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No algebra in this talk

o Logic based definitions for static semi-algebraic proof systems

o Natural combinatorial principles capturing the strength of those systems
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The definition works equally well for bounded depth-Frege.
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Sherali-Adams over Z (5A )
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Unary Sherali-Adams over Z (#S5A)
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(C,w) And weights in { £ 1}
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Only clauses with positive weights (1,1)...(L,1)
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Nullstellensatz over [Fp (NS[FP)

(Cy,wy) (G5, W) .. Cc,,w,)

(C,Vyw,) (C,V y,w,)

(CVx,w) (CVx,w)

Weights in |-, and the sum also over |

< !
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Only weakenings of initial clauses (L.,m) m + 0

11



Sum-of-Squares over Z (505)

(Cy,wy) (G5, W) .. Cc,,w,)

(C,Vyw,) (C,V y,w,)

(CVx,w) (CVx,w)

(C,w)
Cw (€ -w Ew)  (E=w
Partitioned into sets the form (L,m) m>0

{(on wl-z), (GVCowwy) i Fjel]
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Unary Sum-of-Squares over Z (uSOS)

(Cy,wy) (G5, W) ... Cc,,w,)
(C,Vy,w,) (C,, V-y,w, )

(C,w; +w,)

(CVx,w) (CV=x,w) Noinstances oftherule —m8M8M8 =~
(Ca WI) (Ca WZ)

!

(C,w) And weights in {*+1)
(Cow) (€, —w) (Ew) (B =w)
Partitioned into sets the form (L, 1)...(L,1)

WG, 1), (C v C}, wl-wj) . 1Fj€el}
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Pigeonhole Principle

PHP"t!: fis total and injective
x1V--Vx fai€ln+1]}
vV xgfagjeln] &i#Firen+ 1]

PHP(G) is PHP""! where

G C K, ,and x; = "False" for

every (1,7) & E(G)

THM. PHP(G) is easy to refute in uSA-,
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Tree-like Res(d)+ PHP(G)

degree-d uSA,

width-d Res+PHP(G)
The graphs G can be taken of degree at most 3 and the height of the Res(d)

derivations is 3.
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Res(d) + PHP

F:CI/\

.. A C,, where C; are d-DNF

Each 7; is a Res(d)-derivation from
F of a d-DNF D; and all together

D the Dy, ..., D, are a substitution

instance of PHP""*1
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THM. Analogous p-simulations for:
o NS§, but with onto-functional versions of PHP(G) and wtPHP(G)

o NS¢ but with MOD, principle [IS’06]
o depth-d versions of NS/SA

o uSOS/SOS (new combinatorial principles, work in progress)
The argument in all those cases is essentially the same.

Depth-c Frege+ PHP(G)

Proof Idea: Generalize the p-simulation
of DRMaxSAT by bounded-depth Frege + /
PHP from [BBIM-SM’18]. uS0S, where all the squares are

only allowed to have at most

O(log n) negative monomials |,



Depth-d version of Sherali-Adams

SAgl) is defined as SA, but instead of using weighted resolution uses

weighted depth-d Frege and the same soundness condition.

THM. SA;’D is p-equivalent to circular depth-d Frege.

THM. uSAg’D is strictly stronger than depth-d Frege, at least for d = o(log log n).

THM. MOD, is hard to refute in uSAgi), at least for d = o(log log n).
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THM. MOD, is hard to refute in uSAéd), at least for d = o(loglogn).
Proof. Use hardness of MOD, in depth-d Frege +PHP [Aj’90, BP’96]
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Open problems

Is MOD, hard for depth-d Frege + wtPHP? (E.g. for constant d)
A yes would imply MOD, is hard for SA;’) (and circular depth-d Frege)

Is wtPHP hard for depth-d Frege + PHP? (E.qg. for constant d)
A yes would imply uSAg"') does not p-simulate SA-,

Does uSOS, p-simulate Resolution?

Find some family of combinatorial principles @ s.t. depth-d Frege + ®
p-simulates Cutting Planes. (e.g. is ® = PHP + MOD,, enough?)
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