On the Range Avoidance Problem for Circuits

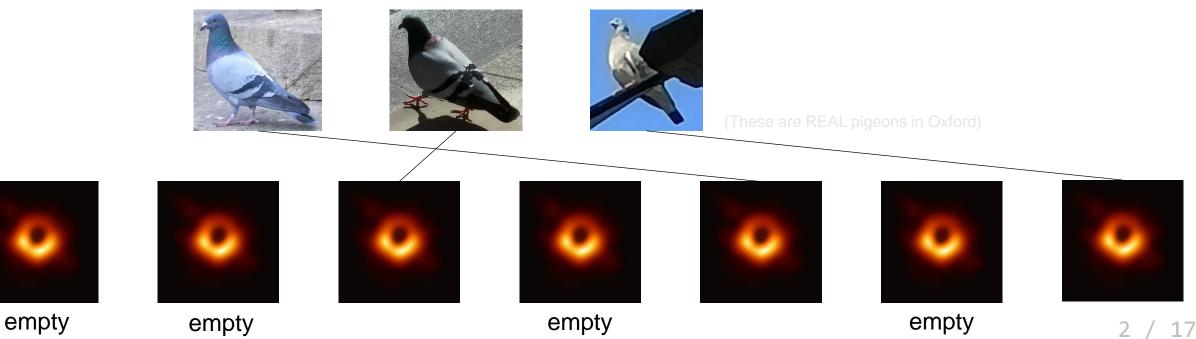
Hanlin Ren Oxford Rahul Santhanam Oxford

July 5, 2022

Zhikun Wang Xi'an Jiaotong

The Empty Pigeonhole Principle

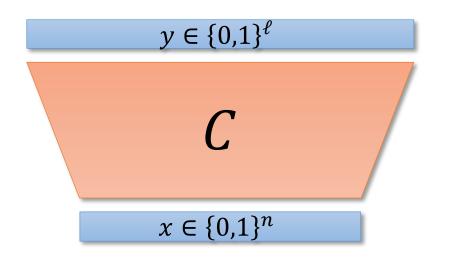
- If you throw *N* pigeons into *M* holes, and *N* < *M*, then there is an empty pigeonhole.
- Weak version: if you throw N pigeons into M holes, and 2N < M, then there is an empty pigeonhole.



Range Avoidance Problem

- Input: a (multi-output) circuit $C: \{0,1\}^n \rightarrow \{0,1\}^{\ell} \ (\ell > n)$
- Output: any string $y \notin \text{Range}(C)$
 - I.e. for every $x \in \{0,1\}^n$, $C(x) \neq y$

- A total problem in $TF\Sigma_2$, complete for the class APEPP [ITCS'21]
 - Abundant Polynomial Empty Pigeonhole Principle



A problem that captures the complexity of weak empty pigeonhole principle!

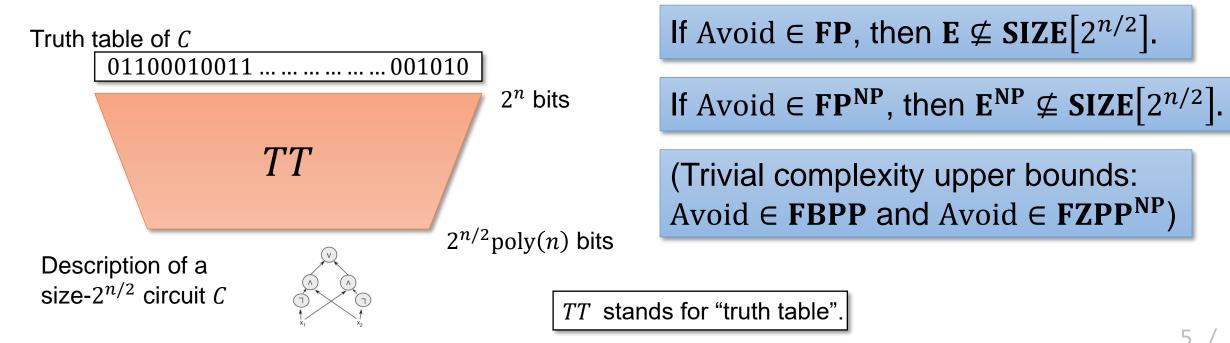
C(index of pigeon) = index of hole, find an empty hole!

Explicit Constructions

- Big goal in TCS: construct pseudorandom objects deterministically
 - Ramsey graphs, rigid matrices, expander graphs, hard truth tables...
- Explicit construction problems:
 - RIGID: On input 1^n , output an $n \times n$ matrix that is rigid
 - RAMSEY: On input 1^n , output an *n*-vertex Ramsey graph
 - HARD: On input 1^{2^n} , output a length- 2^n truth table without small circuits
- [Korten'21]: Range avoidance captures explicit constructions!
 - RIGID, RAMSEY, HARD, ... \in **APEPP**
- Sparse APEPP (SAPEPP): unary problems reducible to Avoid

Example: Circuit Lower Bounds

- Weak empty PHP: most Boolean functions require circuits of > $2^{n/2}$ size!
- Embarrassing open Q: $\mathbf{E}^{\mathbf{NP}} \subseteq \mathbf{SIZE}[10n]$?



The Complexity of Avoid

• Korten (FOCS'21): Avoid $\in \mathbf{FP}^{\mathbf{NP}}$ if and only if $\mathbf{E}^{\mathbf{NP}} \not\subseteq \mathbf{SIZE}[2^{0.1n}]$

Under "plausible"(?) assumptions, Avoid $\in \mathbf{FP}^{NP}$ "Plausible" = widely studied and believed

Question 1: is Avoid \in **FP**?

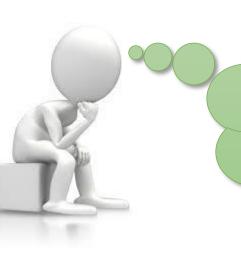
Is "Avoid \in **FP**" or its negation implied by any plausible assumption?

Question 2: is Avoid ∈ **FNP**?

Is "Avoid \in **FNP**" or its negation implied by any plausible assumption?

Actually, the following are equivalent:

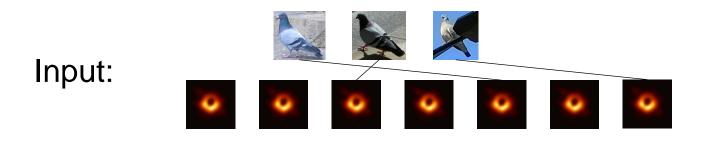
- Avoid $\in \mathbf{FP}^{\mathbf{NP}}$
- There is some ε > 0 such that
 E^{NP} ⊈ SIZE[2^{εn}]
- $\mathbf{E}^{\mathbf{NP}} \not\subseteq \mathbf{SIZE}[2^n/2n]$



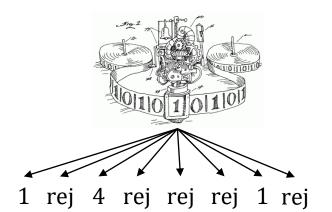
It's entirely conceivable that you can take a circuit as input, "scramble" it using some fancy crypto stuff, and somehow produce a nonoutput in poly-time...

Recap: FNP Algorithms

- Nondeterministic poly-time algorithms which
 - Accepts at least one nondeterministic branch
 - On each accepted branch, outputs a valid answer



Valid answers: {1,2,4,6}



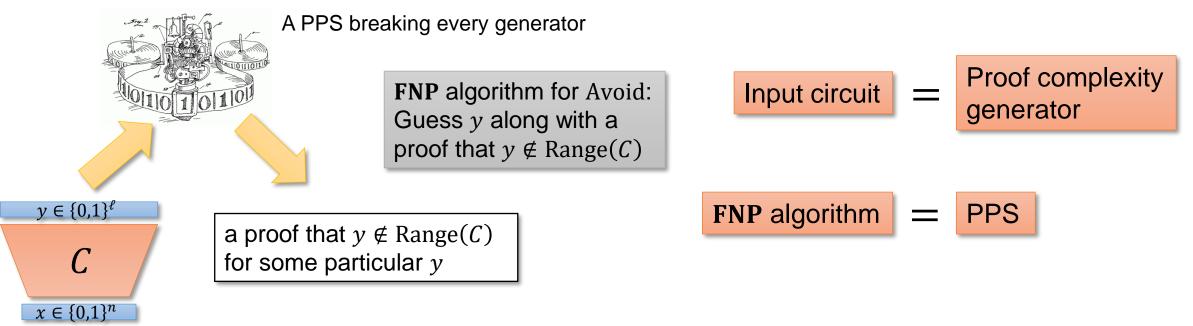
Recap: Proof Complexity

- Propositional Proof Systems (PPS): nondet. algorithms for \overline{SAT}
 - A deterministic poly-time algorithm $P(\varphi, y)$ that gets a formula φ and a "proof" y (of the claim that φ is <u>un</u>satisfiable)
 - φ is <u>un</u>satisfiable iff $\exists y, P(\varphi, y) = 1$.
 - $PfLen_P(\varphi) = min\{|y|: P(\varphi, y) = 1\}$

If φ is satisfiable then $PfLen_P(\varphi) = +\infty$.

- Proof complexity generators: $G: \{0,1\}^n \to \{0,1\}^\ell$
 - Want: it is hard to prove that "y ∉ Range(G)" for every y, despite this formula being true for most y
 - A sequence of generators $\{G_n: \{0,1\}^n \to \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}}$ is <u>hard</u> for *P* if for every $y \in \{0,1\}^{\ell(n)}$, PfLen_{*P*}(" $y \notin \text{Range}(G_n)$ ") $\geq \ell(n)^{\omega(1)}$.
 - Uniform generator: there is an algorithm that given x, computes $G_{|x|}(x)$

- **Theorem:** The following are equivalent:
 - Avoid $\in FNP$
 - There exists a PPS breaking every (non-uniform) proof complexity generator



- **Theorem:** The following are equivalent:
 - **SAPEPP** \subseteq **FNP**
 - There exists a PPS breaking every uniform proof complexity generator

Recap: **SAPEPP** = unary explicit construction problems "Given 1^n , find a Ramsey graph over *n* nodes"

The K^t Generator

• Fix a polynomial t. For a string x, $K^t(x)$ is the length of the shortest program that generates x in t(|x|) steps.

"time-bounded Kolmogorov complexity"

- The K^t generator with stretch $\alpha(n)$:
 - Input is a program prog of length $n \alpha(n)$
 - Simulate prog for t(n) steps
 - If the output of prog has length exactly n, output whatever it outputs
 - Otherwise, output 0^n
- Corresponding problem in **SAPEPP**: K^t-HARD
 - On input 1^{*n*}, generate a string $y \in \{0,1\}^n$ such that $K^t(y) > n \alpha(n)$

• **Theorem:** The following are equivalent:*

of C is at most t(n)

A uniform generator

... Then for every $y \in \text{Range}(\mathcal{C})$,

we have $K^{t}(y) \le n - \alpha + O(1)!!!$

*: up to $\omega(1)$ factors in the stretch

- **SAPEPP** \subseteq **FNP**
- There exists a PPS breaking every uniform proof complexity generator
- There exists a PPS breaking the K^t generator for $t(n) = n^2$
- K^t -HARD \in **FNP** There is a hardest proof

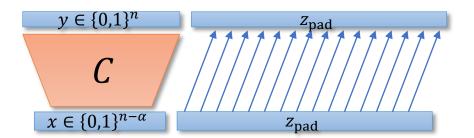
bu can replace n^2 by any easonable" polynomial 🙂

 $y \in \{0,1\}^n$ $x \in \{0,1\}^{n-\alpha}$

complexity generator (K^t)! A PPS breaking the K^t generator of C is $\gg t(n)$ Easy case: the time complexity

Harder case: the time complexity

... Use a padding argument!



• **Theorem:** The following are equivalent:*

*: up to $\omega(1)$ factors in the stretch

- Avoid \subseteq **FNP**
- There exists a PPS breaking every (non-uniform) proof complexity generator
- cK^t -HARD \in **FNP**
- Conditional K^t complexity:
 - $K^t(x | y) = \text{length of the shortest program that given } y \text{ outputs } x \text{ in time}$ t(|x| + |y|)
- cK^t-HARD: On input $(1^n, y)$, output any string $x \in \{0,1\}^n$ such that $K^t(x \mid y) > n \alpha(n)$

FP Algorithms for Avoid vs. Time Hierarchy against Advice

• **Theorem:** The following are equivalent:*

*: up to $\omega(1)$ factors in the stretch

- **SAPEPP** \subseteq **FP**
- K^t -HARD $\in \mathbf{FP}$
- There is a language $L \in \mathbf{E} \setminus i.o. \mathbf{DTIME}[2^{n+1}]_{/(2^n \omega(1))}$

Time hierarchy against (near-maximum) advice...

Other Results (Advertisement)

- An "Algorithmic Method" to solve Avoid unconditionally in FP^{NP}
 - Generalising the "Algorithmic Method" for proving lower bounds for $E^{\rm NP}$
- Characterisation of lower bounds for $E^{\ensuremath{NP}\xspace}$

Williams'11: NEXP ⊈ ACC⁰

- Reductions between Avoid for low-complexity circuits
 - Avoiding NC_4^0 (4-local) circuits is as hard as avoiding NC^1 circuits!
 - Uses the randomised encodings of Applebaum-Ishai-Kushilevitz (SICOMP'06)
- Welcome to talk to me about these results!

Finally, A Hypothesis...

- Hypothesis: K^{poly}-HARD is solvable in **FP**.
 - Given $(1^t, 1^n)$, one can find, in det. polynomial time, a string $x \in \{0,1\}^n$ such that $K^t(x) \ge s(n)$.
 - Essentially equivalent to **SAPEPP** \subseteq **FP** for $C : \{0,1\}^{s(n)} \rightarrow \{0,1\}^n$.
- Q: How plausible is this hypothesis?
 - For $s(n) = \log^2 n$? $n^{0.1}$? 0.1n? 0.999n? $n n^{0.9}$? $n \log^2 n$? n 1???
 - If you believe in circuit lower bounds (hard truth tables are easy to generate), should you also believe in this hypothesis (K^{poly}-random strings are easy to generate)?
- Q: How is this hypothesis connected to other parts of New hypothesis for complexity theory?

• Q: Is cK^t-HARD in **FP**? Less secure, but how much less?

Summary

- Range avoidance problem
 - Captures explicit constructions!
 - "Plausibly" in FP^{NP} , but unknown if it's in FNP or even FP
- Avoid ∈ FNP if and only if there is a PPS breaking every proof complexity generator
 - (c) K^t generator is the hardest one!
- Hypothesis: we can generate strings of large K^t complexity, deterministically

Questions are welcome! ③