
Mathematical Approaches to Lower Bounds: Complexity of Proofs and Computation
2022-Jul-04

Multiplicities in GCT: What is in #P and what is not?

Christian Ikenmeyer

Christian Ikenmeyer 1

1 Geometric Complexity Theory

2 Multiplicities in GCT: What is in #P and what is not?

Christian Ikenmeyer 2

1 Geometric Complexity Theory

2 Multiplicities in GCT: What is in #P and what is not?

Christian Ikenmeyer 3

Valiant’s conjecture (often phrased as determinant vs permanent)

A homogeneous algebraic branching program:

Computes h =
∑

s-t-path P

∏
e∈P

`(e)•

•

•

•

•

•

x

y

1
2
y

x

1
2
x

2
3 x

1
3
y

Let h be a homogeneous degree d polynomial. The homogeneous ABP width complexity c(h) is defined as the smallest n
such that there exist a homogeneous width n ABP computing h.

Clearly, c(h) is always finite: Compute each monomial independently.

Remark: The noncommutative version of c is completely understood (Nisan 1991).

Let perm :=
∑
π∈Sm

x1,π(1)x2,π(2) · · ·xm,π(m).

Valiant’s conjecture

The sequence c(perm) grows superpolynomially. In other words, VBP 6= VNP.

Theorem (Grenet 2012): c(perm) ≤
(m
bm/2c

)
.

Christian Ikenmeyer 4

Valiant’s conjecture (often phrased as determinant vs permanent)

A homogeneous algebraic branching program:

Computes h =
∑

s-t-path P

∏
e∈P

`(e)•

•

•

•

•

•

x

y

1
2
y

x

1
2
x

2
3 x

1
3
y

Let h be a homogeneous degree d polynomial. The homogeneous ABP width complexity c(h) is defined as the smallest n
such that there exist a homogeneous width n ABP computing h.

Clearly, c(h) is always finite: Compute each monomial independently.

Remark: The noncommutative version of c is completely understood (Nisan 1991).

Let perm :=
∑
π∈Sm

x1,π(1)x2,π(2) · · ·xm,π(m).

Valiant’s conjecture

The sequence c(perm) grows superpolynomially. In other words, VBP 6= VNP.

Theorem (Grenet 2012): c(perm) ≤
(m
bm/2c

)
.

Christian Ikenmeyer 4

Valiant’s conjecture (often phrased as determinant vs permanent)

A homogeneous algebraic branching program:

Computes h =
∑

s-t-path P

∏
e∈P

`(e)•

•

•

•

•

•

x

y

1
2
y

x

1
2
x

2
3 x

1
3
y

Let h be a homogeneous degree d polynomial. The homogeneous ABP width complexity c(h) is defined as the smallest n
such that there exist a homogeneous width n ABP computing h.

Clearly, c(h) is always finite: Compute each monomial independently.

Remark: The noncommutative version of c is completely understood (Nisan 1991).

Let perm :=
∑
π∈Sm

x1,π(1)x2,π(2) · · ·xm,π(m).

Valiant’s conjecture

The sequence c(perm) grows superpolynomially. In other words, VBP 6= VNP.

Theorem (Grenet 2012): c(perm) ≤
(m
bm/2c

)
.

Christian Ikenmeyer 4

Valiant’s conjecture (often phrased as determinant vs permanent)

A homogeneous algebraic branching program:

Computes h =
∑

s-t-path P

∏
e∈P

`(e)•

•

•

•

•

•

x

y

1
2
y

x

1
2
x

2
3 x

1
3
y

Let h be a homogeneous degree d polynomial. The homogeneous ABP width complexity c(h) is defined as the smallest n
such that there exist a homogeneous width n ABP computing h.

Clearly, c(h) is always finite: Compute each monomial independently.

Remark: The noncommutative version of c is completely understood (Nisan 1991).

Let perm :=
∑
π∈Sm

x1,π(1)x2,π(2) · · ·xm,π(m).

Valiant’s conjecture

The sequence c(perm) grows superpolynomially. In other words, VBP 6= VNP.

Theorem (Grenet 2012): c(perm) ≤
(m
bm/2c

)
.

Christian Ikenmeyer 4

A simpler machine model: Waring rank
Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogenoeous linear polynomials `i:

h =
r∑
i=1

(`i)
d.

The smallest r possible is called the Waring rank WR(h) of h.

Waring rank measures the size of ABPs of special format: •

•

•

•

•

•...

`1

`r

`1

`r

`1

`r

Example:
6x2y = (x+ y)3 + (y − x)3 − 2y3, hence WR(x2y) ≤ 3. In fact, WR(x2y) = 3.

Waring rank for cubic polynomials: matrix multiplication exponent [Chiantini, Hauenstein, I, Landsberg, Ottaviani, 2017]

ω = lim inf
n→∞

logn WR

 n∑
i,j,k=1

xi,jxj,kxk,i



Christian Ikenmeyer 5

A simpler machine model: Waring rank
Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogenoeous linear polynomials `i:

h =
r∑
i=1

(`i)
d.

The smallest r possible is called the Waring rank WR(h) of h.

Waring rank measures the size of ABPs of special format: •

•

•

•

•

•...

`1

`r

`1

`r

`1

`r

Example:
6x2y = (x+ y)3 + (y − x)3 − 2y3, hence WR(x2y) ≤ 3. In fact, WR(x2y) = 3.

Waring rank for cubic polynomials: matrix multiplication exponent [Chiantini, Hauenstein, I, Landsberg, Ottaviani, 2017]

ω = lim inf
n→∞

logn WR

 n∑
i,j,k=1

xi,jxj,kxk,i



Christian Ikenmeyer 5

A simpler machine model: Waring rank
Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogenoeous linear polynomials `i:

h =
r∑
i=1

(`i)
d.

The smallest r possible is called the Waring rank WR(h) of h.

Waring rank measures the size of ABPs of special format: •

•

•

•

•

•...

`1

`r

`1

`r

`1

`r

Example:
6x2y = (x+ y)3 + (y − x)3 − 2y3, hence WR(x2y) ≤ 3. In fact, WR(x2y) = 3.

Waring rank for cubic polynomials: matrix multiplication exponent [Chiantini, Hauenstein, I, Landsberg, Ottaviani, 2017]

ω = lim inf
n→∞

logn WR

 n∑
i,j,k=1

xi,jxj,kxk,i



Christian Ikenmeyer 5

A simpler machine model: Waring rank
Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogenoeous linear polynomials `i:

h =
r∑
i=1

(`i)
d.

The smallest r possible is called the Waring rank WR(h) of h.

Waring rank measures the size of ABPs of special format: •

•

•

•

•

•...

`1

`r

`1

`r

`1

`r

Example:
6x2y = (x+ y)3 + (y − x)3 − 2y3, hence WR(x2y) ≤ 3. In fact, WR(x2y) = 3.

Waring rank for cubic polynomials: matrix multiplication exponent [Chiantini, Hauenstein, I, Landsberg, Ottaviani, 2017]

ω = lim inf
n→∞

logn WR

 n∑
i,j,k=1

xi,jxj,kxk,i


Christian Ikenmeyer 5

Example:
h = x2y = 1

6
((x+ y)3 + (y − x)3 − 2y3), WR(h) = 3.

WR(h) ≤ 1 WR(h) ≤ 2 WR(h) ≤ 3
x2y

1
3ε

(
(x+ εy)3 − x3

)
= x2y + εxy2 + ε2

3
y3yε→ 0

x2y

This makes determining WR(x2y) subtle!
If a continuous function ∆ vanishes on all h with WR(h) ≤ 2, then f also vanishes on x2y.

Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely by
polynomials of Waring rank ≤ n. (e.g., WR(x2y) = 2)

Main advantage: Xn := {h |WR(h) ≤ n} = {h |WR(h) ≤ n} is closed, so it is guaranteed that non-membership p /∈ Xn
can be proved by finding a continuous function ∆ that vanishes on Xn, but does not vanish on p.

Example: Consider the 3-dim vector space C[x, y]2. Let
X1 := {h |WR(h) ≤ 1} = {h | ∃α, β ∈ C : h = (αx+ βy)2} = {ax2 + bxy + cy2 | b2 − 4ac = 0}
A lower bound: WR(xy) ≥ 2, because 12 − 4 · 0 · 0 = 1 6= 0.

Such ∆ = b2 − 4ac is sometimes called a polynomial obstruction or a separating polynomial.

Xk has more structure and we can obtain more information about polynomial obstructions.

Christian Ikenmeyer 6

Example:
h = x2y = 1

6
((x+ y)3 + (y − x)3 − 2y3), WR(h) = 3.

WR(h) ≤ 1 WR(h) ≤ 2 WR(h) ≤ 3
x2y

1
3ε

(
(x+ εy)3 − x3

)
= x2y + εxy2 + ε2

3
y3yε→ 0

x2y

This makes determining WR(x2y) subtle!
If a continuous function ∆ vanishes on all h with WR(h) ≤ 2, then f also vanishes on x2y.

Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely by
polynomials of Waring rank ≤ n. (e.g., WR(x2y) = 2)

Main advantage: Xn := {h |WR(h) ≤ n} = {h |WR(h) ≤ n} is closed, so it is guaranteed that non-membership p /∈ Xn
can be proved by finding a continuous function ∆ that vanishes on Xn, but does not vanish on p.

Example: Consider the 3-dim vector space C[x, y]2. Let
X1 := {h |WR(h) ≤ 1} = {h | ∃α, β ∈ C : h = (αx+ βy)2} = {ax2 + bxy + cy2 | b2 − 4ac = 0}
A lower bound: WR(xy) ≥ 2, because 12 − 4 · 0 · 0 = 1 6= 0.

Such ∆ = b2 − 4ac is sometimes called a polynomial obstruction or a separating polynomial.

Xk has more structure and we can obtain more information about polynomial obstructions.

Christian Ikenmeyer 6

Example:
h = x2y = 1

6
((x+ y)3 + (y − x)3 − 2y3), WR(h) = 3.

WR(h) ≤ 1 WR(h) ≤ 2 WR(h) ≤ 3
x2y

1
3ε

(
(x+ εy)3 − x3

)
= x2y + εxy2 + ε2

3
y3yε→ 0

x2y

This makes determining WR(x2y) subtle!
If a continuous function ∆ vanishes on all h with WR(h) ≤ 2, then f also vanishes on x2y.

Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely by
polynomials of Waring rank ≤ n. (e.g., WR(x2y) = 2)

Main advantage: Xn := {h |WR(h) ≤ n} = {h |WR(h) ≤ n} is closed, so it is guaranteed that non-membership p /∈ Xn
can be proved by finding a continuous function ∆ that vanishes on Xn, but does not vanish on p.

Example: Consider the 3-dim vector space C[x, y]2. Let
X1 := {h |WR(h) ≤ 1} = {h | ∃α, β ∈ C : h = (αx+ βy)2} = {ax2 + bxy + cy2 | b2 − 4ac = 0}
A lower bound: WR(xy) ≥ 2, because 12 − 4 · 0 · 0 = 1 6= 0.

Such ∆ = b2 − 4ac is sometimes called a polynomial obstruction or a separating polynomial.

Xk has more structure and we can obtain more information about polynomial obstructions.

Christian Ikenmeyer 6

Example:
h = x2y = 1

6
((x+ y)3 + (y − x)3 − 2y3), WR(h) = 3.

WR(h) ≤ 1 WR(h) ≤ 2 WR(h) ≤ 3
x2y

1
3ε

(
(x+ εy)3 − x3

)
= x2y + εxy2 + ε2

3
y3yε→ 0

x2y

This makes determining WR(x2y) subtle!
If a continuous function ∆ vanishes on all h with WR(h) ≤ 2, then f also vanishes on x2y.

Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely by
polynomials of Waring rank ≤ n. (e.g., WR(x2y) = 2)

Main advantage: Xn := {h |WR(h) ≤ n} = {h |WR(h) ≤ n} is closed, so it is guaranteed that non-membership p /∈ Xn
can be proved by finding a continuous function ∆ that vanishes on Xn, but does not vanish on p.

Example: Consider the 3-dim vector space C[x, y]2. Let
X1 := {h |WR(h) ≤ 1} = {h | ∃α, β ∈ C : h = (αx+ βy)2} = {ax2 + bxy + cy2 | b2 − 4ac = 0}
A lower bound: WR(xy) ≥ 2, because 12 − 4 · 0 · 0 = 1 6= 0.

Such ∆ = b2 − 4ac is sometimes called a polynomial obstruction or a separating polynomial.

Xk has more structure and we can obtain more information about polynomial obstructions.

Christian Ikenmeyer 6

Example:
h = x2y = 1

6
((x+ y)3 + (y − x)3 − 2y3), WR(h) = 3.

WR(h) ≤ 1 WR(h) ≤ 2 WR(h) ≤ 3
x2y

1
3ε

(
(x+ εy)3 − x3

)
= x2y + εxy2 + ε2

3
y3yε→ 0

x2y

This makes determining WR(x2y) subtle!
If a continuous function ∆ vanishes on all h with WR(h) ≤ 2, then f also vanishes on x2y.

Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely by
polynomials of Waring rank ≤ n. (e.g., WR(x2y) = 2)

Main advantage: Xn := {h |WR(h) ≤ n} = {h |WR(h) ≤ n} is closed, so it is guaranteed that non-membership p /∈ Xn
can be proved by finding a continuous function ∆ that vanishes on Xn, but does not vanish on p.

Example: Consider the 3-dim vector space C[x, y]2. Let
X1 := {h |WR(h) ≤ 1} = {h | ∃α, β ∈ C : h = (αx+ βy)2}

= {ax2 + bxy + cy2 | b2 − 4ac = 0}
A lower bound: WR(xy) ≥ 2, because 12 − 4 · 0 · 0 = 1 6= 0.

Such ∆ = b2 − 4ac is sometimes called a polynomial obstruction or a separating polynomial.

Xk has more structure and we can obtain more information about polynomial obstructions.

Christian Ikenmeyer 6

Example:
h = x2y = 1

6
((x+ y)3 + (y − x)3 − 2y3), WR(h) = 3.

WR(h) ≤ 1 WR(h) ≤ 2 WR(h) ≤ 3
x2y

1
3ε

(
(x+ εy)3 − x3

)
= x2y + εxy2 + ε2

3
y3yε→ 0

x2y

This makes determining WR(x2y) subtle!
If a continuous function ∆ vanishes on all h with WR(h) ≤ 2, then f also vanishes on x2y.

Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely by
polynomials of Waring rank ≤ n. (e.g., WR(x2y) = 2)

Main advantage: Xn := {h |WR(h) ≤ n} = {h |WR(h) ≤ n} is closed, so it is guaranteed that non-membership p /∈ Xn
can be proved by finding a continuous function ∆ that vanishes on Xn, but does not vanish on p.

Example: Consider the 3-dim vector space C[x, y]2. Let
X1 := {h |WR(h) ≤ 1} = {h | ∃α, β ∈ C : h = (αx+ βy)2} = {ax2 + bxy + cy2 | b2 − 4ac = 0}

A lower bound: WR(xy) ≥ 2, because 12 − 4 · 0 · 0 = 1 6= 0.

Such ∆ = b2 − 4ac is sometimes called a polynomial obstruction or a separating polynomial.

Xk has more structure and we can obtain more information about polynomial obstructions.

Christian Ikenmeyer 6

Example:
h = x2y = 1

6
((x+ y)3 + (y − x)3 − 2y3), WR(h) = 3.

WR(h) ≤ 1 WR(h) ≤ 2 WR(h) ≤ 3
x2y

1
3ε

(
(x+ εy)3 − x3

)
= x2y + εxy2 + ε2

3
y3yε→ 0

x2y

This makes determining WR(x2y) subtle!
If a continuous function ∆ vanishes on all h with WR(h) ≤ 2, then f also vanishes on x2y.

Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely by
polynomials of Waring rank ≤ n. (e.g., WR(x2y) = 2)

Main advantage: Xn := {h |WR(h) ≤ n} = {h |WR(h) ≤ n} is closed, so it is guaranteed that non-membership p /∈ Xn
can be proved by finding a continuous function ∆ that vanishes on Xn, but does not vanish on p.

Example: Consider the 3-dim vector space C[x, y]2. Let
X1 := {h |WR(h) ≤ 1} = {h | ∃α, β ∈ C : h = (αx+ βy)2} = {ax2 + bxy + cy2 | b2 − 4ac = 0}
A lower bound: WR(xy) ≥ 2, because 12 − 4 · 0 · 0 = 1 6= 0.

Such ∆ = b2 − 4ac is sometimes called a polynomial obstruction or a separating polynomial.

Xk has more structure and we can obtain more information about polynomial obstructions.

Christian Ikenmeyer 6

Definition (Σ∧Σ)

Let Σ∧Σ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • Σ∧Σ
?
= Σ∧Σ. • VF

?
= VF. • VBP

?
= VBP. • VP

?
= VP. • VNP

?
= VNP.

Comparing a class with its closure:
[Nisan 1991] showed that VBPnon-comm = VBPnon-comm.

[Bringmann I Zuiddam 2018] prove VBP2 $ VBP2 (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class (“de-bordering”):
[Bläser Dörfler I 2020] prove c(p) ≤WR(p). Hence Σ∧Σ ⊆ VBP (which was discovered earlier by Forbes).

[Dutta Dwivedi Saxena 2021] prove ΣkΠΣ ⊆ VBP for any constant k, using the logarithmic derivative.

Open question: Is VF ⊆ VNP or not?

Mulmuley-Sohoni strengthening of Valiant’s conjecture:
Valiant’s conjecture

The sequence c(perm) grows superpolynomially. In other words, VBP 6= VNP.

Mulmuley-Sohoni conjecture

The sequence c(perm) grows superpolynomially. In other words, VNP 6⊆ VBP or equivalently VBP 6= VNP.

Fundamental open question: Are the two conjectures equivalent?

Christian Ikenmeyer 7

Definition (Σ∧Σ)

Let Σ∧Σ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • Σ∧Σ
?
= Σ∧Σ.

• VF
?
= VF. • VBP

?
= VBP. • VP

?
= VP. • VNP

?
= VNP.

Comparing a class with its closure:
[Nisan 1991] showed that VBPnon-comm = VBPnon-comm.

[Bringmann I Zuiddam 2018] prove VBP2 $ VBP2 (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class (“de-bordering”):
[Bläser Dörfler I 2020] prove c(p) ≤WR(p). Hence Σ∧Σ ⊆ VBP (which was discovered earlier by Forbes).

[Dutta Dwivedi Saxena 2021] prove ΣkΠΣ ⊆ VBP for any constant k, using the logarithmic derivative.

Open question: Is VF ⊆ VNP or not?

Mulmuley-Sohoni strengthening of Valiant’s conjecture:
Valiant’s conjecture

The sequence c(perm) grows superpolynomially. In other words, VBP 6= VNP.

Mulmuley-Sohoni conjecture

The sequence c(perm) grows superpolynomially. In other words, VNP 6⊆ VBP or equivalently VBP 6= VNP.

Fundamental open question: Are the two conjectures equivalent?

Christian Ikenmeyer 7

Definition (Σ∧Σ)

Let Σ∧Σ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • Σ∧Σ
?
= Σ∧Σ. • VF

?
= VF. • VBP

?
= VBP. • VP

?
= VP. • VNP

?
= VNP.

Comparing a class with its closure:
[Nisan 1991] showed that VBPnon-comm = VBPnon-comm.

[Bringmann I Zuiddam 2018] prove VBP2 $ VBP2 (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class (“de-bordering”):
[Bläser Dörfler I 2020] prove c(p) ≤WR(p). Hence Σ∧Σ ⊆ VBP (which was discovered earlier by Forbes).

[Dutta Dwivedi Saxena 2021] prove ΣkΠΣ ⊆ VBP for any constant k, using the logarithmic derivative.

Open question: Is VF ⊆ VNP or not?

Mulmuley-Sohoni strengthening of Valiant’s conjecture:
Valiant’s conjecture

The sequence c(perm) grows superpolynomially. In other words, VBP 6= VNP.

Mulmuley-Sohoni conjecture

The sequence c(perm) grows superpolynomially. In other words, VNP 6⊆ VBP or equivalently VBP 6= VNP.

Fundamental open question: Are the two conjectures equivalent?

Christian Ikenmeyer 7

Definition (Σ∧Σ)

Let Σ∧Σ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • Σ∧Σ
?
= Σ∧Σ. • VF

?
= VF. • VBP

?
= VBP. • VP

?
= VP. • VNP

?
= VNP.

Comparing a class with its closure:
[Nisan 1991] showed that VBPnon-comm = VBPnon-comm.

[Bringmann I Zuiddam 2018] prove VBP2 $ VBP2 (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class (“de-bordering”):
[Bläser Dörfler I 2020] prove c(p) ≤WR(p). Hence Σ∧Σ ⊆ VBP (which was discovered earlier by Forbes).

[Dutta Dwivedi Saxena 2021] prove ΣkΠΣ ⊆ VBP for any constant k, using the logarithmic derivative.

Open question: Is VF ⊆ VNP or not?

Mulmuley-Sohoni strengthening of Valiant’s conjecture:
Valiant’s conjecture

The sequence c(perm) grows superpolynomially. In other words, VBP 6= VNP.

Mulmuley-Sohoni conjecture

The sequence c(perm) grows superpolynomially. In other words, VNP 6⊆ VBP or equivalently VBP 6= VNP.

Fundamental open question: Are the two conjectures equivalent?

Christian Ikenmeyer 7

Definition (Σ∧Σ)

Let Σ∧Σ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • Σ∧Σ
?
= Σ∧Σ. • VF

?
= VF. • VBP

?
= VBP. • VP

?
= VP. • VNP

?
= VNP.

Comparing a class with its closure:
[Nisan 1991] showed that VBPnon-comm = VBPnon-comm.

[Bringmann I Zuiddam 2018] prove VBP2 $ VBP2 (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class (“de-bordering”):
[Bläser Dörfler I 2020] prove c(p) ≤WR(p). Hence Σ∧Σ ⊆ VBP (which was discovered earlier by Forbes).

[Dutta Dwivedi Saxena 2021] prove ΣkΠΣ ⊆ VBP for any constant k, using the logarithmic derivative.

Open question: Is VF ⊆ VNP or not?

Mulmuley-Sohoni strengthening of Valiant’s conjecture:
Valiant’s conjecture

The sequence c(perm) grows superpolynomially. In other words, VBP 6= VNP.

Mulmuley-Sohoni conjecture

The sequence c(perm) grows superpolynomially. In other words, VNP 6⊆ VBP or equivalently VBP 6= VNP.

Fundamental open question: Are the two conjectures equivalent?

Christian Ikenmeyer 7

Definition (Σ∧Σ)

Let Σ∧Σ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • Σ∧Σ
?
= Σ∧Σ. • VF

?
= VF. • VBP

?
= VBP. • VP

?
= VP. • VNP

?
= VNP.

Comparing a class with its closure:
[Nisan 1991] showed that VBPnon-comm = VBPnon-comm.

[Bringmann I Zuiddam 2018] prove VBP2 $ VBP2 (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class (“de-bordering”):
[Bläser Dörfler I 2020] prove c(p) ≤WR(p). Hence Σ∧Σ ⊆ VBP (which was discovered earlier by Forbes).

[Dutta Dwivedi Saxena 2021] prove ΣkΠΣ ⊆ VBP for any constant k, using the logarithmic derivative.

Open question: Is VF ⊆ VNP or not?

Mulmuley-Sohoni strengthening of Valiant’s conjecture:
Valiant’s conjecture

The sequence c(perm) grows superpolynomially. In other words, VBP 6= VNP.

Mulmuley-Sohoni conjecture

The sequence c(perm) grows superpolynomially. In other words, VNP 6⊆ VBP or equivalently VBP 6= VNP.

Fundamental open question: Are the two conjectures equivalent?

Christian Ikenmeyer 7

Definition (Σ∧Σ)

Let Σ∧Σ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • Σ∧Σ
?
= Σ∧Σ. • VF

?
= VF. • VBP

?
= VBP. • VP

?
= VP. • VNP

?
= VNP.

Comparing a class with its closure:
[Nisan 1991] showed that VBPnon-comm = VBPnon-comm.

[Bringmann I Zuiddam 2018] prove VBP2 $ VBP2 (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class (“de-bordering”):
[Bläser Dörfler I 2020] prove c(p) ≤WR(p). Hence Σ∧Σ ⊆ VBP (which was discovered earlier by Forbes).

[Dutta Dwivedi Saxena 2021] prove ΣkΠΣ ⊆ VBP for any constant k, using the logarithmic derivative.

Open question: Is VF ⊆ VNP or not?

Mulmuley-Sohoni strengthening of Valiant’s conjecture:
Valiant’s conjecture

The sequence c(perm) grows superpolynomially. In other words, VBP 6= VNP.

Mulmuley-Sohoni conjecture

The sequence c(perm) grows superpolynomially. In other words, VNP 6⊆ VBP or equivalently VBP 6= VNP.

Fundamental open question: Are the two conjectures equivalent?

Christian Ikenmeyer 7

Definition (Σ∧Σ)

Let Σ∧Σ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • Σ∧Σ
?
= Σ∧Σ. • VF

?
= VF. • VBP

?
= VBP. • VP

?
= VP. • VNP

?
= VNP.

Comparing a class with its closure:
[Nisan 1991] showed that VBPnon-comm = VBPnon-comm.

[Bringmann I Zuiddam 2018] prove VBP2 $ VBP2 (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class (“de-bordering”):
[Bläser Dörfler I 2020] prove c(p) ≤WR(p). Hence Σ∧Σ ⊆ VBP (which was discovered earlier by Forbes).

[Dutta Dwivedi Saxena 2021] prove ΣkΠΣ ⊆ VBP for any constant k, using the logarithmic derivative.

Open question: Is VF ⊆ VNP or not?

Mulmuley-Sohoni strengthening of Valiant’s conjecture:
Valiant’s conjecture

The sequence c(perm) grows superpolynomially. In other words, VBP 6= VNP.

Mulmuley-Sohoni conjecture

The sequence c(perm) grows superpolynomially. In other words, VNP 6⊆ VBP or equivalently VBP 6= VNP.

Fundamental open question: Are the two conjectures equivalent?

Christian Ikenmeyer 7

Let Xn := {h | c(h) ≤ n} = {h | c(h) ≤ n}.

X6 would imply c(per3) > 6

per3

[Bläser, I, Lysikov, Pandey, Schreyer, SODA21]: In general, orbit closure containment is NP-hard (minrank of tensors).

Christian Ikenmeyer 8

Xn is a projective variety

Let Xn := {h | c(h) ≤ n}.

A subset X ⊆ CN is a projective variety if there exist finitely many homogeneous polynomials ∆1, . . . ,∆k such that

h ∈ X iff ∆1(h) = ∆2(h) = · · · = ∆k(h) = 0.

Xn is a projective variety (by Chevalley’s theorem).

would imply c(per3) > 6
X6

per3

Fundamental Conclusion: All border complexity lower bounds can be proved via polynomials

perm /∈ Xn iff there exists a homogeneous polynomial ∆ with
∆(h) = 0 for all h ∈ Xn and ∆(perm) 6= 0.

Meta-complexity (algebraic natural proofs): What can be said about the complexity of the ∆i?

Christian Ikenmeyer 9

Xn is a projective variety

Let Xn := {h | c(h) ≤ n}.

A subset X ⊆ CN is a projective variety if there exist finitely many homogeneous polynomials ∆1, . . . ,∆k such that

h ∈ X iff ∆1(h) = ∆2(h) = · · · = ∆k(h) = 0.

Xn is a projective variety (by Chevalley’s theorem).

would imply c(per3) > 6
X6

per3

Fundamental Conclusion: All border complexity lower bounds can be proved via polynomials

perm /∈ Xn iff there exists a homogeneous polynomial ∆ with
∆(h) = 0 for all h ∈ Xn and ∆(perm) 6= 0.

Meta-complexity (algebraic natural proofs): What can be said about the complexity of the ∆i?

Christian Ikenmeyer 9

Complexity lower bounds via highest weight polynomials

Definition (highest weight polynomial)

A function ∆ is called a highest weight polynomial of weight λ = (λ1, . . . , λN), if

∆ is invariant under the action of upper triangular matrices with 1s on the diagonal

and ∆ gets rescaled by αλ1
1 · · ·α

λN
N under the action of diagonal matrices diag(α1, . . . , αN).

Recall: Want ∆ vanishing on Xn and ∆(perm) 6= 0.

Theorem (representation theory)

If perm /∈ Xn, then there exists a highest weight polynomial ∆ such that A∆ vanishes
on Xn and A∆(perm) 6= 0 for a generic matrix A.

Fundamental Conclusion: All border complexity lower bounds can be proved via highest weight
polynomials

If complexity lower bounds exist, then there exist highest weight polynomials proving them.

[Bläser, Dörfler, I, CCC21]: Given a highest weight polynomial ∆, succinctly encoded as a semistandard Young tableau,
then it is #P-hard to evaluate ∆ at a fixed point of Waring rank 3.

Christian Ikenmeyer 10

Complexity lower bounds via highest weight polynomials

Definition (highest weight polynomial)

A function ∆ is called a highest weight polynomial of weight λ = (λ1, . . . , λN), if

∆ is invariant under the action of upper triangular matrices with 1s on the diagonal

and ∆ gets rescaled by αλ1
1 · · ·α

λN
N under the action of diagonal matrices diag(α1, . . . , αN).

Recall: Want ∆ vanishing on Xn and ∆(perm) 6= 0.

Theorem (representation theory)

If perm /∈ Xn, then there exists a highest weight polynomial ∆ such that A∆ vanishes
on Xn and A∆(perm) 6= 0 for a generic matrix A.

Fundamental Conclusion: All border complexity lower bounds can be proved via highest weight
polynomials

If complexity lower bounds exist, then there exist highest weight polynomials proving them.

[Bläser, Dörfler, I, CCC21]: Given a highest weight polynomial ∆, succinctly encoded as a semistandard Young tableau,
then it is #P-hard to evaluate ∆ at a fixed point of Waring rank 3.

Christian Ikenmeyer 10

Mulmuley and Sohoni’s heuristic attempt: Occurrence Obstructions

Proposition (a coarse technique for finding complexity lower bounds: occurrence obstructions)

If there exists λ such that for a generic matrix A we have

for all (!) highest weight polynomials ∆ of weight λ: A∆ vanishes on Xn

there exists a highest weight polynomial ∆ of weight λ such that A∆(perm) 6= 0

then perm /∈ Xn.

X6

per3

(6, 6)

(6, 6)

(6, 6)

(8, 4)

[I, Panova FOCS16] and [Bürgisser, I, Panova FOCS16]: In a non-homogeneous setting, no occurrence obstructions exist.
Nothing is known about the homogeneous setting.

Christian Ikenmeyer 11

More general heuristic attempt: Multiplicity obstructions
Let Ym := {perm(A #»x)}
perm ∈ Xn ⇔ Ym ⊆ Xn

Def.: The multiplicity multλ(C[Xn]) is defined as the dimension of the space of highest weight polynomials of weight λ
restricted to Xn.

X6

per3

(6, 6)

(6, 6)

(6, 6)

(8, 4)

If multλ(C[Ym]) > multλ(C[Xn]), then perm /∈ Xn.

Not much is known about these multiplicities!

[Dörfler, I, Panova ICALP19] There are finite homogeneous settings where multiplicity obstructions are stronger than
occurrence obstructions.

[I, Kandasamy STOC20] Multiplicity obstructions can be created in homogeneous toy settings without contructing the
highest weight polynomials.

Christian Ikenmeyer 12

More general heuristic attempt: Multiplicity obstructions
Let Ym := {perm(A #»x)}
perm ∈ Xn ⇔ Ym ⊆ Xn
Def.: The multiplicity multλ(C[Xn]) is defined as the dimension of the space of highest weight polynomials of weight λ
restricted to Xn.

X6

per3

(6, 6)

(6, 6)

(6, 6)

(8, 4)

If multλ(C[Ym]) > multλ(C[Xn]), then perm /∈ Xn.

Not much is known about these multiplicities!

[Dörfler, I, Panova ICALP19] There are finite homogeneous settings where multiplicity obstructions are stronger than
occurrence obstructions.

[I, Kandasamy STOC20] Multiplicity obstructions can be created in homogeneous toy settings without contructing the
highest weight polynomials.

Christian Ikenmeyer 12

More general heuristic attempt: Multiplicity obstructions
Let Ym := {perm(A #»x)}
perm ∈ Xn ⇔ Ym ⊆ Xn
Def.: The multiplicity multλ(C[Xn]) is defined as the dimension of the space of highest weight polynomials of weight λ
restricted to Xn.

X6

per3

(6, 6)

(6, 6)

(6, 6)

(8, 4)

If multλ(C[Ym]) > multλ(C[Xn]), then perm /∈ Xn.

Not much is known about these multiplicities!

[Dörfler, I, Panova ICALP19] There are finite homogeneous settings where multiplicity obstructions are stronger than
occurrence obstructions.

[I, Kandasamy STOC20] Multiplicity obstructions can be created in homogeneous toy settings without contructing the
highest weight polynomials.

Christian Ikenmeyer 12

The original GCT approach (Mulmuley-Sohoni):

1. The multiplicities are easier to study than the polynomials.

2. Oftentimes the multiplicities in representation theory have well-understood combinatorial descriptions
(Littlewood-Richardson coefficient).

3. Positivity of the Littlewood-Richardson coefficient can be decided in polynomial time (using a combinatorial algorithm).

4. So maybe this works as well for multλ(C[Ym]) and multλ(C[Xn]).

5. Then one could analyze the algorithms and construct an input λ with multλ(C[Ym]) > 0 = multλ(C[Xn]).

We know by now that

About 3.: the positivity of coefficients is often NP-hard [I Mulmuley Walter 2017], [Fischer I 2020].

About 2.: Connections to classical questions in algebraic combinatorics!

Christian Ikenmeyer 13

The original GCT approach (Mulmuley-Sohoni):

1. The multiplicities are easier to study than the polynomials.

2. Oftentimes the multiplicities in representation theory have well-understood combinatorial descriptions
(Littlewood-Richardson coefficient).

3. Positivity of the Littlewood-Richardson coefficient can be decided in polynomial time (using a combinatorial algorithm).

4. So maybe this works as well for multλ(C[Ym]) and multλ(C[Xn]).

5. Then one could analyze the algorithms and construct an input λ with multλ(C[Ym]) > 0 = multλ(C[Xn]).

We know by now that

About 3.: the positivity of coefficients is often NP-hard [I Mulmuley Walter 2017], [Fischer I 2020].

About 2.: Connections to classical questions in algebraic combinatorics!

Christian Ikenmeyer 13

1 Geometric Complexity Theory

2 Multiplicities in GCT: What is in #P and what is not?

Christian Ikenmeyer 14

Closely related multiplicities in Stanley’s “Positivity Problems and Conjectures in Algebraic Combinatorics” (2000):

Problem 9

Find a combinatorial interpretation of the plethysm coefficient aλ(d, n).

Problem 10

Find a combinatorial interpretation of the Kronecker coefficient k(λ, µ, ν).

Problem 11

Find a combinatorial interpretation of the Schubert coefficient.

In other words, is there a combinatorial proof that these numbers are in N.

Recall that f : {0, 1}∗ → N is in #P if there exists a polytime Turing machine M with

∀w ∈ {0, 1}∗ : #accM (w) = f(w)

Problems 9, 10, 11 are in GapP = #P−#P, and all these are nonnegative. Are they in #P?

Christian Ikenmeyer 15

Closely related multiplicities in Stanley’s “Positivity Problems and Conjectures in Algebraic Combinatorics” (2000):

Problem 9

Find a combinatorial interpretation of the plethysm coefficient aλ(d, n).

Problem 10

Find a combinatorial interpretation of the Kronecker coefficient k(λ, µ, ν).

Problem 11

Find a combinatorial interpretation of the Schubert coefficient.

In other words, is there a combinatorial proof that these numbers are in N.

Recall that f : {0, 1}∗ → N is in #P if there exists a polytime Turing machine M with

∀w ∈ {0, 1}∗ : #accM (w) = f(w)

Problems 9, 10, 11 are in GapP = #P−#P, and all these are nonnegative. Are they in #P?

Christian Ikenmeyer 15

Closely related multiplicities in Stanley’s “Positivity Problems and Conjectures in Algebraic Combinatorics” (2000):

Problem 9

Find a combinatorial interpretation of the plethysm coefficient aλ(d, n).

Problem 10

Find a combinatorial interpretation of the Kronecker coefficient k(λ, µ, ν).

Problem 11

Find a combinatorial interpretation of the Schubert coefficient.

In other words, is there a combinatorial proof that these numbers are in N.

Recall that f : {0, 1}∗ → N is in #P if there exists a polytime Turing machine M with

∀w ∈ {0, 1}∗ : #accM (w) = f(w)

Problems 9, 10, 11 are in GapP = #P−#P, and all these are nonnegative. Are they in #P?

Christian Ikenmeyer 15

The problem #Sperner

Input: A Boolean circuit C with 3dlogne inputs and 2-bit output.

C describes a coloring of a side length n triangular grid.

Positions are (x, y, z) with x+ y + z = n

color(x, y, z) =


red if C(x, y, z) = (0, 0)

blue if C(x, y, z) = (0, 1)

green if C(x, y, z) ∈ {(1, 0), (1, 1)}
We enforce constraints at the corners and sides:

Corners:
color(n, 0, 0) = blue,
color(0, n, 0) = green,
color(0, 0, n) = red

Sides:
color(i, j, 0) ∈ {blue,green},
color(i, 0, j) ∈ {blue,red},
color(0, i, j) ∈ {green,red}

(0,0,9)

(0,9,0)(9,0,0)

Christian Ikenmeyer 16

The problem #Sperner

Input: A Boolean circuit C with 3dlogne inputs and 2-bit output.
C describes a coloring of a side length n triangular grid.

Positions are (x, y, z) with x+ y + z = n

color(x, y, z) =


red if C(x, y, z) = (0, 0)

blue if C(x, y, z) = (0, 1)

green if C(x, y, z) ∈ {(1, 0), (1, 1)}

We enforce constraints at the corners and sides:

Corners:
color(n, 0, 0) = blue,
color(0, n, 0) = green,
color(0, 0, n) = red

Sides:
color(i, j, 0) ∈ {blue,green},
color(i, 0, j) ∈ {blue,red},
color(0, i, j) ∈ {green,red}

(0,0,9)

(0,9,0)(9,0,0)

Christian Ikenmeyer 16

The problem #Sperner

Input: A Boolean circuit C with 3dlogne inputs and 2-bit output.
C describes a coloring of a side length n triangular grid.

Positions are (x, y, z) with x+ y + z = n

color(x, y, z) =


red if C(x, y, z) = (0, 0)

blue if C(x, y, z) = (0, 1)

green if C(x, y, z) ∈ {(1, 0), (1, 1)}
We enforce constraints at the corners and sides:

Corners:
color(n, 0, 0) = blue,
color(0, n, 0) = green,
color(0, 0, n) = red

Sides:
color(i, j, 0) ∈ {blue,green},
color(i, 0, j) ∈ {blue,red},
color(0, i, j) ∈ {green,red}

(0,0,9)

(0,9,0)(9,0,0)

Christian Ikenmeyer 16

#Sperner

#Sperner(C) = the number of rainbow triangles in the coloring given by C.

Christian Ikenmeyer 17

#Sperner

#Sperner(C) = the number of rainbow triangles in the coloring given by C.

Christian Ikenmeyer 18

#Sperner(C) = the number of rainbow triangles in the coloring given by C.

Clearly #Sperner ∈ #P.

Sperner’s Lemma

∀C ∈ {0, 1}∗: #Sperner(C) ≥ 1.

Maybe #Sperner−1 is another candidate for being in GapP \#P?

Christian Ikenmeyer 19

#Sperner(C) = the number of rainbow triangles in the coloring given by C.

Clearly #Sperner ∈ #P.

Sperner’s Lemma

∀C ∈ {0, 1}∗: #Sperner(C) ≥ 1.

Maybe #Sperner−1 is another candidate for being in GapP \#P?

Christian Ikenmeyer 19

#Sperner− 1 ∈ #P?

Christian Ikenmeyer 20

#Sperner− 1 ∈ #P?

Christian Ikenmeyer 21

#Sperner− 1 ∈ #P?

Christian Ikenmeyer 22

#Sperner− 1 ∈ #P?

#Sperner− 1 ∈ #P, because we can ignore the yellow triangles and count the purple triangles twice!

Christian Ikenmeyer 23

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f + 1 = g.

Then f + g − 1 = 2g ∈ #P.

f + g − 1 and 2g are the same element in the quotient ring Q[f, g]/(f + 1− g).

doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial ϕ ∈ Q[f1, . . . , fk] has a unique expression over the binomial basis:

ϕ(f1, . . . , fk) =
∑

#»a∈Nk c #»a

(f1
a1

)
· · ·
(fk
ak

)
.

If all c #»a ∈ N, then we say that ϕ is binomial-good.

For example, f2g = 2
(f
2

)(g
1

)
+
(f
1

)(g
1

)
.

Theorem (Hertrampf, Vollmer, Wagner, 1995)

The binomial-good polynomials are exactly the relativizing functional closure properties of #P.

Given an ideal I, a coset ϕ+ I is called binomial-good if ϕ+ I contains a binomial-good representative.

[I, Pak 2022]: For a large class of ideals, the Sperner trick works if and only if ϕ+ I is binomial-good.

If the ideal is generated by linear polynomials, then checking if ϕ+ I is binomial-good reduces to integer programming.

Christian Ikenmeyer 24

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f + 1 = g. Then f + g − 1 = 2g ∈ #P.

f + g − 1 and 2g are the same element in the quotient ring Q[f, g]/(f + 1− g).

doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial ϕ ∈ Q[f1, . . . , fk] has a unique expression over the binomial basis:

ϕ(f1, . . . , fk) =
∑

#»a∈Nk c #»a

(f1
a1

)
· · ·
(fk
ak

)
.

If all c #»a ∈ N, then we say that ϕ is binomial-good.

For example, f2g = 2
(f
2

)(g
1

)
+
(f
1

)(g
1

)
.

Theorem (Hertrampf, Vollmer, Wagner, 1995)

The binomial-good polynomials are exactly the relativizing functional closure properties of #P.

Given an ideal I, a coset ϕ+ I is called binomial-good if ϕ+ I contains a binomial-good representative.

[I, Pak 2022]: For a large class of ideals, the Sperner trick works if and only if ϕ+ I is binomial-good.

If the ideal is generated by linear polynomials, then checking if ϕ+ I is binomial-good reduces to integer programming.

Christian Ikenmeyer 24

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f + 1 = g. Then f + g − 1 = 2g ∈ #P.

f + g − 1 and 2g are the same element in the quotient ring Q[f, g]/(f + 1− g).

doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial ϕ ∈ Q[f1, . . . , fk] has a unique expression over the binomial basis:

ϕ(f1, . . . , fk) =
∑

#»a∈Nk c #»a

(f1
a1

)
· · ·
(fk
ak

)
.

If all c #»a ∈ N, then we say that ϕ is binomial-good.

For example, f2g = 2
(f
2

)(g
1

)
+
(f
1

)(g
1

)
.

Theorem (Hertrampf, Vollmer, Wagner, 1995)

The binomial-good polynomials are exactly the relativizing functional closure properties of #P.

Given an ideal I, a coset ϕ+ I is called binomial-good if ϕ+ I contains a binomial-good representative.

[I, Pak 2022]: For a large class of ideals, the Sperner trick works if and only if ϕ+ I is binomial-good.

If the ideal is generated by linear polynomials, then checking if ϕ+ I is binomial-good reduces to integer programming.

Christian Ikenmeyer 24

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f + 1 = g. Then f + g − 1 = 2g ∈ #P.

f + g − 1 and 2g are the same element in the quotient ring Q[f, g]/(f + 1− g).

doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial ϕ ∈ Q[f1, . . . , fk] has a unique expression over the binomial basis:

ϕ(f1, . . . , fk) =
∑

#»a∈Nk c #»a

(f1
a1

)
· · ·
(fk
ak

)
.

If all c #»a ∈ N, then we say that ϕ is binomial-good.

For example, f2g = 2
(f
2

)(g
1

)
+
(f
1

)(g
1

)
.

Theorem (Hertrampf, Vollmer, Wagner, 1995)

The binomial-good polynomials are exactly the relativizing functional closure properties of #P.

Given an ideal I, a coset ϕ+ I is called binomial-good if ϕ+ I contains a binomial-good representative.

[I, Pak 2022]: For a large class of ideals, the Sperner trick works if and only if ϕ+ I is binomial-good.

If the ideal is generated by linear polynomials, then checking if ϕ+ I is binomial-good reduces to integer programming.

Christian Ikenmeyer 24

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f + 1 = g. Then f + g − 1 = 2g ∈ #P.

f + g − 1 and 2g are the same element in the quotient ring Q[f, g]/(f + 1− g).

doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial ϕ ∈ Q[f1, . . . , fk] has a unique expression over the binomial basis:

ϕ(f1, . . . , fk) =
∑

#»a∈Nk c #»a

(f1
a1

)
· · ·
(fk
ak

)
.

If all c #»a ∈ N, then we say that ϕ is binomial-good.

For example, f2g = 2
(f
2

)(g
1

)
+
(f
1

)(g
1

)
.

Theorem (Hertrampf, Vollmer, Wagner, 1995)

The binomial-good polynomials are exactly the relativizing functional closure properties of #P.

Given an ideal I, a coset ϕ+ I is called binomial-good if ϕ+ I contains a binomial-good representative.

[I, Pak 2022]: For a large class of ideals, the Sperner trick works if and only if ϕ+ I is binomial-good.

If the ideal is generated by linear polynomials, then checking if ϕ+ I is binomial-good reduces to integer programming.

Christian Ikenmeyer 24

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f + 1 = g. Then f + g − 1 = 2g ∈ #P.

f + g − 1 and 2g are the same element in the quotient ring Q[f, g]/(f + 1− g).

doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial ϕ ∈ Q[f1, . . . , fk] has a unique expression over the binomial basis:

ϕ(f1, . . . , fk) =
∑

#»a∈Nk c #»a

(f1
a1

)
· · ·
(fk
ak

)
.

If all c #»a ∈ N, then we say that ϕ is binomial-good.

For example, f2g = 2
(f
2

)(g
1

)
+
(f
1

)(g
1

)
.

Theorem (Hertrampf, Vollmer, Wagner, 1995)

The binomial-good polynomials are exactly the relativizing functional closure properties of #P.

Given an ideal I, a coset ϕ+ I is called binomial-good if ϕ+ I contains a binomial-good representative.

[I, Pak 2022]: For a large class of ideals, the Sperner trick works if and only if ϕ+ I is binomial-good.

If the ideal is generated by linear polynomials, then checking if ϕ+ I is binomial-good reduces to integer programming.

Christian Ikenmeyer 24

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f + 1 = g. Then f + g − 1 = 2g ∈ #P.

f + g − 1 and 2g are the same element in the quotient ring Q[f, g]/(f + 1− g).

doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial ϕ ∈ Q[f1, . . . , fk] has a unique expression over the binomial basis:

ϕ(f1, . . . , fk) =
∑

#»a∈Nk c #»a

(f1
a1

)
· · ·
(fk
ak

)
.

If all c #»a ∈ N, then we say that ϕ is binomial-good.

For example, f2g = 2
(f
2

)(g
1

)
+
(f
1

)(g
1

)
.

Theorem (Hertrampf, Vollmer, Wagner, 1995)

The binomial-good polynomials are exactly the relativizing functional closure properties of #P.

Given an ideal I, a coset ϕ+ I is called binomial-good if ϕ+ I contains a binomial-good representative.

[I, Pak 2022]: For a large class of ideals, the Sperner trick works if and only if ϕ+ I is binomial-good.

If the ideal is generated by linear polynomials, then checking if ϕ+ I is binomial-good reduces to integer programming.

Christian Ikenmeyer 24

This gives an algorithmic way of finding out when exactly “Sperner-type tricks” work. With some extra work (i.e.,
simulating #P instances in TFNP search problems) we get a TFNP-like inclusion diagram [I, Pak 2022]:

#P = (#PPAD(SourceOrSink)− 1)/2

= #PPAD(SourceOrPresink)− 1

= #COUNTALL-PPAD(SourceOrSink)/2

= #PPADS(Sink)− 1

= #PPADS(Presink)− 1

= #CLS(EitherSolution(SourceOrSink,Iter))− 1

= #CLS(EitherSolution(SourceOrPresink,Iter))− 1

#CLS(EitherSolution(SourceOrExcess(2,1),Iter))− 1

#PLS(Iter)− 1

#PPAD(SourceOrExcess(2,1))− 1

#PPA(Preleaf)− 1(#PPA(Leaf)− 1)/2

#PPADS(Excess(2,1))− 1

#PPP(Pigeon)− 1

#COUNTALL-PPA(Leaf)/2

#COUNTGAP(BipartiteUnbalance)

! Thm! Thm

! Thm

All equalities with #P are
shown via relativizing parsimo-
nious reductions. A solid arrow
represents a relativizing parsi-
monious reduction. An arrow
with a ! represents a rela-
tivizing parsimonious reduction
where there is an oracle separa-
tion in the other direction.

Thank you for your attention!

Christian Ikenmeyer 25

This gives an algorithmic way of finding out when exactly “Sperner-type tricks” work. With some extra work (i.e.,
simulating #P instances in TFNP search problems) we get a TFNP-like inclusion diagram [I, Pak 2022]:

#P = (#PPAD(SourceOrSink)− 1)/2

= #PPAD(SourceOrPresink)− 1

= #COUNTALL-PPAD(SourceOrSink)/2

= #PPADS(Sink)− 1

= #PPADS(Presink)− 1

= #CLS(EitherSolution(SourceOrSink,Iter))− 1

= #CLS(EitherSolution(SourceOrPresink,Iter))− 1

#CLS(EitherSolution(SourceOrExcess(2,1),Iter))− 1

#PLS(Iter)− 1

#PPAD(SourceOrExcess(2,1))− 1

#PPA(Preleaf)− 1(#PPA(Leaf)− 1)/2

#PPADS(Excess(2,1))− 1

#PPP(Pigeon)− 1

#COUNTALL-PPA(Leaf)/2

#COUNTGAP(BipartiteUnbalance)

! Thm! Thm

! Thm

All equalities with #P are
shown via relativizing parsimo-
nious reductions. A solid arrow
represents a relativizing parsi-
monious reduction. An arrow
with a ! represents a rela-
tivizing parsimonious reduction
where there is an oracle separa-
tion in the other direction.

Thank you for your attention!

Christian Ikenmeyer 25

	Geometric Complexity Theory
	Multiplicities in GCT: What is in #P and what is not?

