Erfan Khaniki:

Nisan-Wigderson generators in proof complexity: new lower bounds

A map $g:\{0,1\}^n \to \{0,1\}^m \ (m>n)$ is a hard proof complexity generator for a proof system P iff for every string $b\in\{0,1\}^m\setminus \mathsf{Rng}(g)$, formula $\tau_b(g)$ naturally expressing $b\not\in \mathsf{Rng}(g)$ requires superpolynomial size P-proofs. One of the well-studied maps in the theory of proof complexity generators is Nisan–Wigderson generator. Razborov [Raz15] conjectured that if A is a suitable matrix and f is a NP \cap CoNP function hard-on-average for P/poly, then NW $_{f,A}$ is a hard proof complexity generator for Extended Frege. In this paper, we prove a form of Razborov's conjecture for AC°-Frege. We show that for any symmetric NP \cap CoNP function f that is exponentially hard for depth two AC° circuits, NW $_{f,A}$ is a hard proof complexity generator for AC°-Frege in a natural setting. As direct applications of this theorem, we show that:

- 1. For any f with the specified properties, $\tau_b(\mathsf{NW}_{f,A})$ based on a random b and a random matrix A with probability 1 o(1) is a tautology and requires superpolynomial (or even exponential) $\mathsf{AC^0}$ -Frege proofs.
- 2. Certain formalizations of the principle $f_n \notin (\mathsf{NP} \cap \mathsf{CoNP})/\mathsf{poly}$ requires superpolynomial AC^0 -Frege proofs.

These applications relate to two questions that were asked by Krajíček [Kra19].