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No algebra in this talk

Logic based definitions for static semi-algebraic proof systems

Natural combinatorial principles capturing the strength of those systems
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…wait, but is this sound?
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⋁
x∈Pos

x ∨ ⋁
y∈Neg

¬y ⟶ ∏
x∈Pos

x̄ ∏
y∈Neg

y = 0

∪ {x2 = x, x + x̄ = 1, y2 = y, y + ȳ = 1 : x ∈ Pos, y ∈ Neg}
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Only clauses with positive weights

Unary Sherali-Adams over  ( )ℤ uSAℤ
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Only weakenings of initial clauses

Nullstellensatz over  ( )ℤ NSℤ
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Only weakenings of initial clauses

Nullstellensatz over  ( )𝔽p NS𝔽p

Weights in  and the sum also over 𝔽p 𝔽p

m ≠ 0
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Unary Sum-of-Squares over  ( )ℤ uSOSℤ

No instances of the rule 

And weights in 

(C, w1 + w2)
(C, w1) (C, w2)

↕

{±1}

Partitioned  into sets the form 

{(Ci,1), (Ci ∨ Cj, wiwj) : i ≠ j ∈ I}
(⊥,1)…(⊥,1)
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Res

tree-like Res

≠

≠

≠

[GHJMPRT’22]

≠



Pigeonhole Principle
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f
n + 1 n

:  is total and injective

 f.a. 

 f.a. 

PHPn+1
n f

xi1 ∨ ⋯ ∨ xin i ∈ [n + 1]
¬xij ∨ ¬xi′ j j ∈ [n] & i ≠ i′ ∈ [n + 1]

 is  where 

 and   for 

every   

PHP(G) PHPn+1
n

G ⊆ Kn+1,n xij = "False"

(i, j) ∉ E(G)

THM.  is easy to refute in  PHP(G) uSAℤ
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Res( ) d +PHP
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F = C1 ∧ … ∧ Cm where Cj are d-DNF 

Each  is a Res( )-derivation from 

 of a -DNF  and all together 

the  are a substitution 

instance of 

πj d

F d D′ i

D′ 1, …, D′ ℓ

PHPn+1
n

…

D′ 1 D′ 2 D′ ℓ

π1 π2 πℓ
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THM. Analogous p-simulations for:

  but with onto-functional versions of  and 

 but with  principle [IS’06]

depth-  versions of NS/SA 

uSOS/SOS (new combinatorial principles, work in progress)

NSℤ PHP(G) wtPHP(G)
NS𝔽2

MOD2

d

Proof Idea: Generalize the p-simulation 

of DRMaxSAT by bounded-depth Frege + 

PHP from [BBIM-SM’18].

The argument in all those cases is essentially the same.
Depth-  Fregec +PHP(G)

 where all the squares are 

only allowed to have at most 

 negative monomials

uSOSℤ

O(log n)



Depth-  version of Sherali-Adamsd
 is defined as  but instead of using weighted resolution uses 

weighted depth-  Frege and the same soundness condition.

SA(d)
ℤ SAℤ

d
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THM.  is strictly stronger than depth-  Frege, at least for .uSA(d)
ℤ d d = o(log log n)

THM.  is hard to refute in , at least for .MOD2 uSA(d)
ℤ d = o(log log n)

THM.  is p-equivalent to circular depth-  Frege.SA(d)
ℤ d



Depth-  version of Sherali-Adamsd
 is defined as  but instead of using weighted resolution uses 

weighted depth-  Frege and the same soundness condition.

SA(d)
ℤ SAℤ

d

20

THM.  is strictly stronger than depth-  Frege, at least for .uSA(d)
ℤ d d = o(log log n)

THM.  is hard to refute in , at least for .MOD2 uSA(d)
ℤ d = o(log log n)

THM.  is p-equivalent to circular depth-  Frege.SA(d)
ℤ d

Proof. Use hardness of PHP in depth-  Freged

Proof. Use hardness of  in depth-  Frege  [Aj’90, BP’96]MOD2 d +PHP



Open problems
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Is  hard for ? (E.g. for constant )MOD2 depth-d Frege + wtPHP d

Is  hard for ? (E.g. for constant )wtPHP depth-d Frege + PHP d

Find some family of combinatorial principles   s.t. depth-  Frege +  

p-simulates Cutting Planes. (e.g. is  enough?)

Φ d Φ
Φ = PHP + MODp

Does  p-simulate Resolution?uSOSℤ

A yes would imply  is hard for  (and circular depth-  Frege)MOD2 SA(d)
ℤ d

A yes would imply  does not p-simulate uSA(d)
ℤ SAℤ


