array}{cc}
\text { axiom uvt) } \\
t(1) & (\text { axiom } u v \bar{t}) \\
\square \quad 0 & 0
\end{array}\right)}{\square(t)}
$$

A non-refutation in MergeRes

A true QBF: $\forall u \exists t(\bar{u} \vee t)(u \vee \bar{t})$.
An unsound refutation?

Not a valid refutation.
u cannot depend on t because u is quantified before t.

Where MRes scores ... (1)

The Equality Formulas $E Q_{n}: \exists x_{1}, \ldots, x_{n}, \forall u_{1}, \ldots, u_{n}, \exists t_{1}, \ldots, t_{n}$

$$
\begin{array}{rll}
P_{i}: & \left(x_{i} \vee u_{i} \vee t_{i}\right) & i \in[n] \\
N_{i}: & \left(\bar{x}_{i} \vee \bar{u}_{i} \vee t_{i}\right) & i \in[n] \\
L: & \left(\bar{t}_{1}, \ldots, \bar{t}_{n}\right) &
\end{array}
$$

Where MRes scores ... (1)

The Equality Formulas $E Q_{n}: \exists x_{1}, \ldots, x_{n}, \forall u_{1}, \ldots, u_{n}, \exists t_{1}, \ldots, t_{n}$

$$
\begin{array}{rll}
P_{i}: & \left(x_{i} \vee u_{i} \vee t_{i}\right) & i \in[n] \\
N_{i}: & \left(\bar{x}_{i} \vee \bar{u}_{i} \vee t_{i}\right) & i \in[n] \\
L: & \left(\bar{t}_{1}, \ldots, \bar{t}_{n}\right) &
\end{array}
$$

- False QBF. \forall-player has unique winning strategy $u_{i}=x_{i} \forall i$.

Where MRes scores ... (1)

The Equality Formulas $E Q_{n}: \exists x_{1}, \ldots, x_{n}, \forall u_{1}, \ldots, u_{n}, \exists t_{1}, \ldots, t_{n}$

$$
\begin{array}{rll}
P_{i}: & \left(x_{i} \vee u_{i} \vee t_{i}\right) & i \in[n] \\
N_{i}: & \left(\bar{x}_{i} \vee \bar{u}_{i} \vee t_{i}\right) & i \in[n] \\
L: & \left(\bar{t}_{1}, \ldots, \bar{t}_{n}\right) &
\end{array}
$$

- False QBF. \forall-player has unique winning strategy $u_{i}=x_{i} \forall i$.
- Hard in expansion-based systems $\forall E x p+$ Res and IR.
- Hard in reduction-based systems Q-Res and QU-Res.
- Easy in LDQRes (even reductionless LDQRes)

Where MRes scores ... (1)

The Equality Formulas $E Q_{n}: \exists x_{1}, \ldots, x_{n}, \forall u_{1}, \ldots, u_{n}, \exists t_{1}, \ldots, t_{n}$

$$
\begin{array}{rll}
P_{i}: & \left(x_{i} \vee u_{i} \vee t_{i}\right) & i \in[n] \\
N_{i}: & \left(\bar{x}_{i} \vee \bar{u}_{i} \vee t_{i}\right) & i \in[n] \\
L: & \left(\bar{t}_{1}, \ldots, \bar{t}_{n}\right) &
\end{array}
$$

- False QBF. \forall-player has unique winning strategy $u_{i}=x_{i} \forall i$.
- Hard in expansion-based systems $\forall \operatorname{Exp}+$ Res and IR.
- Hard in reduction-based systems Q-Res and QU-Res.
- Easy in LDQRes (even reductionless LDQRes)
- Easy in MergeRes ... even regular and treelike

Where MRes scores ... (2)

The SquaredEquality Formulas
$S q E Q_{n}: \exists x_{1}, \ldots, x_{n}, \exists y_{1}, \ldots, y_{n}, \forall u_{1}, \ldots, u_{n}, \forall v_{1}, \ldots, v_{n}, \exists\left\{t_{i, j} \mid i, j \in[n]\right\}$

$$
\begin{array}{cl}
\left(x_{i} \vee u_{i} \vee y_{j} \vee v_{j} \vee t_{i, j}\right) & i, j \in[n] \\
\left(x_{i} \vee u_{i} \vee \bar{y}_{j} \vee \bar{v}_{j} \vee t_{i, j}\right) & i, j \in[n] \\
\left(\bar{x}_{i} \vee \bar{u}_{i} \vee y_{j} \vee v_{j} \vee t_{i, j}\right) & i, j \in[n] \\
\left(\bar{x}_{i} \vee \bar{u}_{i} \vee \bar{y}_{j} \vee \bar{v}_{j} \vee t_{i, j}\right) & i, j \in[n] \\
& \vee{ }_{i, j} \bar{t}_{i, j}
\end{array} \quad .
$$

- False QBF. \forall-player has unique winning strategy $u_{i}=x_{i} \forall i, v_{j}=y_{j} \forall j$.

Where MRes scores

The SquaredEquality Formulas
$S q E Q_{n}: \exists x_{1}, \ldots, x_{n}, \exists y_{1}, \ldots, y_{n}, \forall u_{1}, \ldots, u_{n}, \forall v_{1}, \ldots, v_{n}, \exists\left\{t_{i, j} \mid i, j \in[n]\right\}$

$$
\begin{array}{cl}
\left(x_{i} \vee u_{i} \vee y_{j} \vee v_{j} \vee t_{i, j}\right) & i, j \in[n] \\
\left(x_{i} \vee u_{i} \vee \bar{y}_{j} \vee \bar{v}_{j} \vee t_{i, j}\right) & i, j \in[n] \\
\left(\bar{x}_{i} \vee \bar{u}_{i} \vee y_{j} \vee v_{j} \vee t_{i, j}\right) & i, j \in[n] \\
\left(\bar{x}_{i} \vee \bar{u}_{i} \vee \bar{y}_{j} \vee \bar{v}_{j} \vee t_{i, j}\right) & i, j \in[n] \\
& \vee{ }_{i, j} \bar{t}_{i, j}
\end{array}
$$

- False QBF. \forall-player has unique winning strategy $u_{i}=x_{i} \forall i, v_{j}=y_{j} \forall j$.
- Hard in reductionless LDQRes
- Easy in MergeRes ... even regular and treelike.

Where MRes fails

- MRes stores P_{\forall} winning strategies explictly. Hence No small representation in underlying model
\Downarrow
no short refutation
- If function f is
- hard in underlying model, but
- has small circuit C.
then we can craft a small false QBF

$$
Q_{f, C}: \exists \vec{x} \forall u \exists \vec{t} \quad\left(u \neq t_{m}\right)(\vec{t} \text { encodes gate values of } C(\vec{x}))
$$

Unique winning strategy for P_{\forall} is $u=f(\vec{x})$. Hence $Q_{f, C}$ has no short refutations.

Where MRes fails ... (2)

- Tree-like MRes: strategy representions are decision trees.

Large decision tree size for every P_{\forall} winning strategy \Downarrow

No short tree-like MRes refutations.

eg QParity.

- Regular MRes: strategy representions are read-once BDDs.

Large read-once BDD size for every P_{\forall} winning strategy \Downarrow
No short regular MRes refutations.

- General MRes? No unconditional lower bounds known for BDD size.

Where MRes fails ... (3)

- Lower bounds for general MRes: find another weakness.

Where MRes fails ... (3)

- Lower bounds for general MRes: find another weakness.
- To make verification easy, we impose isomorphim requirement - more stringent than needed for soundness.
- Building isomorphic partial strategies not always easy.

Where MRes fails ... (3)

- Lower bounds for general MRes: find another weakness.
- To make verification easy, we impose isomorphim requirement - more stringent than needed for soundness.
- Building isomorphic partial strategies not always easy.
- We show: the KBKF-lq formulas, easy in QURes but hard for LDQRes, are also hard for MRes.

Some new strengths of MRes ... (1)

Formula	tweak	hardness
QParity		QURes
LQParity	duplicate clauses $c \rightarrow c \vee z, c \vee \neg z$	LDQRes
QUParity	duplicate z $z \rightarrow z_{1} \vee z_{2} ; \neg z \rightarrow \neg z_{1} \vee \neg z_{2}$	LQU $^{+}$Res
MParity	weaken some clauses add some new clauses	LQU + Res easy for MRes

Some new strengths of MRes ... (2)

Formula	hardness
KBKF	QRes
KBKF-Iq	QRes, LDQRes, IRM, MRes
KBKF-Iq-weak	easy in MRes
KBKF-Iq-split	hard for IRM easy in MRes

A new weakness of MRes

KBKF-Iq	hard for MRes
KBKF-Iq-split	easy in MRes

- But KBKF-Iq is a restriction of KBKF-Iq-split.
- So MRes is not "closed under restrictions".

Shortest refutation size of $\left.\Phi\right|_{x=b}>$ Shortest refutation size of Φ.
MRes is an unnatural proof system.
Perhaps not suited for implementing as solver.

Overcoming the weakness with weakening?

KBKF-Iq	hard for MRes
KBKF-Iq-weak	easy in MRes

- But KBKF-Iq-weak is just a weakening of KBKF-Iq.
- Why not add a weakening rule to the proof system?
- Weakening itself needs to be defined carefully!

Types of weakening

	Clause	line
	D	$\left(C, h_{u_{1}}, h_{u_{2}}, \ldots, h_{u_{s}}\right)$.
For $x \in X_{\exists}$	Weaken to $D \vee x$	$\left(C \vee x, h_{u_{1}}, h_{u_{2}}, \ldots, h_{u_{s}}\right)$.
For $u \in X_{\forall}$	Weaken to $D \vee u$	$\left(C, h_{u_{1}}^{\prime}, h_{u_{2}}^{\prime}, \ldots, h_{u_{s}}^{\prime}\right)$.
		For $u_{i} \neq u, h_{u_{i}}^{\prime}=h_{u_{i}}$.
		h_{u} should be $* ; h_{u}^{\prime}$ can be 0 or 1.

Types of weakening

	Clause	line
	D	$\left(C, h_{u_{1}}, h_{u_{2}}, \ldots, h_{u_{s}}\right)$.
For $x \in X_{\exists}$	Weaken to $D \vee x$	$\left(C \vee x, h_{u_{1}}, h_{u_{2}}, \ldots, h_{u_{s}}\right)$.
For $u \in X_{\forall}$	Weaken to $D \vee u$	$\left(C, h_{u_{1}}^{\prime}, h_{u_{2}}^{\prime}, \ldots, h_{u_{s}}^{\prime}\right)$.
		For $u_{i} \neq u, h_{u_{i}}^{\prime}=h_{u_{i}}$.
		h_{u} should be $* ; h_{u}^{\prime}$ can be 0 or 1.

- Invariant maintained.
- Note: Changing $h_{u}=*$ to any h_{u}^{\prime} would be sound. But hard to analyse/control size.

Types of systems

- MRes: only merge resolution, no weakening.
- MResW_{\exists} : Merge resolution, only existential weakening.
- MResW W_{\forall} : Merge resolution, only universal (strategy) weakening.
- MResW: Merge resolution, any weakening.

Types of systems

- MRes: only merge resolution, no weakening.
- MResW_{\exists} : Merge resolution, only existential weakening.
- $M R e s W_{\forall}$: Merge resolution, only universal (strategy) weakening.
- MResW: Merge resolution, any weakening.

We show:

- MRes_{\forall} does not simulate MRes_{\exists}.
- Regular MRes does not simulate Regular MRes M .
- eFrege $+\forall$ Red simulates MResW.

The overall landscape

$A \longrightarrow B \quad A p$-simulates B
$A \longrightarrow B \begin{aligned} & A \text {-simulates } B ; \\ & B \text { does not simulate } A\end{aligned}$
A - B does not simulate A

How else weakening helps

- MResW is sound and complete for Dependency QBF (DQBF), a more succinctly expressive formalism that is NEXPTIME-complete.
- MRes is provably not complete for DQBF.

So weakening really helps.

Summary

- \forall-Expansion, \forall-Reduction, existing paradigms for resolution-based QBF proof systems.
Merge-Resolution: a new approach.
- Builds strategies into proofs with compact representations.
- Lines in the proof have a clear semantic meaning.
- Enables some sound inference steps blocked in existing systems.
- Exponentially more powerful than LQU ${ }^{+}$Res, IRM on some formulas.
- Exponentially weaker than LQU+ Res on other formulas.
- Unnatural: restrictions may need exponentially larger proofs.
- Weakening adds power for QBFs, also makes the system complete for DQBFs.

Questions

- Can other representations of partial strategies be used more advantageously?
Two conflicting requirements: succinct representations, and ease of checking equivalence.
- Can the search for a P_{\forall} winning strategy, and the goal of preserving a P_{\exists} winning strategy, somehow be interleaved to any advantage?

Questions

- Can other representations of partial strategies be used more advantageously?
Two conflicting requirements: succinct representations, and ease of checking equivalence.
- Can the search for a P_{\forall} winning strategy, and the goal of preserving a P_{\exists} winning strategy, somehow be interleaved to any advantage?

Thank you

