
Ilario Bonacina

On the strength of semi-algebraic
proof systems

UPC Barcelona Tech

Talk based on a joint work with Maria Luisa Bonet (to appear LICS’22)

July 4 2022

Workshop “Mathematical Approaches to Lower Bounds: Complexity of Proofs and Computation”

2

No algebra in this talk

Logic based definitions for static semi-algebraic proof systems

Natural combinatorial principles capturing the strength of those systems

Resolution (Res)

3

C ∨ x C ∨ ¬x
C

↕

Inference Rules

F = C1 ∧ … ∧ Cm where Cj are clauses

Resolution (Res)

3

C ∨ x C ∨ ¬x
C

↕

Inference Rules

C
C ∨ x C ∨ ¬x

 (symmetric weakening)

C ∨ x C ∨ ¬x
C

 (symmetric cut)

F = C1 ∧ … ∧ Cm where Cj are clauses

Resolution (Res)

3

C ∨ x C ∨ ¬x
C

↕

Inference Rules

C ∨ ℓ ∨ ℓ
C ∨ ℓ

 (idempotency) x ∨ ¬x
 (excluded middle)

C
C ∨ x C ∨ ¬x

 (symmetric weakening)

C ∨ x C ∨ ¬x
C

 (symmetric cut)

F = C1 ∧ … ∧ Cm where Cj are clauses

Weighted Resolution

4

F = {(C1, w1), …, (Cm, wm)} with wi in a group, e.g. ℤ, 𝔽2, …

(C ∨ x, w) (C ∨ ¬x, w)
(C, w)

↕

Substitution Rules

(C ∨ ℓ ∨ ℓ, w)
(C ∨ ℓ, w)

 (idempotency)

(x ∨ ¬x, w)
 (excluded middle)

Weighted Resolution

4

F = {(C1, w1), …, (Cm, wm)} with wi in a group, e.g. ℤ, 𝔽2, …

(C ∨ x, w) (C ∨ ¬x, w)
(C, w)

↕

Substitution Rules

(C ∨ ℓ ∨ ℓ, w)
(C ∨ ℓ, w)

 (idempotency)

(x ∨ ¬x, w)
 (excluded middle)

(C, w) (C, − w)
↕

(C, w1 + w2)
(C, w1) (C, w2)

↕

Weighted Resolution

4

F = {(C1, w1), …, (Cm, wm)} with wi in a group, e.g. ℤ, 𝔽2, …

(C ∨ x, w) (C ∨ ¬x, w)
(C, w)

↕

Substitution Rules

(C ∨ ℓ ∨ ℓ, w)
(C ∨ ℓ, w)

 (idempotency)

(x ∨ ¬x, w)
 (excluded middle)

(C, w) (C, − w)
↕

(C, w1 + w2)
(C, w1) (C, w2)

↕

The definition works equally well for bounded depth-Frege.

(E, w) (E, − w)

(C1, w1) (C2, w2) … (Cm, wm)

(C ∨ x, w) (C ∨ ¬x, w)

(C, w)

(Cm ∨ y, wm) (Cm ∨ ¬y, wm)

(C, w) (C, − w)

(⊥,1)

5

(E, w) (E, − w)

(C1, w1) (C2, w2) … (Cm, wm)

(C ∨ x, w) (C ∨ ¬x, w)

(C, w)

(Cm ∨ y, wm) (Cm ∨ ¬y, wm)

(C, w) (C, − w)

(⊥,1)

5

…wait, but is this sound?

THM. The definitions we give for (unary) NS/SA/SOS correspond to

systems p-equivalent to the usual definitions of (unary) NS/SA/SOS,

when clauses are encoded using the multiplicative encoding.

6

THM. The definitions we give for (unary) NS/SA/SOS correspond to

systems p-equivalent to the usual definitions of (unary) NS/SA/SOS,

when clauses are encoded using the multiplicative encoding.

6

⋁
x∈Pos

x ∨ ⋁
y∈Neg

¬y ⟶ ∏
x∈Pos

x̄ ∏
y∈Neg

y = 0

∪ {x2 = x, x + x̄ = 1, y2 = y, y + ȳ = 1 : x ∈ Pos, y ∈ Neg}

(E, w) (E, − w)

(C1, w1) (C2, w2) … (Cm, wm)

(C ∨ x, w) (C ∨ ¬x, w)

(C, w)

(Cm ∨ y, wm) (Cm ∨ ¬y, wm)

(C, w) (C, − w)

(⊥ , m)Only clauses with positive weights

Sherali-Adams over ()ℤ SAℤ

7

m > 0

(E, w) (E, − w)

(C1, w1) (C2, w2) … (Cm, wm)

(C ∨ x, w) (C ∨ ¬x, w)

(C, w)

(Cm ∨ y, wm) (Cm ∨ ¬y, wm)

(C, w) (C, − w)

(⊥,1)…(⊥,1)

8

Only clauses with positive weights

Unary Sherali-Adams over ()ℤ uSAℤ

No instances of the rule

And weights in

(C, w1 + w2)
(C, w1) (C, w2)

↕

{±1}

(E, w) (E, − w)

(C1, w1) (C2, w2) … (Cm, wm)

(C ∨ x, w) (C ∨ ¬x, w)

(C, w)

(Cm ∨ y, wm) (Cm ∨ ¬y, wm)

(C, w) (C, − w)

(⊥ , m)

9

Only weakenings of initial clauses

Nullstellensatz over ()ℤ NSℤ

m ≠ 0

(E, w) (E, − w)

(C1, w1) (C2, w2) … (Cm, wm)

(C ∨ x, w) (C ∨ ¬x, w)

(C, w)

(Cm ∨ y, wm) (Cm ∨ ¬y, wm)

(C, w) (C, − w)

10

Only weakenings of initial clauses

Unary Nullstellensatz over ()ℤ uNSℤ

No instances of the rule

And weights in

(C, w1 + w2)
(C, w1) (C, w2)

↕

{±1}

(⊥,1)…(⊥,1)

(E, w) (E, − w)

(C1, w1) (C2, w2) … (Cm, wm)

(C ∨ x, w) (C ∨ ¬x, w)

(C, w)

(Cm ∨ y, wm) (Cm ∨ ¬y, wm)

(C, w) (C, − w)

(⊥ , m)

11

Only weakenings of initial clauses

Nullstellensatz over ()𝔽p NS𝔽p

Weights in and the sum also over 𝔽p 𝔽p

m ≠ 0

(E, w) (E, − w)

(C1, w1) (C2, w2) … (Cm, wm)

(C ∨ x, w) (C ∨ ¬x, w)

(C, w)

(Cm ∨ y, wm) (Cm ∨ ¬y, wm)

(C, w) (C, − w)

12

Partitioned into sets the form

{(Ci, w2
i), (Ci ∨ Cj, wiwj) : i ≠ j ∈ I}

Sum-of-Squares over ()ℤ SOSℤ

(⊥ , m) m > 0

(E, w) (E, − w)

(C1, w1) (C2, w2) … (Cm, wm)

(C ∨ x, w) (C ∨ ¬x, w)

(C, w)

(Cm ∨ y, wm) (Cm ∨ ¬y, wm)

(C, w) (C, − w)

13

Unary Sum-of-Squares over ()ℤ uSOSℤ

No instances of the rule

And weights in

(C, w1 + w2)
(C, w1) (C, w2)

↕

{±1}

Partitioned into sets the form

{(Ci,1), (Ci ∨ Cj, wiwj) : i ≠ j ∈ I}
(⊥,1)…(⊥,1)

-simulationsp

14

SAℤ

SOSℤ

NSℤ

≠

≠

uSAℤ

uSOSℤ

uNSℤ

≠

≠ NSℤ2

A B p-simulates A B

A B and are incomparableA B

≠

-simulationsp

14

SAℤ

SOSℤ

NSℤ

≠

≠

uSAℤ

uSOSℤ

uNSℤ

≠

≠ NSℤ2

A B p-simulates A B

A B and are incomparableA B

≠

≠ ?

≠ ?

≠

-simulationsp

14

SAℤ

SOSℤ

NSℤ

≠

≠

uSAℤ

uSOSℤ

uNSℤ

≠

≠ NSℤ2

A B p-simulates A B

A B and are incomparableA B

≠

≠ ?

≠ ?

Res

tree-like Res

≠

≠

≠

[GHJMPRT’22]

≠

Pigeonhole Principle

15

f
n + 1 n

: is total and injective

 f.a.

 f.a.

PHPn+1
n f

xi1 ∨ ⋯ ∨ xin i ∈ [n + 1]
¬xij ∨ ¬xi′ j j ∈ [n] & i ≠ i′ ∈ [n + 1]

 is where

 and for

every

PHP(G) PHPn+1
n

G ⊆ Kn+1,n xij = "False"

(i, j) ∉ E(G)

THM. is easy to refute in PHP(G) uSAℤ

Weighted PHP (wtPHP)

16

n

n

n

n

⋮

n + 1

n

n

n

n

Pigeons fly to holes in the same

group or in some adjacent group.

If a pigeon flies to the lower group it

must fly twice.

Holes can accept at most 1 pigeon

coming from the same group or the

larger group.

Holes can accept at most 2 pigeons

coming from the lower group.

THM. is easy to refute in wtPHP(G) SAℤ

Weighted PHP (wtPHP)

16

n

n

n

n

⋮

n + 1

n

n

n

n

Pigeons fly to holes in the same

group or in some adjacent group.

If a pigeon flies to the lower group it

must fly twice.

Holes can accept at most 1 pigeon

coming from the same group or the

larger group.

Holes can accept at most 2 pigeons

coming from the lower group.

THM. is easy to refute in wtPHP(G) SAℤ

Weighted PHP (wtPHP)

16

n

n

n

n

⋮

n + 1

n

n

n

n

Pigeons fly to holes in the same

group or in some adjacent group.

If a pigeon flies to the lower group it

must fly twice.

Holes can accept at most 1 pigeon

coming from the same group or the

larger group.

Holes can accept at most 2 pigeons

coming from the lower group.

THM. is easy to refute in wtPHP(G) SAℤ

Weighted PHP (wtPHP)

16

n

n

n

n

⋮

n + 1

n

n

n

n

Pigeons fly to holes in the same

group or in some adjacent group.

If a pigeon flies to the lower group it

must fly twice.

Holes can accept at most 1 pigeon

coming from the same group or the

larger group.

Holes can accept at most 2 pigeons

coming from the lower group.

THM. is easy to refute in wtPHP(G) SAℤ

Weighted PHP (wtPHP)

16

n

n

n

n

⋮

n + 1

n

n

n

n

Pigeons fly to holes in the same

group or in some adjacent group.

If a pigeon flies to the lower group it

must fly twice.

Holes can accept at most 1 pigeon

coming from the same group or the

larger group.

Holes can accept at most 2 pigeons

coming from the lower group.

THM. is easy to refute in wtPHP(G) SAℤ

17

The graphs can be taken of degree at most and the height of the Res()

derivations is .

G 3 d
5

Tree-like Res()d +PHP(G)

degree- d uSAℤ

width- Resd +PHP(G)

17

The graphs can be taken of degree at most and the height of the Res()

derivations is .

G 3 d
5

Tree-like Res()d +PHP(G)

degree- d uSAℤ

width- Resd +PHP(G)

Tree-like Res()d +wtPHP(G)

degree- d SAℤ

width- Resd +wtPHP(G)

Res() d +PHP

18

F = C1 ∧ … ∧ Cm where Cj are d-DNF

Each is a Res()-derivation from

 of a -DNF and all together

the are a substitution

instance of

πj d

F d D′ i

D′ 1, …, D′ ℓ

PHPn+1
n

…

D′ 1 D′ 2 D′ ℓ

π1 π2 πℓ

19

THM. Analogous p-simulations for:

 but with onto-functional versions of and

 but with principle [IS’06]

depth- versions of NS/SA

uSOS/SOS (new combinatorial principles, work in progress)

NSℤ PHP(G) wtPHP(G)
NS𝔽2

MOD2

d

Proof Idea: Generalize the p-simulation

of DRMaxSAT by bounded-depth Frege +

PHP from [BBIM-SM’18].

The argument in all those cases is essentially the same.
Depth- Fregec +PHP(G)

 where all the squares are

only allowed to have at most

 negative monomials

uSOSℤ

O(log n)

Depth- version of Sherali-Adamsd
 is defined as but instead of using weighted resolution uses

weighted depth- Frege and the same soundness condition.

SA(d)
ℤ SAℤ

d

20

THM. is strictly stronger than depth- Frege, at least for .uSA(d)
ℤ d d = o(log log n)

THM. is hard to refute in , at least for .MOD2 uSA(d)
ℤ d = o(log log n)

THM. is p-equivalent to circular depth- Frege.SA(d)
ℤ d

Depth- version of Sherali-Adamsd
 is defined as but instead of using weighted resolution uses

weighted depth- Frege and the same soundness condition.

SA(d)
ℤ SAℤ

d

20

THM. is strictly stronger than depth- Frege, at least for .uSA(d)
ℤ d d = o(log log n)

THM. is hard to refute in , at least for .MOD2 uSA(d)
ℤ d = o(log log n)

THM. is p-equivalent to circular depth- Frege.SA(d)
ℤ d

Proof. Use hardness of PHP in depth- Freged

Proof. Use hardness of in depth- Frege [Aj’90, BP’96]MOD2 d +PHP

Open problems

21

Is hard for ? (E.g. for constant)MOD2 depth-d Frege + wtPHP d

Is hard for ? (E.g. for constant)wtPHP depth-d Frege + PHP d

Find some family of combinatorial principles s.t. depth- Frege +

p-simulates Cutting Planes. (e.g. is enough?)

Φ d Φ
Φ = PHP + MODp

Does p-simulate Resolution?uSOSℤ

A yes would imply is hard for (and circular depth- Frege)MOD2 SA(d)
ℤ d

A yes would imply does not p-simulate uSA(d)
ℤ SAℤ

