On the Range Avoidance
Problem for Circuits

Hanlin Ren Rahul Santhanam Zhikun Wang

Oxford Oxford Xi'an Jiaotong
July 5, 2022

The Empty Pigeonhole Principle

* |If you throw N pigeons into M holes, and N < M, then there is
an empty pigeonhole.

* Weak version: if you throw N pigeons into M holes, and 2N < M,
then there Is an empty pigeonhole.

ey 7 =4 i
: = “ i
g o e s
=~ - LY)4
< r AT S
> L i 4 d e
7 T & ”
5 7 o I
T ze : 3
>
p 4
& 3

Range Avoidance Problem

* Input: a (multi-output) circuit C: {0,1}"* - {0,1}* (£ > n)
» Qutput: any string y ¢ Range(C)
* |l.e. for every x € {0,1}*, C(x) # y

« Atotal problem in TFX,, complete for the class APEPP [ITCS21]
« Abundant Polynomial Empty Pigeonhole Principle

A “non-output” of C.

y € {0,1}*

C

x € {0,1}"

A problem that captures the complexity
of weak empty pigeonhole principle!

C (index of pigeon) = index of hole,
find an empty hole!

Explicit Constructions

 Big goal in TCS: construct pseudorandom objects deterministically
 Ramsey graphs, rigid matrices, expander graphs, hard truth tables...

 Explicit construction problems:
« RIGID: On input 1™, output an n X n matrix that is rigid
« RAMSEY: On input 1™, output an n-vertex Ramsey graph

« HARD: On input 12" , output a length-2" truth table without small circuits

 [Korten’21]: Range avoidance captures explicit constructions!
e RIGID, RAMSEY, HARD, ... € APEPP

« Sparse APEPP (SAPEPP): unary problems reducible to Avoid

Example: Circuit Lower Bounds

* Weak empty PHP: most Boolean functions require circuits of >
2112 sjize!

» Embarrassing open Q: ENP ¢ SIZE[10n]?

Truth table of ¢ If Avoid € FP, then E ¢ SIZE|2™/2].
01100010011001010
2" bits If Avoid € FPNF, then ENP ¢ SIZE[2"/2].
I'T (Trivial complexity upper bounds:

Avoid € FBPP and Avoid € FZPP\P)
2™ 2poly(n) bits

Description of a @@b

size-2™/2 circuit C ‘
?%? TT stands for “truth table”.

The Complexity of Avoid

- Korten (FOCS’21): Avoid € FPNP if and only if ENY ¢ SIZE[209-17]

Under “plausible”(?) assumptions, Avoid € FPNP Actually, the following are equivalent:
“Plausible” = widely studied and believed » Avoid € FP'
* Thereis some € > 0 such that
ENP ¢ SIZE[2¢"]
Question 1: is Avoid € FP? « ENP ¢ SIZE[2"/2n]

Is “Avoid € FP” or its negation implied by
any plausible assumption?

It's entirely conceivable that
you can take a circuit as input,
“scramble” it using some
fancy crypto stuff, and
somehow produce a non-
output in poly-time...

Question 2: is Avoid € FNP?

Is “Avoid € FNP” or its negation implied ‘ T
by any plausible assumption?

Recap: FNP Algorithms

* Nondeterministic poly-time algorithms which
« Accepts at least one nondeterministic branch
« On each accepted branch, outputs a valid answer

Valid answers: {1,2,4,6} %N

1 rej 4 rej rej rej 1 rej

Recap: Proof Complexity

* Propositional Proof Systems (PPS): nondet. algorithms for SAT

« A deterministic poly-time algorithm P(¢, y) that gets a formula ¢ and a
“proof” y (of the claim that ¢ Is unsatisfiable)

¢ is unsatisfiable iff 3y, P(p,y) = 1.

* PfLenp(¢) = min{|y|: P(¢,y) = 1} If ¢ is satisfiable then PfLenp(¢) = +oo.

» Proof complexity generators: G: {0,1}"* — {0,1}*

« Want: it is hard to prove that “y ¢ Range(G)” for every y, despite this
formula being true for most y

- A sequence of generators {G,:{0,1}" - {0,1}¥} __is hard for P if for
every y € {0,1}*™, PfLen,y("y ¢ Range(G,)") > f{n%w(l)
* Uniform generator: there is an algorithm that given x, computes G, (x)

FNP Algorithms for Avoid vs.
Proof Complexity Generators

* Theorem: The following are equivalent:
« Avoid € FNP

* There exists a PPS breaking every (non-uniform) proof complexity
generator

<a- A PPS breaking every generator
=

Proof complexity

FNP algorithm for Avoid: Input circuit —
Guess y along with a generator
proof that y € Range(C)
y € {0,1} FNP algorithm = PPS
a proof that y ¢ Range(C)
C for some particular y

FNP Algorithms for Avoid vs.
Proof Complexity Generators

* Theorem: The following are equivalent:
« SAPEPP € FNP
* There exists a PPS breaking every uniform proof complexity generator

Recap: SAPEPP = unary explicit construction problems
“Given 1", find a Ramsey graph over n nodes”

The K! Generator

* Fix a polynomial t. For a string x, Kt(x) is the length of the
shortest program that generates x in t(|x|) steps.

“time-bounded Kolmogorov complexity”

* The K! generator with stretch a(n):
* Input is a program prog of length n — a(n)
« Simulate prog for t(n) steps
« |f the output of prog has length exactly n, output whatever it outputs
« Otherwise, output 0"

 Corresponding problem in SAPEPP: Kt-HARD
« On input 1™, generate a string y € {0,1}" such that K*(y) > n — a(n)

FNP Algorithms for Avoid vs.
Proof Complexity Generators

- Theorem: The following are equivalent;* [=upte () factorsin the stretch

* SAPEPP € FNP
* There exists a PPS breaking every uniform proof complexity generator
 There exists a PPS breaking the K! generator for t(n) = n*

- K*-HARD € FNP There is a hardest proof gggjnna{jg'ag;y”:og any
complexity generator (K*)!

Harder case: the time complexity
of C is > t(n)

o 0 A PPS breaking the K¢ generator

Easy case: the time complexity ... Use a padding argument!
y € {0,1}" of C is at most t(n)
Then for every y € Range(C) y € {0,13"

C we have K{(y) < n— a + 0(D)!
x € {0,1}" ¢« A uniform generator

FNP Algorithms for Avoid vs.
Proof Complexity Generators

 Theorem: The following are equivalent:*
e Avoid € FNP

*. up to w(1) factors in the stretch

* There exists a PPS breaking every (non-uniform) proof complexity

generator
« cKt*-HARD € FNP

« Conditional Kt complexity:

« Kf(x | y) = length of the shortest program that given y outputs x in time

t(lxl +lyD

 cKt*-HARD: On input (1%, y), output any string x € {0,1}" such

that K! (x | y) > n — a(n)

FP Algorithms for Avoid vs.
Time Hierarchy against Advice

- Theorem: The following are equivalent;* [=upte () factorsin the stretch
» SAPEPP C FP
» K!-HARD € FP
* There is alanguage L € E \ i.o. DTIME[Z"“]/(Zn_w(l))

Time hierarchy against (near-maximum) advice...

Other Results (Advertisement)

* An “Algorithmic Method” to solve Avoid unconditionally in FPNP
» Generalising the “Algorithmic Method” for proving lower bounds for ENP

« Characterisation of lower bounds for ENP

Williams™11:
NEXP ¢ AcCC’

* Reductions between Avoid for low-complexity circuits
« Avoiding NCJ (4-local) circuits is as hard as avoiding NC* circuits!

« Uses the randomised encodings of Applebaum-Ishai-Kushilevitz
(SICOMP’06)

 Welcome to talk to me about these results!

Finally, A Hypothesis...

» Hypothesis: KP°Y-HARD is solvable in FP.

 Given (1%, 1™), one can find, in det. polynomial time, a string x € {0,1}"
such that Kt (x) > s(n).

- Essentially equivalent to SAPEPP < FP for C : {0,1}°(- {0,1}".
* Q: How plausible is this hypothesis?
* For s(n) =log?n? n%1? 0.1n? 0.999n? n — n®?? n — log? n? n — 1???

* |If you believe in circuit lower bounds (hard truth tables are easy to

generate), should you also believe in this hypothesis (KP°Y-random
strings are easy to generate)?

* Q: How Is this hypothesis connected to other parts of |New hypothesis for
complexity theory? derandomization?

* Q: Is cKt-HARD in FP? Less secure, but how much less?

Summary

« Range avoidance problem
« Captures explicit constructions!
* “Plausibly” in FPN?| but unknown if it's in FNP or even FP

* Avoid € FNP if and only if there is a PPS breaking every proof
complexity generator

 (c)Kt generator is the hardest one!

« Hypothesis: we can generate strings of large Kt complexity,
deterministically

ihankjyou!

‘ Questions are welcome! © |

