
On the Range Avoidance 
Problem for Circuits

July 5, 2022

1 / 17

Hanlin Ren

Oxford

Rahul Santhanam

Oxford
Zhikun Wang

Xi’an Jiaotong



The Empty Pigeonhole Principle

• If you throw 𝑁 pigeons into 𝑀 holes, and 𝑁 < 𝑀, then there is 
an empty pigeonhole.

• Weak version: if you throw 𝑁 pigeons into 𝑀 holes, and 2𝑁 < 𝑀, 
then there is an empty pigeonhole.

2 / 17

(These are REAL pigeons in Oxford)

empty empty empty empty



Range Avoidance Problem

• Input: a (multi-output) circuit 𝐶: 0,1 𝑛 → 0,1 ℓ (ℓ > 𝑛)

• Output: any string 𝑦 ∉ Range 𝐶
• I.e. for every 𝑥 ∈ 0,1 𝑛, 𝐶 𝑥 ≠ 𝑦

• A total problem in 𝐓𝐅𝚺2 , complete for the class 𝐀𝐏𝐄𝐏𝐏 [ITCS’21]
• Abundant Polynomial Empty Pigeonhole Principle

3 / 17

A problem that captures the complexity 

of weak empty pigeonhole principle!

A “non-output” of 𝐶.

𝐶 index of pigeon = index of hole, 
find an empty hole!

𝑥 ∈ 0,1 𝑛

𝑦 ∈ 0,1 ℓ

𝐶



Explicit Constructions

• Big goal in TCS: construct pseudorandom objects deterministically
• Ramsey graphs, rigid matrices, expander graphs, hard truth tables…

• Explicit construction problems:
• RIGID: On input 1𝑛, output an 𝑛 × 𝑛 matrix that is rigid

• RAMSEY: On input 1𝑛, output an 𝑛-vertex Ramsey graph

• HARD: On input 12
𝑛

, output a length-2𝑛 truth table without small circuits

• [Korten’21]: Range avoidance captures explicit constructions!
• RIGID, RAMSEY, HARD,… ∈ 𝐀𝐏𝐄𝐏𝐏

• Sparse APEPP (𝐒𝐀𝐏𝐄𝐏𝐏): unary problems reducible to Avoid

4 / 17



Example: Circuit Lower Bounds

• Weak empty PHP: most Boolean functions require circuits of >
2𝑛/2 size!

• Embarrassing open Q: 𝐄𝐍𝐏 ⊆ 𝐒𝐈𝐙𝐄 10𝑛 ?

5 / 17

𝑇𝑇

𝑇𝑇 stands for “truth table”.

Description of a 

size-2𝑛/2 circuit 𝐶

01100010011………………001010
Truth table of 𝐶

2𝑛/2poly 𝑛 bits

2𝑛 bits

If Avoid ∈ 𝐅𝐏, then 𝐄 ⊈ 𝐒𝐈𝐙𝐄 2𝑛/2 .

If Avoid ∈ 𝐅𝐏𝐍𝐏, then 𝐄𝐍𝐏 ⊈ 𝐒𝐈𝐙𝐄 2𝑛/2 .

(Trivial complexity upper bounds: 

Avoid ∈ 𝐅𝐁𝐏𝐏 and Avoid ∈ 𝐅𝐙𝐏𝐏𝐍𝐏)



The Complexity of 𝐀𝐯𝐨𝐢𝐝

• Korten (FOCS’21): Avoid ∈ 𝐅𝐏𝐍𝐏 if and only if 𝐄𝐍𝐏 ⊈ 𝐒𝐈𝐙𝐄 20.1𝑛

6 / 17

Actually, the following are equivalent:

• Avoid ∈ 𝐅𝐏𝐍𝐏

• There is some 𝜖 > 0 such that 

𝐄𝐍𝐏 ⊈ 𝐒𝐈𝐙𝐄 2𝜖𝑛

• 𝐄𝐍𝐏 ⊈ 𝐒𝐈𝐙𝐄 2𝑛/2𝑛

Under “plausible”(?) assumptions, Avoid ∈ 𝐅𝐏𝐍𝐏

“Plausible” = widely studied and believed

Question 1: is Avoid ∈ 𝐅𝐏?

Is “Avoid ∈ 𝐅𝐏” or its negation implied by 

any plausible assumption?

Question 2: is Avoid ∈ 𝐅𝐍𝐏?

Is “Avoid ∈ 𝐅𝐍𝐏” or its negation implied 

by any plausible assumption?

It’s entirely conceivable that 

you can take a circuit as input, 

“scramble” it using some 

fancy crypto stuff, and 

somehow produce a non-

output in poly-time…



Recap: 𝐅𝐍𝐏 Algorithms

• Nondeterministic poly-time algorithms which
• Accepts at least one nondeterministic branch

• On each accepted branch, outputs a valid answer

7 / 17

Input:

Valid answers: 1,2,4,6
1 rej 4 rej rej rej 1 rej



Recap: Proof Complexity

• Propositional Proof Systems (PPS): nondet. algorithms for SAT
• A deterministic poly-time algorithm 𝑃 𝜑, 𝑦 that gets a formula 𝜑 and a 

“proof” 𝑦 (of the claim that 𝜑 is unsatisfiable)
• 𝜑 is unsatisfiable iff ∃𝑦, 𝑃 𝜑, 𝑦 = 1.

• PfLen𝑃 𝜑 = min 𝑦 : 𝑃 𝜑, 𝑦 = 1

• Proof complexity generators: 𝐺: 0,1 𝑛 → 0,1 ℓ

• Want: it is hard to prove that “𝑦 ∉ Range 𝐺 ” for every 𝑦, despite this 
formula being true for most 𝑦

• A sequence of generators 𝐺𝑛: 0,1
𝑛 → 0,1 ℓ 𝑛

𝑛∈ℕ
is hard for 𝑃 if for 

every 𝑦 ∈ 0,1 ℓ 𝑛 , PfLen𝑃 "𝑦 ∉ Range(𝐺𝑛)" ≥ ℓ 𝑛 𝜔 1 .

• Uniform generator: there is an algorithm that given 𝑥, computes 𝐺 𝑥 𝑥

8 / 17

If 𝜑 is satisfiable then PfLen𝑃 𝜑 = +∞.



𝐅𝐍𝐏 Algorithms for 𝐀𝐯𝐨𝐢𝐝 vs.
Proof Complexity Generators

• Theorem: The following are equivalent:
• Avoid ∈ 𝐅𝐍𝐏

• There exists a PPS breaking every (non-uniform) proof complexity 
generator

9 / 17

A PPS breaking every generator

𝑥 ∈ 0,1 𝑛

𝑦 ∈ 0,1 ℓ

𝐶
a proof that 𝑦 ∉ Range 𝐶
for some particular 𝑦

𝐅𝐍𝐏 algorithm for Avoid: 

Guess 𝑦 along with a 

proof that 𝑦 ∉ Range 𝐶

Input circuit
Proof complexity 

generator

𝐅𝐍𝐏 algorithm PPS

=

=



𝐅𝐍𝐏 Algorithms for 𝐀𝐯𝐨𝐢𝐝 vs.
Proof Complexity Generators

• Theorem: The following are equivalent:
• 𝐒𝐀𝐏𝐄𝐏𝐏 ⊆ 𝐅𝐍𝐏

• There exists a PPS breaking every uniform proof complexity generator

10 / 17

Recap: 𝐒𝐀𝐏𝐄𝐏𝐏 = unary explicit construction problems

“Given 1𝑛, find a Ramsey graph over 𝑛 nodes”



The 𝐊𝒕 Generator

• Fix a polynomial 𝑡. For a string 𝑥, K𝑡 𝑥 is the length of the 
shortest program that generates 𝑥 in 𝑡 𝑥 steps.

• The K𝑡 generator with stretch 𝛼 𝑛 :
• Input is a program prog of length 𝑛 − 𝛼 𝑛

• Simulate prog for 𝑡 𝑛 steps

• If the output of prog has length exactly 𝑛, output whatever it outputs

• Otherwise, output 0𝑛

• Corresponding problem in 𝐒𝐀𝐏𝐄𝐏𝐏: K𝑡-HARD
• On input 1𝑛, generate a string 𝑦 ∈ 0,1 𝑛 such that K𝑡 𝑦 > 𝑛 − 𝛼 𝑛

11 / 17

“time-bounded Kolmogorov complexity”



𝐅𝐍𝐏 Algorithms for 𝐀𝐯𝐨𝐢𝐝 vs.
Proof Complexity Generators

• Theorem: The following are equivalent:*
• 𝐒𝐀𝐏𝐄𝐏𝐏 ⊆ 𝐅𝐍𝐏

• There exists a PPS breaking every uniform proof complexity generator

• There exists a PPS breaking the K𝑡 generator for 𝑡 𝑛 = 𝑛2

• K𝑡-HARD ∈ 𝐅𝐍𝐏

12 / 17

*: up to 𝜔 1 factors in the stretch

You can replace 𝑛2 by any 

“reasonable” polynomial ☺

A PPS breaking the K𝑡 generator

𝑥 ∈ 0,1 𝑛−𝛼

𝑦 ∈ 0,1 𝑛

𝐶
A uniform generator

Easy case: the time complexity 

of 𝐶 is at most 𝑡 𝑛
… Then for every 𝑦 ∈ Range 𝐶 , 

we have K𝑡 𝑦 ≤ 𝑛 − 𝛼 + 𝑂 1 !!!

Harder case: the time complexity 

of 𝐶 is ≫ 𝑡 𝑛
… Use a padding argument!

𝑥 ∈ 0,1 𝑛−𝛼

𝑦 ∈ 0,1 𝑛

𝐶
𝑧pad

𝑧pad

There is a hardest proof 

complexity generator (𝐊𝒕)!



𝐅𝐍𝐏 Algorithms for 𝐀𝐯𝐨𝐢𝐝 vs.
Proof Complexity Generators

• Theorem: The following are equivalent:*
• Avoid ⊆ 𝐅𝐍𝐏

• There exists a PPS breaking every (non-uniform) proof complexity 
generator

• cK𝑡-HARD ∈ 𝐅𝐍𝐏

• Conditional K𝑡 complexity:
• K𝑡 𝑥 | 𝑦 = length of the shortest program that given 𝑦 outputs 𝑥 in time 
𝑡 𝑥 + 𝑦

• cK𝑡-HARD: On input 1𝑛, 𝑦 , output any string 𝑥 ∈ 0,1 𝑛 such 
that K𝑡 𝑥 | 𝑦 > 𝑛 − 𝛼 𝑛

13 / 17

*: up to 𝜔 1 factors in the stretch



𝐅𝐏 Algorithms for 𝐀𝐯𝐨𝐢𝐝 vs.
Time Hierarchy against Advice

• Theorem: The following are equivalent:*
• 𝐒𝐀𝐏𝐄𝐏𝐏 ⊆ 𝐅𝐏

• K𝑡-HARD ∈ 𝐅𝐏

• There is a language 𝐿 ∈ 𝐄 ∖ i. o. 𝐃𝐓𝐈𝐌𝐄 2𝑛+1 / 2𝑛−𝜔 1

14 / 17

*: up to 𝜔 1 factors in the stretch

Time hierarchy against (near-maximum) advice...



Other Results (Advertisement)

• An “Algorithmic Method” to solve Avoid unconditionally in 𝐅𝐏𝐍𝐏

• Generalising the “Algorithmic Method” for proving lower bounds for 𝐄𝐍𝐏

• Characterisation of lower bounds for 𝐄𝐍𝐏

• Reductions between Avoid for low-complexity circuits
• Avoiding 𝐍𝐂4

0 (4-local) circuits is as hard as avoiding 𝐍𝐂1 circuits!

• Uses the randomised encodings of Applebaum-Ishai-Kushilevitz
(SICOMP’06)

• Welcome to talk to me about these results!

15 / 17

Williams’11: 
𝐍𝐄𝐗𝐏 ⊈ 𝐀𝐂𝐂0



Finally, A Hypothesis…

• Hypothesis: Kpoly-HARD is solvable in 𝐅𝐏.
• Given 1𝑡, 1𝑛 , one can find, in det. polynomial time, a string 𝑥 ∈ 0,1 𝑛

such that K𝑡 𝑥 ≥ 𝑠 𝑛 .

• Essentially equivalent to 𝐒𝐀𝐏𝐄𝐏𝐏 ⊆ 𝐅𝐏 for 𝐶 ∶ 0,1 𝑠 𝑛 → 0,1 𝑛.

• Q: How plausible is this hypothesis?
• For 𝑠 𝑛 = log2 𝑛?
• If you believe in circuit lower bounds (hard truth tables are easy to 

generate), should you also believe in this hypothesis (Kpoly-random 
strings are easy to generate)?

• Q: How is this hypothesis connected to other parts of 
complexity theory?

• Q: Is cK𝑡-HARD in 𝐅𝐏? Less secure, but how much less?

16 / 17

𝑛0.1? 0.1𝑛? 0.999𝑛? 𝑛 − 𝑛0.9? 𝑛 − log2 𝑛? 𝑛 − 1???

New hypothesis for 

derandomization?



Summary

• Range avoidance problem
• Captures explicit constructions!

• “Plausibly” in 𝐅𝐏𝐍𝐏, but unknown if it’s in 𝐅𝐍𝐏 or even 𝐅𝐏

• Avoid ∈ 𝐅𝐍𝐏 if and only if there is a PPS breaking every proof 
complexity generator

• c K𝑡 generator is the hardest one!

• Hypothesis: we can generate strings of large K𝑡 complexity, 
deterministically

17 / 17



Questions are welcome! ☺


