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Limited progress in understanding the limits of algorithms and Boolean circuits

Complexity Theory: seeks to rule out algorithms that compute in time T

Circuit Complexity Theory: seeks to rule out circuits of size S

(it doesn’t consider the difficulty of proving their correctness)

(it doesn’t consider the difficulty of proving their existence and correctness)

Are we asking the right questions?



Interested in a refined complexity theory that also considers provability

Want to rule out efficient algorithms/circuits with respect to a logical theory T

Relax our goal of showing that P ≠ NP,  NP ⊈ SIZE[n3], etc. to

Theory T does not prove that P = NP

Theory T does not prove that NP ⊆ SIZE[n3]

Necessary before showing corresponding lower bounds

Initiated by S. Cook and J. Krajíček:



Theories of Bounded Arithmetic





Contributions
We consider several established 
theories of bounded arithmetic:

In contrast, we show that several circuit upper bounds cannot be proved in these theories.

Many interesting algorithms and complexity results can be formalized in such theories.

Arnold Beckman’s survey on Friday

Azza Gaysin’s talk on formalizing 
Dmitriy Zhuk’s CSP algorithm in

Randomized Matching Algorithms in APC1 [TriManLe-Cook’11] 



Remarks:

Unprovability Results

Unconditional

As theories get stronger, we can only rule out stronger inclusions

APC1: unprovability result is close to known unconditional lower bound

[Krajicek-O’17]

[Bydzovsky-Krajicek-O’20]

[Carmosino-Kabanets-Kolokolova-O’21]

[Bydzovsky-Krajicek-O’20]

Related work:
Cook-Krajicek’07
Bydzovsky-Muller’20

Recent progress on 
unprovability of 

circuit lower bounds

[CKKO’21]
Unified approach 

via LEARNING



[CKKO’21]: Unprovability via Learning

We argue by contradiction

Suppose theory T can prove that a language L is contained in SIZE[𝑛𝑛𝑘𝑘]

Non-uniform upper bound:

For every n, there is a small circuit C, for every input x, C(x) = L(x)

This sentence claims the existence of a sequence of small circuits for L



A proof of the existence of an object often 
provides more information about the object 
than just its existence. 

We explore standard techniques from logic (witnessing theorems) to 
extract a learning algorithm from a proof in bounded arithmetic

To complete the 
argument:

We argue (outside T) that corresponding learning 
algorithm that constructs circuits for L does not exist.



Learning from Equivalence Queries [Angluin’87]

Definition. We say that L is in 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐍𝐍𝐋𝐋𝐄𝐄 𝐪𝐪 -uniform SIZE[s] if

EQ oracle for language L:

∃ efficient algorithm A(1n) that outputs a circuit of size ≤ s(n) for Ln after making ≤ q(n) EQs.

(counterexample)

Learner selects 
circuit c of size ≤ s

“yes” if c ≡ Ln

x such that c(x) ≠ Ln(x)
otherwise



Example of learning uniformity

If PRIMES in 𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐍𝐍𝐋𝐋𝐄𝐄 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏 -uniform SIZE[9𝒏𝒏𝟑𝟑] then

There is an algorithm A(1𝑛𝑛) that computes as follows:

Runs in poly time and produces EQ 𝑐𝑐1 (receives “yes” or counterexample 𝒙𝒙𝟏𝟏)

Runs in poly time and produces EQ 𝑐𝑐2 (receives “yes” or counterexample 𝒙𝒙𝟐𝟐)

…

Outputs a correct circuit of size ≤ 9𝒏𝒏𝟑𝟑 for PRIMESn

≤ 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏
queries



Example of Formalization [KO’17]
PV cannot prove that P is contained in SIZE[nk]

For a function symbol f in the language of PV (polynomial-time algorithms) and 
constant c in N, 

:

Remark: UPk,c (f) is a ∀∃∀ sentence



From logic to learning via KPT Witnessing



From logic to learning via KPT Witnessing



From logic to learning via KPT Witnessing



From logic to learning via KPT Witnessing

Key point: Applying this result to UPk,c (f) and PV, we get a LEARN-uniform construction 
of circuits of size cnk for f.  



Landscape of circuit uniformity notions

SIZE[𝒏𝒏𝒌𝒌]P-uniform SIZE[𝒏𝒏𝒌𝒌]

Essentially equivalent to FZPPNP

uniformity w.r.t. lower bounds:

LEARNEQ[q]-uniform-SIZE[𝒏𝒏𝒌𝒌]

Stronger theories: corresponding 
learning algorithms are more 

expressive (more queries, randomized)

[Bsh+96]

Efficiently 
computable 

from 1𝑛𝑛



Unconditional LEARN-Uniform Lower Bounds

Q. What is the power of a polynomial number of equivalence queries?

[Carmosino-Kabanets-Kolokolova-O’21]



Learning a SAT Solver
We consider the problem of learning a SAT Solver for formulas of bitlength n:

SAT Solver: A circuit C such that, on every SATISFIABLE Boolean formula ϕ,

C(ϕ) outputs a satisfying assignment of ϕ

We allow the LEARN-uniform construction to make Search-SAT-EQs:

Search-SAT-EQs:  Given a candidate SAT Solver D, either returns CORRECT or provides a counterexample:

Pair (ψ, w) such that ψ(w) = 1 but D(ψ) is not a satisfying assignment for ψ



Techniques
Lower bounds for P (fewer EQs) and for NP (larger number of EQs) rely on different approaches

Indirect diagonalization Non-trivial: learning procedure can run 
in larger time than L

Builds on techniques from 
[Santhanam-Williams’14]

Builds on techniques from 
[Cook-Krajicek’07]

LEARN-uniform construction 
implies collapse of PH to NP/o(n)

Derive non-uniform circuit 
lower bounds for NP, 
contradicting initial assumption.



Summary of (deterministic) learning lower bounds
[Carmosino-Kabanets-Kolokolova-O’21]



Consequences in logic

These results imply unprovability of circuit upper bounds in theories 

For APC1, the provability of circuit upper bounds leads to RANDOMIZED learning with EQs. 

Analyzing circuits constructed with RANDOMNESS + EQs becomes much more challenging.

SIZE[𝒏𝒏𝒌𝒌]P-uniform SIZE[𝒏𝒏𝒌𝒌]
Essentially equivalent 
to FZPPNP uniformity 
w.r.t. lower bounds

LEARNEQ[q]-uniform-SIZE[𝒏𝒏𝒌𝒌] …





Randomized LEARN-uniformity

Our goal:  Explicit lower bounds against 

RANDOMNESS + EQs

Which circuits can we construct with randomness only?

Definition. We say that L is in 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅-𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐍𝐍𝐋𝐋𝐄𝐄 𝐪𝐪 -uniform SIZE[s] if

∃ efficient randomized algorithm A(1n) that outputs with probability ≥ 3/4
a circuit of size ≤ s(n) for Ln after making ≤ q(n) EQs.

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅-𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐍𝐍𝐋𝐋𝐄𝐄 𝐎𝐎(𝟏𝟏) -uniform SIZE[O(𝒏𝒏𝒌𝒌)]
EQ

Randomness



Randomized Uniformity
It seems we are the first to investigate the limits of randomized uniformity 

Two potential definitions:

(1) The same circuit is produced with 
probability ≥ 2/3 (pseudodeterministic)

(2) With probability ≥ 2/3 a correct circuit is 
produced

Equivalently, the direct connection 
language is in ZPP or BPP

Appropriate definition in the learning setting

Much harder 
to analyze!



Lower bounds against randomized uniformity

Proof makes use of recent BPP/1 computable
pseudodeterministic PRG from [Lu-O-Santhanam’21]

First, we establish that

[Carmosino-Kabanets-Kolokolova-O’21]

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅-𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐍𝐍𝐋𝐋𝐄𝐄 𝟎𝟎 -uniform SIZE[𝒏𝒏𝒌𝒌]

=

Theorem.

Main ideas:

Now reduce the FZPP case to the simpler case of ZPP-uniformity:

(To maintain zero error, we invoke Kabanets’ Easy Witness Method)



Randomized LEARN-uniformity

Theorem.

Corollary. “APC1 does not prove that ZPPNP[O(1)] is contained in SIZE[𝒏𝒏𝒌𝒌]”

EQ

Randomness

𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅-𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐋𝐍𝐍𝐋𝐋𝐄𝐄 𝐎𝐎(𝟏𝟏) -uniform SIZE[O(𝒏𝒏𝒌𝒌)]

Goal: Explicit lower bounds against 

RANDOMNESS + EQs



“APC1 does not prove that ZPPNP[O(1)] is contained in SIZE[𝒏𝒏𝒌𝒌]”

Suppose APC1 proves that 
NP is contained in SIZE[𝒏𝒏𝒌𝒌]

APC1 proves that there is 
an efficient SAT solver

A SAT solver of size 𝒏𝒏𝒅𝒅 is learnable
from r = O(1) Search-SAT-EQs 

with probability 1/poly(n)

CK’07 KPT Witnessing for APC1

Amplification 
Lemma 

Boosted learning procedure that 
maintains r Search-SAT-EQs and has 

success probability 1 – 2-poly(n).

Randomness-First
Learner with r

Search-SAT-EQs

Collapse of 
PH to ZPPNP[O(1)]

By Kannan’s Theorem, ZPPNP[O(1)] is not contained in SIZE[𝒏𝒏𝒌𝒌]

Conversion 
Lemma

Similar to deterministic learning result

Formally:



Summary

We advance a research program that combines complexity and provability: 

Goal: Theory T does not establish upper bounds

(formally necessary before establishing lower bounds)

Essentially all known results can be obtained by investigating LEARN-uniform constructions.

Learning vs Logic: Each theory T leads to a corresponding notion of learnability 



Open Problems
P is not contained in LEARN-Uniform SIZE[𝑛𝑛𝑘𝑘] with O(log n) queries

NP is not contained in LEARN-Uniform SIZE[𝑛𝑛𝑘𝑘] with poly(n) queries

Obtain a stronger unprovability result for APC1 ?

New lower bounds against Randomized Uniformity and Randomized LEARN-Uniformity

e.g., show that promise-BPP is not contained in FBPP-uniform SIZE[𝒏𝒏𝒌𝒌]

Thank you

Show that



Appendix



Unprovability of i.o. circuit upper bounds [BKO’20]
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