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The Minimum Circuit Size Problem (MCSP)

• MCSP(f, s): is there a circuit of size ≤ s computing the given a truthtable f ∈ {0, 1}2n?

• MCSP(f, s) ∈ NP: have time to check whether given circuit computes f

• . . . is MCSP(f, s) NP-hard?

• NP-hardness of MCSP(f, s) would imply breakthrough circuit lower bounds

Goal: show that classes of efficient algorithms do not solve MCSP(f, s).
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MCSP in Proof Complexity

• Formalize MCSP(f, s) as a CNF-formula over O(2n · s) variables

• The MCSP(f, s) formula is central to proof complexity:
- lower bounds on MCSP(SAT, nc) essentially imply that NP 6⊆ P/poly requires long proofs
- one of few formulas conjectured hard for strong proof systems such as extended Frege

• Only have lower bounds for weak proof systems:
- Polynomial Calculus (over any field) [Raz98]
- Resolution [RWY02, PR04, Raz04a, Raz04b]
- Res(ε log s) [Raz15]

Open Problem ([Raz22])
Prove that SoS requires degree sΩ(1) to refute MCSP(f, s).
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Sum of Squares

• Let P = {p1 = 0, . . . , pm = 0} be a system of polynomial equations

• An SoS certificate of unsatisfiability of P are polys π = (t1, . . . , ta; s1, . . . sb) such that

a∑
i=1

ti · pi +
b∑

j=1
s2
j = −1

• The SoS degree of refuting P is the min degree of any SoS refutation

• The SoS size of refuting P is the min number of monomials in any SoS refutation
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Results
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Results

Theorem
For all Boolean functions f : {0, 1}n → {0, 1} and s ≥ nd(ε), it holds that SoS requires degree
Ωε(s1−ε) to refute MCSP(f, s).

Essentially tight: there is a degree O(s) SoS refutation.

Theorem
Let f be a Boolean function that has a circuit of size s ≥ nd(ε) computing f on all but t
inputs. Then SoS requires size exp

(
Ωε(s2−ε/t)

)
to refute MCSP(f, s).

For example, we may set s = 2n0.99 and t = s1.5, then SoS requires size 2Ω(2n0.99 ).

Similar results in the monotone setting for monotone slice functions.
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Proof Ideas
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Encoding MCSP(f, s)

• There exists circuit C s.t. for all inputs α ∈ {0, 1}x it holds that C(α) = f(α)

• MCSP(f, s) = Circuits(y) ∧
(∧

α∈{0,1}n Cy(α) = f(α)
)

- Circuits(β) is sat iff β ∈ {0, 1}y encodes a valid circuit of size s
- Cβ(α) = f(α) is sat iff the circuit encoded by β evaluates to f(α) on input α

• Idea: restrict Circuits(y) by ρ s.t. sat assignments correspond to a “nice” set of circuits
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Proof Idea

What can we base the hardness on?
Linear equations modulo 2.

• Given b ∈ {0, 1}U , for every u ∈ U we have the
constraint ⊕

v∈N(u)
zv = bu

• Choose ρ such that for all assignments γ to
Circuits(y)

∣∣
ρ

we have

Cργ(α) =
⊕

v∈N(α)
γv

Use explicit expanders [GUV09] and known SoS lower bounds [Gri01] to obtain main theorem.
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Conclusion and Open Problems

• Same ideas can be used to recover PC degree lower bounds

• Unifies and simplifies these MCSP lower bounds

• Equational CSP (e.g. k-XOR) lower bounds over expanders ⇒ MCSP(f, s) lower bounds

• Some open problems:
- Cutting Planes lower bounds for MCSP(f, s)

- More general size lower bounds for SoS
- Can SoS prove anything in the monotone setting?

Thanks!
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