On the strength of semi-algebraic proof systems

Ilario Bonacina

UPC Barcelona Tech
July 42022
Workshop "Mathematical Approaches to Lower Bounds: Complexity of Proofs and Computation"

Talk based on a joint work with Maria Luisa Bonet (to appear LICS’22)

No algebra in this talk

- Logic based definitions for static semi-algebraic proof systems
- Natural combinatorial principles capturing the strength of those systems

Resolution (Res)

$$
F=C_{1} \wedge \ldots \wedge C_{m} \text { where } C_{j} \text { are clauses }
$$

Inference Rules

$$
\frac{C \vee x \quad C \vee \neg x}{C} \uparrow
$$

Resolution (Res)

$$
F=C_{1} \wedge \ldots \wedge C_{m} \text { where } C_{j} \text { are clauses }
$$

Inference Rules

$\frac{C \vee x \quad C \vee \neg x}{C} \uparrow\left\{\begin{array}{c}\frac{C \vee x \quad C \vee \neg x}{C} \text { (symmetric cut) } \\ \frac{C}{C \vee x \quad C \vee \neg x} \text { (symmetric weakening) }\end{array}\right.$

Resolution (Res)

$$
F=C_{1} \wedge \ldots \wedge C_{m} \text { where } C_{j} \text { are clauses }
$$

Inference Rules

$\frac{C \vee x \quad C \vee \neg x}{C} \uparrow\left\{\begin{array}{l}\frac{C \vee x C \vee \neg x}{C} \text { (symmetric cut) } \\ \frac{C}{C \vee x C \vee \neg x} \text { (symmetric weakening) }\end{array}\right.$

$$
\frac{C \vee \ell \vee \ell}{C \vee \ell} \text { (idempotency) }
$$

$\overline{x \vee \neg x}$ (excluded middle)

Weighted Resolution

$F=\left\{\left(C_{1}, w_{1}\right), \ldots,\left(C_{m}, w_{m}\right)\right\}$ with w_{i} in a group, e.g. $\mathbb{Z}, \mathbb{F}_{2}, \ldots$
Substitution Rules

$$
\begin{aligned}
& \frac{(C \vee x, w)(C \vee \neg x, w)}{(C, w)} \uparrow \\
& \frac{(C \vee \ell \vee \ell, w)}{(C \vee \ell, w)} \text { (idempotency) } \\
& \frac{(x \vee \neg x, w)}{(e x c l u d e d ~ m i d d l e) ~}
\end{aligned}
$$

Weighted Resolution

$F=\left\{\left(C_{1}, w_{1}\right), \ldots,\left(C_{m}, w_{m}\right)\right\}$ with w_{i} in a group, e.g. $\mathbb{Z}, \mathbb{F}_{2}, \ldots$

Substitution Rules

$$
\begin{aligned}
& \frac{(C \vee x, w) \quad(C \vee \neg x, w)}{(C, w)} \uparrow \\
& \frac{(C \vee \ell \vee \ell, w)}{(C \vee \ell, w)} \text { (idempotency) } \\
& \frac{(x \vee \neg x, w)}{(x \vee c l u d e d ~ m i d d l e) ~}
\end{aligned}
$$

$$
\frac{\left(C, w_{1}+w_{2}\right)}{\left(C, w_{1}\right) \quad\left(C, w_{2}\right)} \downarrow
$$

$$
\overline{(C, w) \quad(C,-w)} \downarrow
$$

Weighted Resolution

$$
F=\left\{\left(C_{1}, w_{1}\right), \ldots,\left(C_{m}, w_{m}\right)\right\} \text { with } w_{i} \text { in a group, e.g. } \mathbb{Z}, \mathbb{F}_{2}, \ldots
$$

Substitution Rules

$\frac{(C \vee \ell \vee \ell, w)}{(C \vee \ell, w)}$ (idempotency)
$\overline{(x \vee \neg x, w)}$ (excluded middle)

$$
\frac{\left(C, w_{1}+w_{2}\right)}{\left(C, w_{1}\right) \quad\left(C, w_{2}\right)} \downarrow
$$

$$
\overline{(C, w) \quad(C,-w)} \downarrow
$$

The definition works equally well for bounded depth-Frege.

$$
\left(C_{1}, w_{1}\right) \quad\left(C_{2}, w_{2}\right) \quad \ldots \quad\left(C_{m}, w_{m}\right)
$$

$$
\left(C_{m} \vee y, w_{m}\right) \quad\left(C_{m} \vee \neg y, w_{m}\right)
$$

$$
(C \vee x, w) \quad(C \vee \neg x, w)
$$

$$
(C, w)
$$

$$
(C, w) \quad(C,-w) \quad(E, w) \quad(E,-w)
$$

$(\perp, 1)$

$$
\left(C_{1}, w_{1}\right) \quad\left(C_{2}, w_{2}\right) \quad \ldots \quad\left(C_{m}, w_{m}\right)
$$

$$
\left(C_{m} \vee y, w_{m}\right) \quad\left(C_{m} \vee \neg y, w_{m}\right)
$$

$$
(C \vee x, w) \quad(C \vee \neg x, w)
$$

$$
(C, w)
$$

$$
(C, w) \quad(C,-w) \quad(E, w) \quad(E,-w)
$$

THM. The definitions we give for (unary) NS/SA/SOS correspond to systems p-equivalent to the usual definitions of (unary) NS/SA/SOS, when clauses are encoded using the multiplicative encoding.

THM. The definitions we give for (unary) NS/SA/SOS correspond to systems p-equivalent to the usual definitions of (unary) NS/SA/SOS, when clauses are encoded using the multiplicative encoding.

$$
\begin{aligned}
\bigvee_{x \in \text { Pos }} x \vee \bigvee_{y \in \text { Neg }} \neg y \longrightarrow & \left\{\prod_{x \in \text { Pos }} \bar{x} \prod_{y \in \text { Neg }} y=0\right\} \\
& \cup\left\{x^{2}=x, x+\bar{x}=1, y^{2}=y, y+\bar{y}=1: x \in \text { Pos, } y \in \text { Neg }\right\}
\end{aligned}
$$

Sherali-Adams over $\mathbb{Z}\left(S A_{\mathbb{Z}}\right)$

$$
\left(C_{1}, w_{1}\right) \quad\left(C_{2}, w_{2}\right) \quad \ldots \quad\left(C_{m}, w_{m}\right)
$$

$$
\left(C_{m} \vee y, w_{m}\right) \quad\left(C_{m} \vee \neg y, w_{m}\right)
$$

$$
(C \vee x, w) \quad(C \vee \neg x, w)
$$

$$
(C, w)
$$

(C, w)
$(C,-w)$
(E, w)
$(E,-w)$

Only clauses with positive weights $\quad(\perp, m) \quad m>0$

Unary Sherali-Adams over $\mathbb{Z}\left(u S A_{\mathbb{Z}}\right)$

$$
\left(C_{1}, w_{1}\right) \quad\left(C_{2}, w_{2}\right) \quad \ldots \quad\left(C_{m}, w_{m}\right)
$$

$$
\left(C_{m} \vee y, w_{m}\right) \quad\left(C_{m} \vee \neg y, w_{m}\right)
$$

$(C \vee x, w) \quad(C \vee \neg x, w) \quad$ No instances of the rule $\frac{\left(C, w_{1}+w_{2}\right)}{\left(C, w_{1}\right)\left(C, w_{2}\right)} \downarrow$

$$
(C, w) \quad \text { And weights in }\{ \pm 1\}
$$

$(C, w) \quad(C,-w)$
(E, w)
$(E,-w)$

Only clauses with positive weights $(\perp, 1) \ldots(\perp, 1)$

Nullstellensatz over $\mathbb{Z}\left(N S_{\mathbb{Z}}\right)$

$$
\left(C_{1}, w_{1}\right) \quad\left(C_{2}, w_{2}\right) \quad \ldots \quad\left(C_{m}, w_{m}\right)
$$

$$
\left(C_{m} \vee y, w_{m}\right) \quad\left(C_{m} \vee \neg y, w_{m}\right)
$$

$(C \vee x, w) \quad(C \vee \neg x, w)$
(C, w)
$(C, w) \quad(C,-w)$
(E, w)
$(E,-w)$

Only weakenings of initial clauses

$$
(\perp, m)
$$

$m \neq 0$

Unary Nullstellensatz over $\mathbb{Z}\left(u N S_{\mathbb{Z}}\right)$

$$
\left(C_{1}, w_{1}\right) \quad\left(C_{2}, w_{2}\right) \quad \ldots \quad\left(C_{m}, w_{m}\right)
$$

$$
\left(C_{m} \vee y, w_{m}\right) \quad\left(C_{m} \vee \neg y, w_{m}\right)
$$

$(C \vee x, w) \quad(C \vee \neg x, w) \quad$ No instances of the rule $\frac{\left(C, w_{1}+w_{2}\right)}{\left(C, w_{1}\right)\left(C, w_{2}\right)} \downarrow$
(C, w)
And weights in $\{ \pm 1\}$
$(C, w) \quad(C,-w)$
(E, w)
$(E,-w)$

Only weakenings of initial clauses
$(\perp, 1) \ldots(\perp, 1)$

Nullstellensatz over $\mathbb{F}_{p}\left(N S_{\mathbb{F}_{p}}\right)$

$$
\left(C_{1}, w_{1}\right) \quad\left(C_{2}, w_{2}\right) \quad \ldots \quad\left(C_{m}, w_{m}\right)
$$

$$
\left(C_{m} \vee y, w_{m}\right) \quad\left(C_{m} \vee \neg y, w_{m}\right)
$$

$$
(C \vee x, w) \quad(C \vee \neg x, w)
$$

Weights in \mathbb{F}_{p} and the sum also over \mathbb{F}_{p}

$$
(C, w)
$$

(C, w)
$(C,-w)$
(E, w)
$(E,-w)$

Only weakenings of initial clauses $\quad(\perp, m) \quad m \neq 0$

Sum-of-Squares over $\mathbb{Z}\left(S O S_{\mathbb{Z}}\right)$

$$
\left(C_{1}, w_{1}\right) \quad\left(C_{2}, w_{2}\right) \quad \ldots \quad\left(C_{m}, w_{m}\right)
$$

$$
\left(C_{m} \vee y, w_{m}\right) \quad\left(C_{m} \vee \neg y, w_{m}\right)
$$

$$
(C \vee x, w) \quad(C \vee \neg x, w)
$$

$$
(C, w)
$$

(C, w)
$(C,-w)$
(E, w)
$(E,-w)$

Partitioned into sets the form

$$
(\perp, m) \quad m>0
$$

$$
\left\{\left(C_{i}, w_{i}^{2}\right),\left(C_{i} \vee C_{j}, w_{i} w_{j}\right): i \neq j \in I\right\}
$$

Unary Sum-of-Squares over $\mathbb{Z}\left(u S O S_{\mathbb{Z}}\right)$

$$
\left(C_{1}, w_{1}\right) \quad\left(C_{2}, w_{2}\right) \quad \ldots \quad\left(C_{m}, w_{m}\right)
$$

$$
\left(C_{m} \vee y, w_{m}\right) \quad\left(C_{m} \vee \neg y, w_{m}\right)
$$

$(C \vee x, w) \quad(C \vee \neg x, w) \quad$ No instances of the rule $\frac{\left(C, w_{1}+w_{2}\right)}{\left(C, w_{1}\right)\left(C, w_{2}\right)} \downarrow$

$$
(C, w)
$$

And weights in $\{ \pm 1\}$
(C, w)
(C, $-w)$
(E, w)
$(E,-w)$

Partitioned into sets the form
$(\perp, 1) \ldots(\perp, 1)$
$\left\{\left(C_{i}, 1\right),\left(C_{i} \vee C_{j}, w_{i} w_{j}\right): i \neq j \in I\right\}$

p-simulations

$A \longrightarrow B \quad A$ p-simulates B
$A \cdots \cdots \cdots \quad A$ and B are incomparable

p-simulations

$A \longrightarrow B \quad A$ p-simulates B
$A \cdots \cdots \cdots \quad A$ and B are incomparable

p-simulations

Pigeonhole Principle

THM. $P H P(G)$ is easy to refute in $u S A_{\mathbb{Z}}$

Weighted PHP (wtPHP)

- Pigeons fly to holes in the same group or in some adjacent group.
- If a pigeon flies to the lower group it must fly twice.
- Holes can accept at most 1 pigeon coming from the same group or the larger group.
- Holes can accept at most 2 pigeons coming from the lower group.

THM. $w t P H P(G)$ is easy to refute in $S A_{\mathbb{Z}}$

Weighted PHP (wtPHP)

- Pigeons fly to holes in the same group or in some adjacent group.
- If a pigeon flies to the lower group it must fly twice.
- Holes can accept at most 1 pigeon coming from the same group or the larger group.
- Holes can accept at most 2 pigeons coming from the lower group.

THM. $w t P H P(G)$ is easy to refute in $S A_{\mathbb{Z}}$

Weighted PHP (wtPHP)

- Pigeons fly to holes in the same group or in some adjacent group.
- If a pigeon flies to the lower group it must fly twice.
- Holes can accept at most 1 pigeon coming from the same group or the larger group.
- Holes can accept at most 2 pigeons coming from the lower group.

THM. $w t P H P(G)$ is easy to refute in $S A_{\mathbb{Z}}$

Weighted PHP (wtPHP)

- Pigeons fly to holes in the same group or in some adjacent group.
- If a pigeon flies to the lower group it must fly twice.
- Holes can accept at most 1 pigeon coming from the same group or the larger group.
- Holes can accept at most 2 pigeons coming from the lower group.

THM. $w t P H P(G)$ is easy to refute in $S A_{\mathbb{Z}}$

Weighted PHP (wtPHP)

- Pigeons fly to holes in the same group or in some adjacent group.
- If a pigeon flies to the lower group it must fly twice.
- Holes can accept at most 1 pigeon coming from the same group or the larger group.
- Holes can accept at most 2 pigeons coming from the lower group.

THM. $w t P H P(G)$ is easy to refute in $S A_{\mathbb{Z}}$

Tree-like Res $(d)+P H P(G)$

The graphs G can be taken of degree at most 3 and the height of the $\operatorname{Res}(d)$ derivations is 5 .

Tree-like Res $(d)+P H P(G)$

The graphs G can be taken of degree at most 3 and the height of the Res (d) derivations is 5 .

$\operatorname{Res}(d)+P H P$

$$
F=C_{1} \wedge \ldots \wedge C_{m} \text { where } C_{j} \text { are } d \text {-DNF }
$$

Each π_{j} is a $\operatorname{Res}(d)$-derivation from
F of a d-DNF D_{i}^{\prime} and all together the $D_{1}^{\prime}, \ldots, D_{\ell}^{\prime}$ are a substitution instance of $P H P_{n}^{n+1}$

THM. Analogous p-simulations for:

- $N S_{\mathbb{Z}}$ but with onto-functional versions of $P H P(G)$ and $w t P H P(G)$
- $N S_{\mathbb{F}_{2}}$ but with $M O D_{2}$ principle [IS'06]
- depth- d versions of NS/SA
- uSOS/SOS (new combinatorial principles, work in progress)

The argument in all those cases is essentially the same.
Depth- c Frege $+P H P(G)$
Proof Idea: Generalize the p-simulation of DRMaxSAT by bounded-depth Frege + PHP from [BBIM-SM'18].
$u S O S_{\mathbb{Z}}$ where all the squares are only allowed to have at most
$O(\log n)$ negative monomials

Depth- d version of Sherali-Adams

$S A_{\mathbb{Z}}^{(d)}$ is defined as $S A_{\mathbb{Z}}$ but instead of using weighted resolution uses weighted depth- d Frege and the same soundness condition.

THM. $S A_{\mathbb{Z}}^{(d)}$ is p-equivalent to circular depth- d Frege.
THM. $u S A_{\mathbb{Z}}^{(d)}$ is strictly stronger than depth- d Frege, at least for $d=o(\log \log n)$.

THM. $M O D_{2}$ is hard to refute in $u S A_{\mathbb{Z}}^{(d)}$, at least for $d=o(\log \log n)$.

Depth- d version of Sherali-Adams

$S A_{\mathbb{Z}}^{(d)}$ is defined as $S A_{\mathbb{Z}}$ but instead of using weighted resolution uses weighted depth- d Frege and the same soundness condition.

THM. $S A_{\mathbb{Z}}^{(d)}$ is p-equivalent to circular depth- d Frege.
THM. $u S A_{\mathbb{Z}}^{(d)}$ is strictly stronger than depth- d Frege, at least for $d=o(\log \log n)$.
Proof. Use hardness of PHP in depth- d Frege

THM. $M O D_{2}$ is hard to refute in $u S A_{\mathbb{Z}}^{(d)}$, at least for $d=o(\log \log n)$.
Proof. Use hardness of $M O D_{2}$ in depth- d Frege $+P H P$ [Aj'90, BP'96]

Open problems

Is $M O D_{2}$ hard for depth- d Frege $+w t$ PHP? (E.g. for constant d) A yes would imply $M O D_{2}$ is hard for $S A_{\mathbb{Z}}^{(d)}$ (and circular depth- d Frege)

Is $w t$ PHP hard for depth- d Frege + PHP? (E.g. for constant d) A yes would imply $u S A_{\mathbb{Z}}^{(d)}$ does not p-simulate $S A_{\mathbb{Z}}$

Does $\mathrm{uSOS}_{\mathbb{Z}}$ p-simulate Resolution?

Find some family of combinatorial principles Φ s.t. depth $-d$ Frege $+\Phi$ p-simulates Cutting Planes. (e.g. is $\Phi=P H P+M O D_{p}$ enough?)

