On the strength of semi-algebraic proof systems

Ilario Bonacina UPC Barcelona Tech July 4 2022 Workshop "Mathematical A

Talk based on a joint work with Maria Luisa Bonet (to appear LICS'22)

Workshop "Mathematical Approaches to Lower Bounds: Complexity of Proofs and Computation"

- Logic based definitions for static semi-algebraic proof systems
- Natural combinatorial principles capturing the strength of those systems

No algebra in this talk

Resolution (Res) $F = C_1 \land \ldots \land C_m$ where C_j are clauses

Inference Rules

 $\frac{C \lor x}{C} \xrightarrow{C \lor \neg x} \downarrow$

Resolution (Res)

Inference Rules

 $F = C_1 \land \ldots \land C_m$ where C_j are clauses

Resolution (Res)

Inference Rules

 $F = C_1 \land \ldots \land C_m$ where C_i are clauses

$$\frac{1}{x \vee \neg x}$$
 (excluded middle)

Weighted Resolution

$$F = \{(C_1, w_1), \dots, (C_m, w_m)\}$$
 with w_i is

Substitution Rules

$$\frac{(C \lor x, w) \qquad (C \lor \neg x, w)}{(C, w)} \ddagger$$

$$\frac{(C \lor \ell \lor \ell, w)}{(C \lor \ell, w)} \text{ (idempotency)}$$

 $(x \lor \neg x, w)$ (excluded middle)

n a group, e.g. \mathbb{Z} , \mathbb{F}_2 , ...

Weighted Resolution

$$F = \{(C_1, w_1), \dots, (C_m, w_m)\}$$
 with w_i is

Substitution Rules

$$\frac{(C \lor x, w) \quad (C \lor \neg x, w)}{(C, w)} \ddagger$$

$$\frac{(C \lor \ell \lor \ell, w)}{(C \lor \ell, w)} \text{ (idempotency)}$$

 $(x \lor \neg x, w)$ (excluded middle)

n a group, e.g. \mathbb{Z} , \mathbb{F}_2 , ...

$$\frac{(C, w_1 + w_2)}{(C, w_1) \quad (C, w_2)} \uparrow$$

$$\frac{1}{(C,w)} \quad (C,-w) \quad (C,-w)$$

Weighted Resolution

$$F = \{(C_1, w_1), \dots, (C_m, w_m)\}$$
 with w_i is

Substitution Rules

$$\frac{(C \lor x, w) \quad (C \lor \neg x, w)}{(C, w)} \ddagger$$

 $(C \lor \ell, w)$ (idempotency)

 $(x \lor \neg x, w)$ (excluded middle)

n a group, e.g. $\mathbb{Z}, \mathbb{F}_2, \ldots$

$$\frac{(C, w_1 + w_2)}{(C, w_1)} (C, w_2) \uparrow$$

$$\frac{(C,w)}{(C,-w)} \stackrel{\uparrow}{\downarrow}$$

The definition works equally well for bounded depth-Frege.

$$(C_1, w_1)$$
 (C_2, w_2)

$$(C \lor x, w) \qquad (C \lor \neg x, w)$$

(C, w)

$$(C,w) \qquad (C,-w)$$

 \ldots (C_m, w_m) $(C_m \lor y, w_m)$ $(C_m \lor \neg y, w_m)$ $(E,w) \qquad (E,-w)$ $(\perp, 1)$

$$(C_{1}, w_{1}) (C_{2}, w_{2}) \dots (C_{m}, w_{m})$$

$$(C_{m} \lor y, w_{m}) (C_{m} \lor \neg y, w_{m})$$

$$(C, w)$$

$$(C, w)$$

$$(C, w) (C, -w) (E, w) (E, -w)$$

$$\dots \text{wait, but is this sound?} (\bot, 1)$$

$$(C \lor x, w) \qquad (C \lor \neg x, w)$$

$$(C,w) \qquad (C,-w)$$

THM. The definitions we give for (unary) NS/SA/SOS correspond to systems p-equivalent to the usual definitions of (unary) NS/SA/SOS, when clauses are encoded using the **multiplicative** encoding.

THM. The definitions we give for (unary) NS/SA/SOS correspond to systems p-equivalent to the usual definitions of (unary) NS/SA/SOS, when clauses are encoded using the **multiplicative** encoding.

 $\bigcup \left\{ x^2 = x, \ x + \bar{x} = 1, \ y^2 = y, \ y + \bar{y} = 1 : \ x \in Pos, \ y \in Neg \right\}$

Unary Sherali-Adams over $\mathbb{Z}(uSA_{\pi})$

$$\dots \qquad (C_m, w_m)$$
$$(C_m \lor y, w_m) \qquad (C_m \lor \neg y, w_m)$$

 $(C \lor x, w)$ $(C \lor \neg x, w)$ No instances of the rule $\frac{(C, w_1 + w_2)}{(C, w_1)}$ (C, w_2)

And weights in $\{\pm 1\}$

$$(E,w) \qquad (E,-w)$$

Only clauses with positive weights $(\bot, 1) \dots (\bot, 1)$

Unary Nullstellensatz over $Z(uNS_{\pi})$

Only weakenings of initial clauses

) ...
$$(C_m, w_m)$$

 $(C_m \lor y, w_m)$ $(C_m \lor \neg y, w_m)$
 $(C, w_1 + w_2)$

 $(C \lor x, w)$ $(C \lor \neg x, w)$ No instances of the rule $\frac{(C, w_1) + (C, w_2)}{(C, w_1)}$

And weights in $\{\pm 1\}$

$$(E,w) \qquad (E,-w)$$

 $(\perp, 1) \dots (\perp, 1)$

Nullstellensatz over $\mathbb{F}_p(NS_{\mathbb{F}_p})$

	$(C_{1}, $	w ₁)	(C_2, w_2)
$(C \lor x, v)$	V)	$(C \lor$	$(\neg x, w)$
	(C, w))	
	(<i>C</i> , <i>w</i>)	(<i>C</i> , – <i>w</i>)

Only weakenings o

$$(C_m \lor y, w_m) \qquad (C_m \lor \neg y, w_m)$$

$$(E, w) \qquad (E, -w)$$
Weights in \mathbb{F}_p and the sum also over

$$(E, w) \qquad (E, -w)$$
of initial clauses $(\perp, m) \qquad m = 1$

Sum-of-Squares over $\mathbb{Z}(SOS_{\pi})$

(<i>C</i> ₁	$, w_1)$	(C_2, w_2)
$(C \lor x, w)$	$(C \lor \neg$	$\neg x, w)$
(<i>C</i> ,	W)	
(<i>C</i> ,	w) (C, -w)

Partitioned into sets the form $\{(C_i, w_i^2), (C_i \lor C)\}$

 \ldots (C_m, W_m)

 $(C_m \lor y, w_m)$ $(C_m \lor \neg y, w_m)$

 $(E,w) \qquad (E,-w)$

$$Y_j, w_i w_j$$
) : $i \neq j \in I$

 (\perp, m)

m > 0

12

Unary Sum-of-Squares

 $(C,w) \qquad (C,-w)$

Partitioned into s $\{(C_i, 1), (C_i \lor C_j,$

s over
$$\mathbb{Z}$$
 ($uSOS_{\mathbb{Z}}$)

$$(C_m \lor y, w_m) \qquad (C_m \lor \neg y, w_m)$$

$$(C_m \lor y, w_m) \qquad (C_m \lor \neg y, w_m)$$
o instances of the rule $\frac{(C, w_1 + w_2)}{(C, w_1) \qquad (C, w_2)}$
and weights in {±1}

$$(E, w) \qquad (E, -w)$$
sets the form $(\bot, 1) \dots (\bot, 1)$
 $, w_i w_j) : i \neq j \in I$ }

p-simulations

$A \longrightarrow B$ A p-simulates B

A \cdots B A and B are incomparable

p-simulations

$A \longrightarrow B$ A p-simulates B

 $A \cdots B$ A and B are incomparable

p-simulations

tree-like Res

 \neq

Res

 \neq

$A \longrightarrow B$ A p-simulates B

 $A \cdots B$ A and B are incomparable

Pigeonhole Principle

 PHP_n^{n+1} : f is total and injective $x_{i1} \vee \cdots \vee x_{in}$ f.a. $i \in [n+1]$ $\neg x_{ij} \lor \neg x_{i'j}$ f.a. $j \in [n]$ & $i \neq i' \in [n+1]$

PHP(G) is PHP_n^{n+1} where $G \subseteq K_{n+1,n}$ and $x_{ij} =$ "False" for every $(i, j) \notin E(G)$

Pigeons fly to holes in the same group or in some adjacent group.
If a pigeon flies to the lower group it

must fly twice.

- Holes can accept at most 1 pigeon coming from the same group or the larger group.
- Holes can accept at most 2 pigeons coming from the lower group.

Pigeons fly to holes in the same group or in some adjacent group.
If a pigeon flies to the lower group it

must fly twice.

- Holes can accept at most 1 pigeon coming from the same group or the larger group.
- Holes can accept at most 2 pigeons coming from the lower group.

Pigeons fly to holes in the same group or in some adjacent group.
If a pigeon flies to the lower group it

must fly twice.

- Holes can accept at most 1 pigeon coming from the same group or the larger group.
- Holes can accept at most 2 pigeons coming from the lower group.

Pigeons fly to holes in the same group or in some adjacent group.
If a pigeon flies to the lower group it

must fly twice.

- Holes can accept at most 1 pigeon coming from the same group or the larger group.
- Holes can accept at most 2 pigeons coming from the lower group.

Pigeons fly to holes in the same group or in some adjacent group.
If a pigeon flies to the lower group it

must fly twice.

- Holes can accept at most 1 pigeon coming from the same group or the larger group.
- Holes can accept at most 2 pigeons coming from the lower group.

width- $d \operatorname{Res} + PHP(G)$ derivations is 5.

The graphs G can be taken of degree at most 3 and the height of the Res(d)

Res(d) + PHP $F = C_1 \land \ldots \land C_m$ where C_i are d-DNF

Each π_i is a Res(*d*)-derivation from *F* of a *d*-DNF D'_i and all together the D'_1, \ldots, D'_{ℓ} are a substitution instance of PHP_n^{n+1}

THM. Analogous p-simulations for:

- $NS_{\mathbb{Z}}$ but with onto-functional versions of PHP(G) and wtPHP(G)
- $NS_{\mathbb{F}_2}$ but with MOD_2 principle [IS'06]
- depth-d versions of NS/SA
- uSOS/SOS (new combinatorial principles, work in progress)
- The argument in all those cases is essentially the same.

Proof Idea: Generalize the p-simulation of DRMaxSAT by bounded-depth Frege + PHP from [BBIM-SM'18].

 $uSOS_{\mathbb{Z}}$ where all the squares are only allowed to have at most $O(\log n)$ negative monomials

Depth-*d* **version of Sherali-Adams**

 $SA_{\pi}^{(d)}$ is defined as SA_{π} but instead of using weighted resolution uses

weighted depth-d Frege and the same soundness condition.

THM. $SA_{\pi}^{(d)}$ is p-equivalent to circular depth-*d* Frege.

THM. MOD_2 is hard to refute in $uSA_{\mathbb{Z}}^{(d)}$, at least for $d = o(\log \log n)$.

- **THM.** $uSA_{\pi}^{(d)}$ is strictly stronger than depth-*d* Frege, at least for $d = o(\log \log n)$.

Depth-*d* **version of Sherali-Adams**

 $SA_{\pi}^{(d)}$ is defined as SA_{π} but instead of using weighted resolution uses

weighted depth-d Frege and the same soundness condition.

THM. $SA_{\pi}^{(d)}$ is p-equivalent to circular depth-*d* Frege.

THM. $uSA_{\pi}^{(d)}$ is strictly stronger than depth-*d* Frege, at least for $d = o(\log \log n)$.

THM. MOD_2 is hard to refute in $uSA_{\mathbb{Z}}^{(d)}$, at least for $d = o(\log \log n)$.

Proof. Use hardness of PHP in depth-*d* Frege

Proof. Use hardness of MOD_2 in depth-d Frege + PHP [Aj'90, BP'96]

Open problems

Is MOD_2 hard for depth-d Frege + wtPHP? (E.g. for constant d) A yes would imply MOD_2 is hard for $SA_{\mathbb{Z}}^{(d)}$ (and circular depth-d Frege)

Is wtPHP hard for depth-d Frege + PHP? (E.g. for constant d) A yes would imply $uSA_{\mathbb{Z}}^{(d)}$ does not p-simulate $SA_{\mathbb{Z}}$

Does $uSOS_{\mathbb{Z}}$ p-simulate Resolution?

Find some family of combinatorial principles Φ s.t. depth-d Frege + Φ p-simulates Cutting Planes. (e.g. is $\Phi = PHP + MOD_p$ enough?)

