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Limited progress in understanding the limits of algorithms and Boolean circuits

Are we asking the right questions?

Complexity Theory: seeks to rule out algorithms that compute intime T

(it doesn’t consider the difficulty of proving their correctness)

Circuit Complexity Theory: seeks to rule out circuits of size S

(it doesn’t consider the difficulty of proving their existence and correctness)



Interested in a refined complexity theory that also considers provability

Want to rule out efficient algorithms/circuits with respect to a logical theory T

Relax our goal of showing that P # NP, NP & SIZE[n3], etc. to

Theory T does not prove that P = NP

Theory T does not prove that NP € SIZE[n3]

Necessary before showing corresponding lower bounds

- -rv 1 . Stephen A. Cook, Jan Krajicek:
Initiated by S. Cook and J. KraJICEk. Consequences of the provability of NP C P/poly. |. Symb. Log. 72(4): 1353-1371 (2007)



Theories of Bounded Arithmetic

» Fragments of Peano Arithmetic (PA).

» Intended model is N, but numbers can encode binary strings and other objects.
Example: Theory 1A [Parikh71].

1A employs the language Lps = {0. 1, +, -, <}.

14 axioms governing these symbols, such as:

1.Vx x+0=x
2. VxVy x+v=y+x
3.Vx x=0V 0<ux



Induction Axioms. /A also contains the induction principle
P(0) AVx (P(x) = (x4 1)) = Vxa(x)

for each bounded formula «/(x) (additional free variables are allowed in ).

A bounded formula only contains quantifiers of the form ¥y <t and dy < r, where tis a
term not containing y. Abbreviations for Vy(y <r—...) and Jy(y <rA...).

» [Cook’75] and [Buss’'86] introduced theories more closely related to levels of PH:

Ex.: T} uses induction scheme for bounded formulas corresponding to NP-predicates.



Contributions

We consider several established
theories of bounded arithmetic:

PV, Si,

}, APC!
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Many interesting algorithms and complexity results can be formalized in such theories.

Randomized Matching Algorithms in APC! [TriManLe-Cook’11]

PCP Theorem in PV [Pich'15].

Parity ¢ AC°, k-Clique ¢ mSIZE[2V*/100] in APC! [Muller-Pich’19].

Arnold Beckman’s survey on Friday

Azza Gaysin’s talk on formalizing
Dmitriy Zhuk’s CSP algorithm in S%

In contrast, we show that several circuit upper bounds cannot be proved in these theories.



Related work: Recent progress on

U N p rova bl I Ity Res U |tS Cook-Krajicek’07 unprovability of

Bydzovsky-Muller’20 circuit lower bounds

krajicek-0'17] PV ¥ P C SIZE[n] [CKKO’21]
Unified approach
via LEARNING

[Bydzovsky-Krajicek-0’20] S% ¥ NP C SlZE[nk
[Bydzovsky-Krajicek-O’20] T% % PNP C SlZE[nk}

[Carmosino-Kabanets-Kolokolova-0'21] APCl ¥ ZPPNP[O(U] g SIZE[nk}

Remarks: Unconditional
As theories get stronger, we can only rule out stronger inclusions

APC: unprovability result is close to known unconditional lower bound



We argue by contradiction

Suppose theory T can prove that a language L is contained in SIZE[n*]

Non-uniform upper bound:

For every n, there is a small circuit C, for every input x, C(x) = L(x)

This sentence claims the existence of a sequence of small circuits for L



A proof of the existence of an object often
provides more information about the object
than just its existence.

We explore standard techniques from logic (witnessing theorems) to
extract a learning algorithm from a proof in bounded arithmetic

To complete the We argue (outside T) that corresponding learning
argument: algorithm that constructs circuits for L does not exist.




Learning from Equivalence Queries [Angluin’87]

EQ oracle for language L:

] oct y yes”ifc =1L,
earner selects EQ(c)

circuit c of size <'s »  xsuch that c(x) # L,(x)
otherwise

(counterexample)

Definition. We say that L is in LEARNEQL9_yniform SIZE[s] if

3 efficient algorithm A(1") that outputs a circuit of size < s(n) for L, after making < q(n) EQs.



Example of learning uniformity

If PRIMES in LEARNEQI0g I _yniform SIZE[972°] then

There is an algorithm A(1™) that computes as follows:

Runs in poly time and produces EQ ¢;  (receives “yes” or counterexample x)

<logn

queries Runs in poly time and produces EQ ¢,  (receives “yes” or counterexample x-)
ueri

Outputs a correct circuit of size < for PRIMES,,



Example of Formalization [KO'17]

For a function symbol f in the language of PV (polynomial-time algorithms) and
constantcin N,

UPj o(f) asserts that Ly € SIZE[en”]

V1" 3circuit C,(|C| < en®)\Va(|z| = n). flz) # 0+ Ch(x) =1

Theorem . For every k > 1 there is a unary PV function symbol h such that for no
constant ¢ > 1 PV proves the sentence UPy .(h).

Remark: UP, (f) is a V3V sentence




From logic to learning via KPT Witnessing

Theorem. Assume T is a universal theory with vocabulary L, ¢ is a quantifier-free
L-formula, and

T F Vz3dCVx ¢(z,C,x) .

Then there exist a constant 4 > 1 and a finite sequence 1,... .. tq of L-terms such that

T+ o(z,n(z),x1) V oz 2(z,x1),%2) VooV o(2,ta(z, X1, Xa—1), Xa).



From logic to learning via KPT Witnessing

Theorem. Assume T is a universal theory with vocabulary L, ¢ is a quantifier-free
L-formula, and

T+ VzACVx o(z,C.x) .

Then there exist a constant 4 > 1 and a finite sequence 1,... .. tq of L-terms such that

I+ O(Z 4 (Z)?*xl) \ O(Z rz(ztxl)f“m)



From logic to learning via KPT Witnessing
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L-formula, and

T F Vz3dCVx ¢(z,C,x) .
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From logic to learning via KPT Witnessing

Theorem. Assume T is a universal theory with vocabulary L, ¢ is a quantifier-free
L-formula, and

T F Vz3dCVx ¢(z,C,x) .

Then there exist a constant 4 > 1 and a finite sequence 1,... .. tq of L-terms such that

Tt ¢(z,n(z),x1) V oz, 2(z,x1),%2) Voo V oz, ta(z, X1, - Xd—1), Xa)-

Key point: Applying this result to UP, .(f) and PV, we get a LEARN-uniform construction
of circuits of size cn* for f.




Landscape of circuit uniformity notions

P-uniform SIZE[n¥] LEARNEQl-yniform-SIZE[n¥] SIZE[n¥]

Essentially equivalent to FZPPNP

Efficiently Stronger theories: corresponding uniformity w.r.t. lower bounds:
computable learning algorithms are more
from 1™ expressive (more queries, randomized) P C SIZE[O(n")]

I [Bsh+96]

P C FZPPNP-uniform SIZE[O(n*")]



Unconditional LEARN-Uniform Lower Bounds

[Carmosino-Kabanets-Kolokolova-0’21]

1. For all k> 1, there is a language L € P such that L ¢ LEARNERQICMI_yniform SIZE[n*].
2. For all C' > 1 and r(n) = o(logn/loglogn), P & LEARNEQI () _yniform SIZE[n - (logn)€].

3. For all k> 1, NP ¢ LEARNEQ" " _uniform SIZE[n*].

(. What is the power of a polynomial number of equivalence queries?



Learning a SAT Solver

» We consider the problem of learning a SAT Solver for formulas of bitlength n:

SAT Solver: A circuit C such that, on every SATISFIABLE Boolean formula o,

C(d) outputs a satisfying assignment of

p We allow the LEARN-uniform construction to make Search-SAT-EQs:
Search-SAT-EQs: Given a candidate SAT Solver D, either returns CORRECT or provides a counterexample:

Pair (v, w) such that y(w) = 1 but D(y) is not a satisfying assignment for v

4. Forall k> 1,

O(l)] 0(1)}

Search-SAT ¢ LEARN®r<n-SAT-EQI yniform SIZE[n*]  or NP ¢ LEARNEQU™Luniform SIZE[n*]



Technigues

Lower bounds for P (fewer EQs) and for NP (larger number of EQs) rely on different approaches

1. For all k > 1, there is a language L € P such that L ¢ LEARNERIOW] _yniform SIZE[n¥].

Indirect diagonalization Non-trivial: learning procedure can run Builds on techniques from
in larger time than L [Santhanam-Williams’14]

3. Forallk >1, NP ¢ LEARNEQ""™]_yniform SIZE[n*].

LEARN-uniform construction Derive non-uniform circuit Builds on techniques from
implies collapse of PH to NP/o(n) lower bounds for NP, [Cook-Krajicek’07]
contradicting initial assumption.



Summary of (deterministic) learning lower bounds

[Carmosino-Kabanets-Kolokolova-0'21]

1. For all k> 1, there is a language L € P such that L ¢ LEARNERQICMI_yniform SIZE[n*].
2. For all C' > 1 and r(n) = o(logn/loglogn), P & LEARNEQI ()] _yniform SIZE[n - (logn)“].
3. For all k> 1, NP ¢ LEARNEQ" " _uniform SIZE[n*].

4. For all k> 1,

Search-SAT ¢ LEARNSearch-SAT-EQn?]_ higorm SIZEn*]  or NP ¢ LEARNEQ ™! _jniform SIZE[n*]



Consequences in logic

These results imply unprovability of circuit upper bounds in theories PV, Si, T3

For APC?, the provability of circuit upper bounds leads to RANDOMIZED learning with

Analyzing circuits constructed with RANDOMNESS + becomes much more challenging.

P-uniform SIZE[n*] LEARNEQAl-yniform-SIZE[n*]  «-. SIZE[nk]

Essentially equivalent
to uniformity
w.r.t. lower bounds



Theorem 1 (KPT Witnessing for APCl). Let ¢ be an open formula in the language of PV. If
APC! VN ACVZ o(N,C, Z)
there are a constant number £ of polynomial-time computable functions
A1(N,Ry), Ao(N, Ry, Z1,Ra), ..., Ay(N.R1,Z1,..., Ry 1,Zp 1, Ry)

N

and a constant ¢ > 1 such that, for every N € N and n = > 1, the following holds.

1. With probability at least 1/n° over uniform randomness Ry, for C1 = A{(N,Ry), either
NEVZ,o(N,Cy, Zy), or for any Zy such that N —p(N,Cy, Z,), the following holds.

2. With probability at least 1/n® over Ra, for Coy = As(N, Ry, Z1, Ra), either N EVZy o(N,Cy, Zs),
or for any Za such thal NF —p(N,Cy, Z3), the following holds.

{. Wilh probability at least 1/n® over Ry, for Cp = A¢y(N, Ry, Z1,..., Ry 1,Zp 1, Ry), we have
NEVZyp(N,Cy, Zy).



Randomized LEARN-uniformity

Definition. We say that L is in FZPP-LEARNEQA)_yniform SIZE[s] if

1 efficient randomized algorithm A(1") that outputs with probability = 3/4
a circuit of size < s(n) for L, after making < q(n) EQs.

Randomness Our goal: Explicit lower bounds against

W s

FZPP-LEARNEQLIOMI_yniform SIZE] ]

RANDOMNESS + EQs

Which circuits can we construct with randomness only?




Randomized Uniformity

It seems we are the first to investigate the limits of randomized uniformity

Two potential definitions:

(1) The same circuit is produced with (2) With probability = 2/3 a correct circuit is
probability = 2/3 (pseudodeterministic) produced
Equivalently, the direct connection Appropriate definition in the learning setting

language is in ZPP or BPP

ZPP-uniform SIZE[n*] FZPP-uniform SIZE[n"]

Much harder

o to analyze!

BPP-uniform SIZE[n*] FBPP-uniform SIZE[n”




Lower bounds against randomized uniformity

[Carmosino-Kabanets-Kolokolova-0’21]

FZPP-LEARNEQO_yniform SIZE[n*]
1

Theorem. promise-ZPP & FZPP-uniform SIZE[n*]

Main ideas: First, we establish that ZPP & ZPP /n-uniform SIZE[n"]

Now reduce the FZPP case to the simpler case of ZPP-uniformity:

Proof makes use of recent BPP/1 computable
pseudodeterministic PRG from [Lu-O-Santhanam’21]

(To maintain zero error, we invoke Kabanets’ Easy Witness Method)



Randomized LEARN-uniformity

) %a““m“ess RANDOMNESS + EQs

Goal: Explicit lower bounds against

FZPP-LEARNEQIOM] yniform SIZE[O(n*)]

Theorem.  Search-SAT ¢ FZPP-LEARN>e2rch-SAT-EQIOW]_niform SIZE|[poly]
or

ZPPNPIOWL 7 §1ZE 1]

Corollary. “APC! does not prove that ZPPNPIOM js contained in SIZE[nk]”



“APC! does not prove that ZPPNPIOW)] js contained in SIZE[n*]”

Formally: APC' ¥ NP C SIZE[n*] or zPPNPIOWI & SIZE[n*]

Suppose APC! proves that
NP is contained in SIZE[n¥]

Collapse of :
PH to zpPNPIO(1)] QN e with « _

!

By Kannan’s Theorem, ZPPNPIO(1)] js not contained in SIZE[n

APC! proves that there is
‘ an efficient SAT solver

Randomness-First

Search-SAT-EQs

-

A SAT solver of size n? is learnable
from r = O(1) Search-SAT-EQs
with probability 1/poly(n)

that

maintains r Search-SAT-EQs and has
success probability 1 — 2P°lv(n),

“]




Summary

We advance a research program that combines complexity and provability:

Goal: Theory T does not establish upper bounds

(formally necessary before establishing lower bounds)

Learning vs Logic: Each theory T leads to a corresponding notion of learnability

Essentially all known results can be obtained by investigating



Open Problems

is not contained in LEARN-Uniform SIZE[n*] with gueries

is not contained in LEARN-Uniform SIZE[n*] with gueries
Show that S ¥ P C SIZE[n*]

New lower bounds against Randomized Uniformity and Randomized LEARN-Uniformity
e.g., show that promise-BPP is not contained in FBPP-uniform SIZE[n¥]

Obtain a stronger unprovability result for APC* ?

Thank you



Appendix



Unprovability of i.o. circuit upper bounds [BKO'20]

Our results. For an L(PV)-formula ¢(x) and an integer k& > 1, the L(PV)-sentence UB% ()
1s defined as follows:

V1) 3107 (> n) 30, (|Cr| < mP) V(|| = m), p(z) = (Ch(z) =1) .

Theorem 1.1 (Consistency of almost-everywhere circuit lower bounds with bounded theories).
Let k > 1 be any positive integer. For any of the following pairs of an L(PV)-theory T and
a uniform complexity class C:

(a) T'= T5(PV) U True; and C = PNP,

(b) T = S3(PV) U Trueg and C = NP,

(¢) T"=PVUTruey and C = P,

there is an L(PV)-formula p(x) defining a language L € C such that T does not prove the
sentence UBL7 ().
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