Mathematical Approaches to Lower Bounds: Complexity of Proofs and Computation
2022-Jul-04

Multiplicities in GCT: What is in #P and what is not?

Christian lkenmeyer

E&4d UNIVERSITY OF

¢/ LIVERPOOL

Q Geometric Complexity Theory

© Multiplicities in GCT: What is in #P and what is not?

Christian Ikenmeyer

Q Geometric Complexity Theory

Christian Ikenmr 5

Valiant's conjecture (often phrased as determinant vs permanent)

A homogeneous algebraic branching program:

iy
®
. y N § Computes h = Z H £(e)
,
\@(! . V s-t-path P ec P

Let h be a homogeneous degree d polynomial. The homogeneous ABP width complexity c(h) is defined as the smallest n
such that there exist a homogeneous width n ABP computing h.

Christian Ikenmeyer 4

Valiant's conjecture (often phrased as determinant vs permanent)
A homogeneous algebraic branching program:
3y
N %
e
./& \/Q\ Computes h = tzthp 1_!38(6)
\ f . V s-t-pa e€

Let h be a homogeneous degree d polynomial. The homogeneous ABP width complexity c(h) is defined as the smallest n
such that there exist a homogeneous width n ABP computing h.

Clearly, c(h) is always finite: Compute each monomial independently.

Christian lkenmeyer 4

Valiant's conjecture (often phrased as determinant vs permanent)

A homogeneous algebraic branching program:

3y
®
. y N § Computes h = Z H £(e)
,
\&(! . V s-t-path P ec P

Let h be a homogeneous degree d polynomial. The homogeneous ABP width complexity c(h) is defined as the smallest n
such that there exist a homogeneous width n ABP computing h.

Clearly, c(h) is always finite: Compute each monomial independently.

Remark: The noncommutative version of c is completely understood (Nisan 1991).

Christian lkenmeyer 4

Valiant's conjecture (often phrased as determinant vs permanent)

A homogeneous algebraic branching program:

3y
®
. y N § Computes h = Z H £(e)
,
\@‘ ! . V s-t-path P ec P

Let h be a homogeneous degree d polynomial. The homogeneous ABP width complexity c(h) is defined as the smallest n
such that there exist a homogeneous width n ABP computing h. J

Clearly, c(h) is always finite: Compute each monomial independently.

Remark: The noncommutative version of c is completely understood (Nisan 1991).

Let per,, == 3" ce, T1x(1)%2,7(2) " Tm,m(m)-

Valiant's conjecture

The sequence c(per,,,) grows superpolynomially. In other words, VBP # VNP. J

Theorem (Grenet 2012): c(per,,) < (Lm";QJ)'

Christian lkenmeyer 4

A simpler machine model: Waring rank
Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogenoeous linear polynomials ¢;:

h= i(zi)d.
=1

The smallest r possible is called the Waring rank WR(h) of h.

Christian Ikenmeyer 5

A simpler machine model: Waring rank
Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogenoeous linear polynomials ¢;:

h= i(zi)d.
=1

The smallest r possible is called the Waring rank WR(h) of h.

Waring rank measures the size of ABPs of special format: . : °

Christian Ikenmeyer 5

A simpler machine model: Waring rank
Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogenoeous linear polynomials ¢;:

h= i(zi)d.
=1

The smallest r possible is called the Waring rank WR(h) of h.

Waring rank measures the size of ABPs of special format: . : °

Example:
622y = (z +)3 + (y — 2)® — 2y3, hence WR(z?y) < 3. In fact, WR(22y) = 3.

Christian Ikenmeyer 5

A simpler machine model: Waring rank
Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogenoeous linear polynomials ¢;:

h= i:(e,-)d.
=1

The smallest r possible is called the Waring rank WR(h) of h.

Waring rank measures the size of ABPs of special format: . : °

Example:
622y = (z +y)3 + (y —)3 — 2y>, hence WR(22y) < 3. In fact, WR(22y) = 3.

Waring rank for cubic polynomials: matrix multiplication exponent [Chiantini, Hauenstein, |, Landsberg, Ottaviani, 2017]

n
w = liminf ¢ log, WR Ti % Tk i
min Sn E 1,5 %5, kTk,i
i,J,k=1

Christian Ikenmeyer 5

Example:
h=a%y = g((z+y) + (y —2)® - 24°), WR(h) = 3.

Christian Ikenmeyer 6

Example:
h=a%y = g((z+y) + (y —2)® - 24°), WR(h) = 3.

L(@+ey®—a®) = 2Pyte?+ 5y

ls—)O

w2y

Christian Ikenmeyer 6

Example:
h=a%y = g((z+y)° + (y —2)® - 2y°), WR(h) = 3.

:Tle ((90 +ey)d — 903) = aPy+ery? + %?ﬁ
WR(h) < 3 ls -0

$2y

2%y

This makes determining WR/(22y) subtle!
If a continuous function A vanishes on all h with WR(h) < 2, then f also vanishes on z2y.
Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely by
polynomials of Waring rank < n. (e.g., WR(z%y) = 2)

Christian Ikenmeyer 6

Example:
h=a%y = g((z+y)° + (y —2)® - 2y°), WR(h) = 3.

:Tle ((90 +ey)d — 903) = aPy+ery? + %?ﬁ
WR(h) < 3 ls =0

.732y

2%y

This makes determining WR/(22y) subtle!
If a continuous function A vanishes on all h with WR(h) < 2, then f also vanishes on z2y.

Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely by
polynomials of Waring rank < n. (e.g., WR(z%y) = 2)

Main advantage: X, := {h | WR(h) < n} = {h | WR(h) < n} is closed, so it is guaranteed that non-membership p ¢ X,
can be proved by finding a continuous function A that vanishes on X,,, but does not vanish on p.

Christian Ikenmeyer 6

Example:
h=a%y = g((z+y)° + (y —2)® - 2y°), WR(h) = 3.

:Tle ((x +ey)d — 903) = aPy+ery? + %?ﬁ
WR(h) < 3 la =0

2%y

This makes determining WR/(22y) subtle!
If a continuous function A vanishes on all h with WR(h) < 2, then f also vanishes on z2y.

Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely by
polynomials of Waring rank < n. (e.g., WR(z%y) = 2)

Main advantage: X, := {h | WR(h) < n} = {h | WR(h) < n} is closed, so it is guaranteed that non-membership p ¢ X,
can be proved by finding a continuous function A that vanishes on X,,, but does not vanish on p.

Example: Consider the 3-dim vector space C[z, y]2. Let
X1 1= {h [WR(h) < 1} = {h| 3,8 € C: h = (az + fy)*}

Christian Ikenmeyer 6

Example:
h=a%y = g((z+y)° + (y —2)® - 2y°), WR(h) = 3.

:Tle ((x +ey)d — 903) = aPy+ery? + %?ﬁ
WR(h) < 3 la =0

2%y

This makes determining WR/(22y) subtle!
If a continuous function A vanishes on all h with WR(h) < 2, then f also vanishes on z2y.

Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely by
polynomials of Waring rank < n. (e.g., WR(z%y) = 2)

Main advantage: X, := {h | WR(h) < n} = {h | WR(h) < n} is closed, so it is guaranteed that non-membership p ¢ X,
can be proved by finding a continuous function A that vanishes on X,,, but does not vanish on p.

Example: Consider the 3-dim vector space C[z, y]2. Let
X1 :={h | WR(h) <1} = {h|3a,B € C: h = (az + y)?} = {az? + bry + cy?® | b*> — dac = 0}

Christian Ikenmeyer 6

Example:
h=a%y = g((z+y)° + (y —2)® - 2y°), WR(h) = 3.

3 ((9c +ey)® - w3) = 2Pytery’ + 5y

WR(h) < 3 la -0
CEQy

This makes determining WR/(22y) subtle!
If a continuous function A vanishes on all h with WR(h) < 2, then f also vanishes on z2y.
Definition (border Waring rank)

The border Waring rank WR(h) is defined as the smallest n such that h can be approximated arbitrarily closely by
polynomials of Waring rank < n. (e.g., WR(z%y) = 2)

Main advantage: X, := {h | WR(h) < n} = {h | WR(h) < n} is closed, so it is guaranteed that non-membership p ¢ X,
can be proved by finding a continuous function A that vanishes on X,,, but does not vanish on p.

Example: Consider the 3-dim vector space C[z, y]2. Let
X1 :={h | WR(h) <1} = {h|3a,B € C: h = (az + y)?} = {az? + bry + cy?® | b*> — dac = 0}
A lower bound: WR(zy) > 2, because 12 —4-0-0 =1 # 0.

o Such A = b? — 4ac is sometimes called a polynomial obstruction or a separating polynomial.

@ X} has more structure and we can obtain more information about polynomial obstructions.

Christian Ikenmeyer 6

Definition (XAX) J

Let XAX be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Christian Ikenmeyer 7

Definition (XAX) J

Let XAX be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: e YAY L sas.

Christian Ikenmeyer 7

Definition (XAX) J

Let XAX be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

= ? ? ——4 ?

Open questions: e YAY ZSAY. eVFLVF. eVBPZVBP. eVPZVP. eVNP=VNP.

Christian Ikenmeyer 7

Definition (XAX) J

Let 3AX be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

o

Open questions: ® SAY = SAY. eVF~VF. eVBP-VBP. eVP—=VP. eVNP=VNP.

Comparing a class with its closure:
o [Nisan 1991] showed that VBPnron-comm = VBPron-comm-

Christian Ikenmeyer 7

Definition (XAX) J

Let 3AX be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

o

Open questions: ® SAY = SAY. eVF~VF. eVBP-VBP. eVP—=VP. eVNP=VNP.

Comparing a class with its closure:
o [Nisan 1991] showed that VBPnron-comm = VBPron-comm-
o [Bringmann | Zuiddam 2018] prove VBP2 & VBP2 (algebraic branching programs of width 2)

Christian Ikenmeyer 7

Definition (XAX) J

Let 3AX be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

? —_ 7 ?

Open questions: ® SAY = SAY. eVF~VF. eVBP-VBP. eVP—=VP. eVNP=VNP.

Comparing a class with its closure:
o [Nisan 1991] showed that VBPnron-comm = VBPron-comm-
o [Bringmann | Zuiddam 2018] prove VBP2 & VBP2 (algebraic branching programs of width 2)
Placing a closure of a class into a larger non-closed class (“de-bordering”):
o [Blaser Dorfler | 2020] prove c(p) < WR(p). Hence YAX C VBP (which was discovered earlier by Forbes).

Christian Ikenmeyer 7

Definition (XAX) J

Let 3AX be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

? —_ 7 ?

Open questions: ® SAY = SAY. eVF~VF. eVBP-VBP. eVP—=VP. eVNP=VNP.

Comparing a class with its closure:
o [Nisan 1991] showed that VBPnron-comm = VBPron-comm-
o [Bringmann | Zuiddam 2018] prove VBP2 & VBP2 (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class (“de-bordering”):
o [Blaser Darfler 1 2020] prove c(p) < WR(p). Hence XAX C VBP (which was discovered earlier by Forbes).
o [Dutta Dwivedi Saxena 2021] prove k113 C VBP for any constant k, using the logarithmic derivative.

Christian Ikenmeyer 7

Definition (XAX) J

Let 3AX be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

? —_ 7 ?

Open questions: ® SAY = SAY. eVF~VF. eVBP-VBP. eVP—=VP. eVNP=VNP.

Comparing a class with its closure:
o [Nisan 1991] showed that VBPnron-comm = VBPron-comm-
o [Bringmann | Zuiddam 2018] prove VBP2 & VBP2 (algebraic branching programs of width 2)
Placing a closure of a class into a larger non-closed class (“de-bordering”):
o [Bliser Dorfler 1 2020] prove c(p) < WR(p). Hence SAX C VBP (which was discovered earlier by Forbes).

o [Dutta Dwivedi Saxena 2021] prove k113 C VBP for any constant k, using the logarithmic derivative.
e Open question: Is VF C VNP or not?
Mulmuley-Sohoni strengthening of Valiant's conjecture:
Valiant's conjecture
The sequence c(per,,,) grows superpolynomially. In other words, VBP # VNP. J

Mulmuley-Sohoni conjecture
The sequence c(per,,,) grows superpolynomially. In other words, VNP Z VBP or equivalently VBP # VNP. J

Fundamental open question: Are the two conjectures equivalent?

Christian Ikenmeyer 7

Let X,, := {h|c(h) <n} = {h]|c(h) <n}

pers

would imply c(pers) > 6

[Blaser, I, Lysikov, Pandey, Schreyer, SODA21]: In general, orbit closure containment is NP-hard (minrank of tensors).

Christian Ikenmr

X, is a projective variety
Let X, :={h | c(h) < n}.

A subset X C CV is a projective variety if there exist finitely many homogeneous polynomials A1, ..., A} such that
heX iff Ai(h)=Az(h)=":--=Ag(h)=0.

X, is a projective variety (by Chevalley’s theorem).

Vrrosssssssssrrrsss

would imply c(pers) > 6

Christian Ikenmeyer 9

X, is a projective variety
Let X, :={h | c(h) < n}.

A subset X C CV is a projective variety if there exist finitely many homogeneous polynomials A1, ..., A} such that
heX iff Ai(h)=Az(h)=":--=Ag(h)=0.

X, is a projective variety (by Chevalley’s theorem).

L rrs
RAAAAAAIAIANS

would imply c(pers) > 6

Fundamental Conclusion: All border complexity lower bounds can be proved via polynomials

per,, ¢ X iff there exists a homogeneous polynomial A with
o A(h)=0forallhe X;, and e A(per,,)#0.

Meta-complexity (algebraic natural proofs): What can be said about the complexity of the A;?

Christian Ikenmeyer 9

Complexity lower bounds via highest weight polynomials

Definition (highest weight polynomial)
A function A is called a highest weight polynomial of weight A = (A1,...,AN), if
o A is invariant under the action of upper triangular matrices with 1s on the diagonal

@ and A gets rescaled by ai‘l --~a?‘\,N under the action of diagonal matrices diag(a1,...,an).

Recall: Want A vanishing on X, and A(per,,) # 0.

Theorem (representation theory)

If per,,, ¢ Xy, then there exists a highest weight polynomial A such that AA vanishes
on X, and AA(per,,) # 0 for a generic matrix A.

Christian lkenmeyer 10

Complexity lower bounds via highest weight polynomials

Definition (highest weight polynomial)
A function A is called a highest weight polynomial of weight A = (A1,...,AN), if
o A is invariant under the action of upper triangular matrices with 1s on the diagonal

e and A gets rescaled by ai‘l --~a?‘\,N under the action of diagonal matrices diag(a1,...,an).

Recall: Want A vanishing on X, and A(per,,) # 0.

Theorem (representation theory)

If per,,, ¢ Xy, then there exists a highest weight polynomial A such that AA vanishes
on X, and AA(per,,) # 0 for a generic matrix A.

Fundamental Conclusion: All border complexity lower bounds can be proved via highest weight
polynomials

If complexity lower bounds exist, then there exist highest weight polynomials proving them.

[Blaser, Dérfler, 1, CCC21]: Given a highest weight polynomial A, succinctly encoded as a semistandard Young tableau,
then it is #P-hard to evaluate A at a fixed point of Waring rank 3.

Christian Ikenmeyer 10

Mulmuley and Sohoni's heuristic attempt: Occurrence Obstructions

Proposition (a coarse technique for finding complexity lower bounds: occurrence obstructions)

If there exists A such that for a generic matrix A we have

o for all () highest weight polynomials A of weight A: AA vanishes on X,

o there exists a highest weight polynomial A of weight X such that AA(per,,) # 0
then per,, ¢ X,.

AR

(6,6)

(6,6)

[I, Panova FOCS16] and [Biirgisser, |, Panova FOCS16]: In a non-homogeneous setting, no occurrence obstructions exist.
Nothing is known about the homogeneous setting.

Christian Ikenmeyer 11

More general heuristic attempt: Multiplicity obstructions

Let Y, := {per,,(AT)}
per,, € Xn & Y CX,

Christian Ikenmeyer

More general heuristic attempt: Multiplicity obstructions

Let Yy, := {per,,(AT)}

per,, € Xn & Y CX,

Def.: The multiplicity mult) (C[X},]) is defined as the dimension of the space of highest weight polynomials of weight A
restricted to X, .

(8,4)

(6,6)

(6,6)

(6,6)

Christian lkenme:

More general heuristic attempt: Multiplicity obstructions

Let Yy, := {per,,(AT)}

per,, € Xn & Y CX,

Def.: The multiplicity mult) (C[X},]) is defined as the dimension of the space of highest weight polynomials of weight A
restricted to X, .

(8,4)

(6,6)

(6,6)

If multy (C[Y;]) > multy(C[X4,]), then per,, ¢ X,.

Not much is known about these multiplicities!

o [Dérfler, I, Panova ICALP19] There are finite homogeneous settings where multiplicity obstructions are stronger than
occurrence obstructions.

o [l, Kandasamy STOC20] Multiplicity obstructions can be created in homogeneous toy settings without contructing the
highest weight polynomials.

Christian Ikenmey

The original GCT approach (Mulmuley-Sohoni):
1. The multiplicities are easier to study than the polynomials.

2. Oftentimes the multiplicities in representation theory have well-understood combinatorial descriptions
(Littlewood-Richardson coefficient).

3. Positivity of the Littlewood-Richardson coefficient can be decided in polynomial time (using a combinatorial algorithm).
4. So maybe this works as well for multy (C[Y:,]) and multy (C[X,]).
5. Then one could analyze the algorithms and construct an input A with multy (C[Y;,]) > 0 = multy (C[X,]).

Christian lkenmeyer 13

The original GCT approach (Mulmuley-Sohoni):
1. The multiplicities are easier to study than the polynomials.

2. Oftentimes the multiplicities in representation theory have well-understood combinatorial descriptions
(Littlewood-Richardson coefficient).

3. Positivity of the Littlewood-Richardson coefficient can be decided in polynomial time (using a combinatorial algorithm).
4. So maybe this works as well for multy (C[Y:,]) and multy (C[X,]).
5. Then one could analyze the algorithms and construct an input A with multy (C[Y;,]) > 0 = multy (C[X,]).

We know by now that

o About 3.: the positivity of coefficients is often NP-hard [| Mulmuley Walter 2017], [Fischer | 2020].
@ About 2.: Connections to classical questions in algebraic combinatorics!

Christian Ikenmeyer

© Multiplicities in GCT: What is in #P and what is not?

Christian Ikenmey

Closely related multiplicities in Stanley’s “Positivity Problems and Conjectures in Algebraic Combinatorics” (2000):

Problem 9

Problem 10 '
Problem 11 l

In other words, is there a combinatorial proof that these numbers are in N.

Christian Ikenmey

Closely related multiplicities in Stanley’s “Positivity Problems and Conjectures in Algebraic Combinatorics” (2000):

Problem 9

Problem 10 '
Problem 11 l

In other words, is there a combinatorial proof that these numbers are in N.

Recall that f: {0,1}* — N is in #P if there exists a polytime Turing machine M with

Vw € {0,1}" 1 #accy(w) = f(w)

Christian Ikenmr

Closely related multiplicities in Stanley’s “Positivity Problems and Conjectures in Algebraic Combinatorics” (2000):

Problem 9

Problem 10 '
Problem 11 '

In other words, is there a combinatorial proof that these numbers are in N.

Recall that f: {0,1}* — N is in #P if there exists a polytime Turing machine M with
Vw € {0,1}" 1 #accy(w) = f(w)

Problems 9, 10, 11 are in GapP = #P —#P, and all these are nonnegative. Are they in #P?

Christian Ikenmr

The problem #Sperner

Input: A Boolean circuit C with 3[logn] inputs and 2-bit output.

The problem #Sperner

Input: A Boolean circuit C with 3[logn] inputs and 2-bit output.

C describes a coloring of a side length n triangular grid.
o Positions are (z,y,2) withz+y+2=mn
red if C(z,y,z)=(0,0)
o color(z,y, z) = { blue if C(z,y,2) =(0,1)
green if C(z,9,2) € {(1,0), (1, 1)}

(0,0,9)

A'A'A'A'A
A'A'A'A'A'A
A'A'A'A'A'A'A
A'A'A'A'A'A'A'A

(9,0,0) (0,9,0)

The problem #Sperner

Input: A Boolean circuit C with 3[logn] inputs and 2-bit output.

C describes a coloring of a side length n triangular grid.
o Positions are (z,y,2) withz+y+2=mn
red if C(z,y,z)=(0,0)
@ color(z,y,z) = < blue if C(x,y,2) =(0,1)
{green if C(z,y,2) €{(1,0),(1,1)}

We enforce constraints at the corners and sides:

o Corners:
color(n,0,0) = blue,
color(0,n,0) = green,
color(0,0,n) = red

o Sides:
color(4, j,0) € {blue,green},
color (4,0, j) € {blue,red},
color(0, ¢, 5) € {green,red}

AVAVAYAVAYA
AVAYAVAVAVAVA

(9,0,0)

AVAYAYVAYAYAVAVA

(0,9,0)

#Sperner

aVaAVAYAVAVA'
AVAYAVAVAVAYA

AVAYAVAVAYVAVAVA

#Sperner(C) = the number of rainbow triangles in the coloring given by C.

#Sperner

aVaAVAYAVAVA'
AVAYAVAVAVAYA

AVAYAVAVAYVAVAVA

#Sperner(C) = the number of rainbow triangles in the coloring given by C.

#Sperner(C) = the number of rainbow triangles in the coloring given by C.

Clearly #Sperner € #P.

Christian Ikenmeyer

#Sperner(C) = the number of rainbow triangles in the coloring given by C.

Clearly #Sperner € #P.

Sperner's Lemma
VC € {0,1}*: #Sperner(C) > 1.

Maybe #Sperner—1 is another candidate for being in GapP \ #P?

Christian Ikenmeyer

#Sperner — 1 € #P?

/\ /N
aAVAYAYAVAVA
AVAYAVAVAVAVA
AVAYAVAYAVAVAVA

#Sperner — 1 € #P?

/\ /N
AVAYAYAVAVA
AVAYAVAVAVAVA
AVAYAVAYAVAVAVA

#Sperner — 1 € #P?

AVAYAVAVAVAVA
AVAYAVAYAVAVAVA

#Sperner — 1 € #P?

AVAYAYAYAVAYA
AVAYAYAYAYAVAVA

#Sperner — 1 € #P, because we can ignore the yellow triangles and count the purple triangles twice!

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f +1 = g.

Christian Ikenmeyer

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f +1=g¢g. Then f+¢g—1=2g € #P.

Christian Ikenmeyer

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f +1=g¢g. Then f+¢g—1=2g € #P.
e f+g—1and 2g are the same element in the quotient ring Q[f,g]/(f + 1 — g).
@ doubling is a closure property of #P.

Christian Ikenmeyer

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f +1=g¢g. Then f+¢g—1=2g € #P.

e f+g—1and 2g are the same element in the quotient ring Q[f,g]/(f + 1 — g).
@ doubling is a closure property of #P.

The functional closure properties of #P

Christian Ikenmeyer

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f +1=g¢g. Then f+¢g—1=2g € #P.
e f+g—1and 2g are the same element in the quotient ring Q[f,g]/(f + 1 — g).
@ doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial ¢ € Q[f1,..., fx] has a unique expression over the binomial basis:
= S (f1y ... (Tk
o(f1,- -5 fr) Za’eNkCa(al) (ak)

If all cz € N, then we say that ¢ is binomial-good.

For example, /29 =2(3) (1) + (1) (9)-

Christian Ikenmeyer

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f +1=g¢g. Then f+¢g—1=2g € #P.

@ f+ g—1 and 2g are the same element in the quotient ring Q[f, g]/(f + 1 — g).
@ doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial ¢ € Q[f1,..., fx] has a unique expression over the binomial basis:
= S (f1y ... (Tk
o(f1,- -5 fr) Za’eNkCa(al) (ak)

If all cz € N, then we say that ¢ is binomial-good.

For example, /29 =2(3) (1) + (1) (9)-

Theorem (Hertrampf, Vollmer, Wagner, 1995)

The binomial-good polynomials are exactly the relativizing functional closure properties of #P.

)

Christian Ikenmeyer

When does such a trick work? An easier version:

Given two #P functions f, g with the property that f +1=g¢g. Then f+¢g—1=2g € #P.
@ f+ g—1 and 2g are the same element in the quotient ring Q[f, g]/(f + 1 — g).
@ doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial ¢ € Q[f1,..., fx] has a unique expression over the binomial basis:

o(f1y-- s fr) = X zenk Cﬁ’(gi)(iﬁ)

If all ¢z € N, then we say that ¢ is binomial-good. J

For example, f2g = 2(5)) + ({)).
Theorem (Hertrampf, Vollmer, Wagner, 1995) J

The binomial-good polynomials are exactly the relativizing functional closure properties of #P.

Given an ideal I, a coset ¢ + I is called binomial-good if ¢ + I contains a binomial-good representative.

o [l, Pak 2022]: For a large class of ideals, the Sperner trick works if and only if ¢ + I is binomial-good.
o If the ideal is generated by linear polynomials, then checking if ¢ + I is binomial-good reduces to integer programming.

Christian lkenmeyer 24

This gives an algorithmic way of finding out when exactly “Sperner-type tricks” work. With some extra work (i.e.,
simulating #P instances in TFNP search problems) we get a TFNP-like inclusion diagram [I, Pak 2022]:

[#couNTGAP(BIpARTITEUNBALANCE)][<#PPA(LEAF) - 1)/2] [#PPA(PRELEAF) - 1] [#PPP(PIGEON) - 1] [#PLS(ITER) - 1]
P\

\Thm (#PPADS (Excess(2,1)) — 1

(#COUNTALL-PPA(LEar)/2]

[#PPAD(SOURCEOREXCESS(Z,1)) - 1}

1

[#CLS(EITHERSOLUTION(SOURCEOREXCESS(2,1),ITER)) — 1]

A
A\Thm A Thm
1

#P = (#PPAD(SOURCEORSINK) —1)/2 All equalities with #P are
— #PPAD(SOURCEORPRESINK) — 1 shown via relativizing parsimo-
-) nious reductions. A solid arrow
= #COUNTALL-PPAD(SOURCEORSINK)/2 represents a relativizing parsi-
= #PPADS(SINK) — 1 monious reduction. An arrow
= #PPADS(PRESINK) — 1 with a @& represents a rela-

= #CLS(EITHERSOLUTION(SOURCEORSINK,ITER)) — 1 tivizing parsimonious reduction
where there is an oracle separa-

= #CLS(EITHERSOLUTION(SOURCEORPRESINK,ITER)) — 1 tion in the other direction.

Christian lkenmeyer 25

This gives an algorithmic way of finding out when exactly “Sperner-type tricks” work. With some extra work (i.e.,
simulating #P instances in TFNP search problems) we get a TFNP-like inclusion diagram [I, Pak 2022]:

[#couNTGAP(BIpARTITEUNBALANCE)][<#PPA(LEAF) - 1)/2] [#PPA(PRELEAF) - 1] [#PPP(PIGEON) - 1] [#PLS(ITER) - 1]
P\

\Thm (#PPADS (Excess(2,1)) — 1

(#COUNTALL-PPA(LEar)/2]

[#PPAD(SOURCEOREXCESS(?,1)) - 1}

1

[#CLS(EITHERSOLUTION(SOURCEOREXCESS(2,1),ITER)) — 1]

A
A\Thm A Thm
1

#P = (#PPAD(SOURCEORSINK) —1)/2 All equalities with #P are
— #PPAD(SOURCEORPRESINK) — 1 shown via relativizing parsimo-
-) nious reductions. A solid arrow
= #COUNTALL-PPAD(SOURCEORSINK)/2 represents a relativizing parsi-
= #PPADS(SINK) — 1 monious reduction. An arrow
= #PPADS(PRESINK) — 1 with a @& represents a rela-

= #CLS(EITHERSOLUTION(SOURCEORSINK,ITER)) — 1 tivizing parsimonious reduction
where there is an oracle separa-

= #CLS(EITHERSOLUTION(SOURCEORPRESINK,ITER)) — 1 tion in the other direction.

Thank you for your attention!

Christian lkenmeyer 25

	Geometric Complexity Theory
	Multiplicities in GCT: What is in #P and what is not?

