Multiplicities in GCT: What is in \#P and what is not?

Christian Ikenmeyer
1 Geometric Complexity Theory

2 Multiplicities in GCT: What is in \#P and what is not?
1 Geometric Complexity Theory

2 Multiplicities in GCT: What is in \#P and what is not?
Valiant's conjecture (often phrased as determinant vs permanent)

A homogeneous algebraic branching program:

\[
\text{Computes } h = \sum_{s-t\text{-path } P} \prod_{e \in P} \ell(e)
\]

Let \(h \) be a homogeneous degree \(d \) polynomial. The **homogeneous ABP width complexity** \(c(h) \) is defined as the smallest \(n \) such that there exist a **homogeneous** width \(n \) ABP computing \(h \).
Valiant's conjecture (often phrased as determinant vs permanent)

A homogeneous algebraic branching program:

Let h be a homogeneous degree d polynomial. The **homogeneous ABP width complexity** $c(h)$ is defined as the smallest n such that there exist a homogeneous width n ABP computing h.

Clearly, $c(h)$ is always finite: Compute each monomial independently.
Valiant's conjecture (often phrased as determinant vs permanent)

A homogeneous algebraic branching program:

Let h be a homogeneous degree d polynomial. The **homogeneous ABP width complexity** $c(h)$ is defined as the smallest n such that there exist a homogeneous width n ABP computing h.

Clearly, $c(h)$ is always finite: Compute each monomial independently.

Remark: The noncommutative version of c is completely understood (Nisan 1991).
Valiant’s conjecture (often phrased as determinant vs permanent)

A homogeneous algebraic branching program:

\[
\begin{align*}
\text{Computes } h &= \sum_{s-t\text{-path } P} \prod_{e \in P} \ell(e) \\
\end{align*}
\]

Let \(h \) be a homogeneous degree \(d \) polynomial. The homogeneous ABP width complexity \(c(h) \) is defined as the smallest \(n \) such that there exist a homogeneous width \(n \) ABP computing \(h \).

Clearly, \(c(h) \) is always finite: Compute each monomial independently.

Remark: The noncommutative version of \(c \) is completely understood (Nisan 1991).

Let \(\text{per}_m := \sum_{\pi \in \mathfrak{S}_m} x_{\pi(1)}x_{\pi(2)} \cdots x_{\pi(m)} \).

Valiant’s conjecture

The sequence \(c(\text{per}_m) \) grows superpolynomially. In other words, \(\text{VBP} \neq \text{VNP} \).

Theorem (Grenet 2012): \(c(\text{per}_m) \leq \binom{m}{\lfloor m/2 \rfloor} \).
A simpler machine model: Waring rank

Every homogeneous degree \(d\) polynomial \(h\) can be written as a sum of \(d\)-th powers of homogeneous linear polynomials \(\ell_i\):

\[
h = \sum_{i=1}^{r} (\ell_i)^d.
\]

The smallest \(r\) possible is called the Waring rank \(\text{WR}(h)\) of \(h\).
A simpler machine model: Waring rank

Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogeneous linear polynomials ℓ_i:

$$h = \sum_{i=1}^{r} (\ell_i)^d.$$

The smallest r possible is called the Waring rank $\text{WR}(h)$ of h.

Waring rank measures the size of ABPs of special format:

$$\omega = \liminf_{n \to \infty} \frac{\log n}{\text{WR} \left(\sum_{i,j,k=1}^{n} x_{i,j} x_{j,k} x_{k,i} \right)}$$
A simpler machine model: Waring rank

Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogeneous linear polynomials ℓ_i:

$$h = \sum_{i=1}^{r} (\ell_i)^d.$$

The smallest r possible is called the Waring rank $\text{WR}(h)$ of h.

Waring rank measures the size of ABPs of special format:

Example:

$$6x^2y = (x + y)^3 + (y - x)^3 - 2y^3,$$

hence $\text{WR}(x^2y) \leq 3$. In fact, $\text{WR}(x^2y) = 3$.

\[\text{Waring rank for cubic polynomials: matrix multiplication exponent} \quad \omega = \liminf_{n \to \infty} \frac{\log n}{\text{WR} \left(\sum_{i,j,k=1}^{n} x_i x_j x_k \right)}\]
A simpler machine model: Waring rank

Every homogeneous degree \(d \) polynomial \(h \) can be written as a sum of \(d \)-th powers of homogeneous linear polynomials \(\ell_i \):

\[
h = \sum_{i=1}^{r} (\ell_i)^d.
\]

The smallest \(r \) possible is called the Waring rank \(WR(h) \) of \(h \).

Waring rank measures the size of ABPs of special format:

![Diagram](image)

Example:

\(6x^2y = (x + y)^3 + (y - x)^3 - 2y^3 \), hence \(WR(x^2y) \leq 3 \). In fact, \(WR(x^2y) = 3 \).

Waring rank for cubic polynomials: matrix multiplication exponent [Chiantini, Hauenstein, I, Landsberg, Ottaviani, 2017]

\[
\omega = \liminf_{n \to \infty} \left\{ \log_n \ WR \left(\sum_{i,j,k=1}^{n} x_{i,j} x_{j,k} x_{k,i} \right) \right\}
\]
Example:

\[
h = x^2 y = \frac{1}{6}((x + y)^3 + (y - x)^3 - 2y^3), \text{ WR}(h) = 3.
\]

\[
WR(h) \leq 1 \quad \text{WR}(h) \leq 2 \quad x^2 y \quad \text{WR}(h) \leq 3
\]

Main advantage:

\[
X_n := \{ h | \text{WR}(h) \leq n \} = \{ h | \text{WR}(h) \leq n \}
\]

is closed, so it is guaranteed that non-membership \(p \not\in X_n \) can be proved by finding a continuous function \(\Delta \) that vanishes on \(X_n \), but does not vanish on \(p \).

Example: Consider the 3-dim vector space \(\mathbb{C}[x,y]^2 \). Let

\[
X_1 := \{ h | \text{WR}(h) \leq 1 \} = \{ h | \exists \alpha, \beta \in \mathbb{C} : h = (\alpha x + \beta y)^2 \} = \{ ax^2 + bxy + cy^2 | b^2 - 4ac = 0 \}
\]

A lower bound:

\[
\text{WR}(xy) \geq 2, \text{ because } 1^2 - 4 \cdot 0 \cdot 0 = 1 \neq 0.
\]

Such \(\Delta = b^2 - 4ac \) is sometimes called a polynomial obstruction or a separating polynomial. \n
\(X_k \) has more structure and we can obtain more information about polynomial obstructions.
Example:
\[h = x^2 y = \frac{1}{6}((x + y)^3 + (y - x)^3 - 2y^3), \text{ WR}(h) = 3. \]

\[
\frac{1}{3\varepsilon} \left((x + \varepsilon y)^3 - x^3 \right)
= x^2 y + \varepsilon xy^2 + \frac{\varepsilon^2}{3} y^3
\quad \downarrow \varepsilon \to 0
\]
\[x^2 y \]
Example:
\[h = x^2 y = \frac{1}{6}((x + y)^3 + (y - x)^3 - 2y^3), \quad \text{WR}(h) = 3. \]

\[\frac{1}{3\varepsilon} \left((x + \varepsilon y)^3 - x^3 \right) = x^2 y + \varepsilon xy^2 + \frac{\varepsilon^2}{3} y^3 \]
\[\varepsilon \to 0 \]
\[x^2 y \]

This makes determining \(\text{WR}(x^2 y) \) subtle!
If a continuous function \(\Delta \) vanishes on all \(h \) with \(\text{WR}(h) \leq 2 \), then \(f \) also vanishes on \(x^2 y \).

Definition (border Waring rank)

The **border Waring rank** \(\text{WR}(h) \) is defined as the smallest \(n \) such that \(h \) can be approximated arbitrarily closely by polynomials of Waring rank \(\leq n \).

(e.g., \(\text{WR}(x^2 y) = 2 \))
Example:
\[h = x^2y = \frac{1}{6}((x + y)^3 + (y - x)^3 - 2y^3), \quad \text{WR}(h) = 3. \]

This makes determining \(\text{WR}(x^2y) \) subtle!
If a continuous function \(\Delta \) vanishes on all \(h \) with \(\text{WR}(h) \leq 2 \), then \(f \) also vanishes on \(x^2y \).

Definition (border Waring rank)

The **border Waring rank** \(\text{WR}(h) \) is defined as the smallest \(n \) such that \(h \) can be approximated arbitrarily closely by polynomials of Waring rank \(\leq n \).

(e.g., \(\text{WR}(x^2y) = 2 \))

Main advantage: \(X_n := \{ h \mid \text{WR}(h) \leq n \} = \{ h \mid \text{WR}(h) \leq n \} \) is **closed**, so it is guaranteed that non-membership \(p \notin X_n \) can be proved by finding a continuous function \(\Delta \) that vanishes on \(X_n \), but does not vanish on \(p \).
Example:
\[h = x^2y = \frac{1}{6}((x + y)^3 + (y - x)^3 - 2y^3), \text{ WR}(h) = 3. \]

\[\frac{1}{3\varepsilon}((x + \varepsilon y)^3 - x^3) = x^2y + \varepsilon xy^2 + \frac{\varepsilon^2}{3} y^3 \]

\[\varepsilon \to 0 \]

This makes determining \(\text{WR}(x^2y) \) subtle!
If a continuous function \(\Delta \) vanishes on all \(h \) with \(\text{WR}(h) \leq 2 \), then \(f \) also vanishes on \(x^2y \).

Definition (border Waring rank)

The **border Waring rank** \(\text{WR}(h) \) is defined as the smallest \(n \) such that \(h \) can be approximated arbitrarily closely by polynomials of Waring rank \(\leq n \).

(e.g., \(\text{WR}(x^2y) = 2 \))

Main advantage: \(X_n := \{ h \mid \text{WR}(h) \leq n \} = \{ h \mid \text{WR}(h) \leq n \} \) is **closed**, so it is guaranteed that non-membership \(p \notin X_n \) can be proved by finding a continuous function \(\Delta \) that vanishes on \(X_n \), but does not vanish on \(p \).

Example: Consider the 3-dim vector space \(\mathbb{C}[x, y]_2 \). Let
\[X_1 := \{ h \mid \text{WR}(h) \leq 1 \} = \{ h \mid \exists \alpha, \beta \in \mathbb{C} : h = (\alpha x + \beta y)^2 \} \]
Example:

\[h = x^2 y = \frac{1}{6}((x + y)^3 + (y - x)^3 - 2y^3), \quad \text{WR}(h) = 3. \]

This makes determining \(\text{WR}(x^2 y) \) subtle!

If a continuous function \(\Delta \) vanishes on all \(h \) with \(\text{WR}(h) \leq 2 \), then \(f \) also vanishes on \(x^2 y \).

Definition (border Waring rank)

The **border Waring rank** \(\text{WR}(h) \) is defined as the smallest \(n \) such that \(h \) can be approximated arbitrarily closely by polynomials of Waring rank \(\leq n \).

(e.g., \(\text{WR}(x^2 y) = 2 \))

Main advantage: \(X_n := \{ h \mid \text{WR}(h) \leq n \} = \{ h \mid \text{WR}(h) \leq n \} \) is closed, so it is guaranteed that non-membership \(p \notin X_n \) can be proved by finding a continuous function \(\Delta \) that vanishes on \(X_n \), but does not vanish on \(p \).

Example: Consider the 3-dim vector space \(\mathbb{C}[x, y] \). Let

\[X_1 := \{ h \mid \text{WR}(h) \leq 1 \} = \{ h \mid \exists \alpha, \beta \in \mathbb{C} : h = (\alpha x + \beta y)^2 \} = \{ ax^2 + bxy + cy^2 \mid b^2 - 4ac = 0 \} \]
Example:
\[h = x^2 y = \frac{1}{6}((x + y)^3 + (y - x)^3 - 2y^3), \quad \text{WR}(h) = 3. \]

\[
\frac{1}{3\varepsilon} \left((x + \varepsilon y)^3 - x^3\right) = x^2 y + \varepsilon xy^2 + \frac{\varepsilon^2}{3} y^3 \quad \downarrow \varepsilon \to 0 \quad x^2 y
\]

This makes determining \(\text{WR}(x^2 y) \) subtle!
If a continuous function \(\Delta \) vanishes on all \(h \) with \(\text{WR}(h) \leq 2 \), then \(f \) also vanishes on \(x^2 y \).

Definition (border Waring rank)

The **border Waring rank** \(\text{WR}(h) \) is defined as the smallest \(n \) such that \(h \) can be approximated arbitrarily closely by polynomials of Waring rank \(\leq n \).

(e.g., \(\text{WR}(x^2 y) = 2 \))

Main advantage: \(X_n := \{ h \mid \text{WR}(h) \leq n \} = \{ h \mid \text{WR}(h) \leq n \} \) is **closed**, so it is guaranteed that non-membership \(p \notin X_n \) can be proved by finding a continuous function \(\Delta \) that vanishes on \(X_n \), but does not vanish on \(p \).

Example: Consider the 3-dim vector space \(\mathbb{C}[x, y]_2 \). Let
\[X_1 := \{ h \mid \text{WR}(h) \leq 1 \} = \{ h \mid \exists \alpha, \beta \in \mathbb{C} : h = (\alpha x + \beta y)^2 \} = \{ ax^2 + bxy + cy^2 \mid b^2 - 4ac = 0 \} \]
A lower bound: \(\text{WR}(xy) \geq 2 \), because \(1^2 - 4 \cdot 0 \cdot 0 = 1 \neq 0 \).

- Such \(\Delta = b^2 - 4ac \) is sometimes called a **polynomial obstruction** or a **separating polynomial**.
- \(X_k \) has more structure and we can obtain more information about polynomial obstructions.
Definition \((\Sigma \land \Sigma)\)

Let \(\Sigma \land \Sigma\) be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.
Definition ($\Sigma \wedge \Sigma$)

Let $\Sigma \wedge \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: $\Sigma \wedge \Sigma \neq \Sigma \wedge \Sigma$.
Definition ($\Sigma \land \Sigma$)

Let $\Sigma \land \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions:
\begin{itemize}
 \item $\Sigma \land \Sigma \supsetneq \Sigma \land \Sigma$.
 \item $\overline{\text{VF}} \supsetneq \text{VF}$.
 \item $\overline{\text{VBP}} \supsetneq \text{VBP}$.
 \item $\overline{\text{VP}} \supsetneq \text{VP}$.
 \item $\overline{\text{VNP}} \supsetneq \text{VNP}$.
\end{itemize}
Definition ($\Sigma \land \Sigma$)

Let $\Sigma \land \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions:
• $\Sigma \land \Sigma \nsubseteq \Sigma \land \Sigma$.
• $\overline{\text{VF}} \nsubseteq \text{VF}$.
• $\overline{\text{VBP}} \nsubseteq \text{VBP}$.
• $\overline{\text{VP}} \nsubseteq \text{VP}$.
• $\overline{\text{VNP}} \nsubseteq \text{VNP}$.

Comparing a class with its closure:
• [Nisan 1991] showed that $\text{VBP}_{\text{non-comm}} = \overline{\text{VBP}}_{\text{non-comm}}$.

Definition ($\Sigma \wedge \Sigma$)

Let $\Sigma \wedge \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions:
- $\Sigma \wedge \Sigma \not\subseteq \Sigma \wedge \Sigma$
- $\overline{\text{VF}} \not\subseteq \text{VF}$
- $\overline{\text{VBP}} \not\subseteq \text{VBP}$
- $\overline{\text{VP}} \not\subseteq \text{VP}$
- $\overline{\text{VNP}} \not\subseteq \text{VNP}$

Comparing a class with its closure:
- [Nisan 1991] showed that $\text{VBP}_{\text{non-comm}} = \overline{\text{VBP}_{\text{non-comm}}}$.
- [Bringmann I Zuiddam 2018] prove $\text{VBP}_2 \subsetneq \overline{\text{VBP}_2}$ (algebraic branching programs of width 2)
Definition ($\Sigma \land \Sigma$)

Let $\Sigma \land \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • $\Sigma \land \Sigma \nsubseteq \Sigma \land \Sigma$. • $\overline{\text{VF}} \nsubseteq \text{VF}$. • $\overline{\text{VBP}} \nsubseteq \text{VBP}$. • $\overline{\text{VP}} \nsubseteq \text{VP}$. • $\overline{\text{VNP}} \nsubseteq \text{VNP}$.

Comparing a class with its closure:
- [Nisan 1991] showed that $\text{VBP}_{\text{non-comm}} = \overline{\text{VBP}}_{\text{non-comm}}$.
- [Bringmann I Zuiddam 2018] prove $\text{VBP}_2 \subsetneq \overline{\text{VBP}}_2$ (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class (“de-bordering”):
- [Bläser Dörlfer I 2020] prove $c(p) \leq \text{WR}(p)$. Hence $\Sigma \land \Sigma \subseteq \text{VBP}$ (which was discovered earlier by Forbes).
Definition \((\Sigma \land \Sigma)\)

Let \(\Sigma \land \Sigma\) be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions:
- \(\Sigma \land \Sigma \not= \Sigma \land \Sigma\)
- \(\text{VF} \not= \text{VF}\)
- \(\text{VBP} \not= \text{VBP}\)
- \(\text{VP} \not= \text{VP}\)
- \(\text{VNP} \not= \text{VNP}\)

Comparing a class with its closure:
- [Nisan 1991] showed that \(\text{VBP}_{\text{non-comm}} = \overline{\text{VBP}_{\text{non-comm}}}\).
- [Bringmann I Zuiddam 2018] prove \(\text{VBP}_2 \subseteq \overline{\text{VBP}_2}\) (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class ("de-bordering"):
- [Bläser Dörfler I 2020] prove \(c(p) \leq \text{WR}(p)\). Hence \(\Sigma \land \Sigma \subseteq \text{VBP}\) (which was discovered earlier by Forbes).
- [Dutta Dwivedi Saxena 2021] prove \(\Sigma^k \Pi \Sigma \subseteq \text{VBP}\) for any constant \(k\), using the logarithmic derivative.
Definition ($\Sigma \land \Sigma$)

Let $\Sigma \land \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: \bullet $\Sigma \land \Sigma \not\subseteq \Sigma \land \Sigma$. \bullet $\overline{\mathbf{V} \mathbf{F}} \not\subseteq \mathbf{V} \mathbf{F}$. \bullet $\overline{\mathbf{V} \mathbf{B} \mathbf{P}} \not\subseteq \mathbf{V} \mathbf{B} \mathbf{P}$. \bullet $\overline{\mathbf{V} \mathbf{P}} \not\subseteq \mathbf{V} \mathbf{P}$. \bullet $\overline{\mathbf{V} \mathbf{N} \mathbf{P}} \not\subseteq \mathbf{V} \mathbf{N} \mathbf{P}$.

Comparing a class with its closure:

\bullet [Nisan 1991] showed that $\mathbf{V} \mathbf{B} \mathbf{P}_{\text{non-comm}} = \overline{\mathbf{V} \mathbf{B} \mathbf{P}_{\text{non-comm}}}$.

\bullet [Bringmann I Zuiddam 2018] prove $\mathbf{V} \mathbf{B} \mathbf{P}_2 \subsetneq \overline{\mathbf{V} \mathbf{B} \mathbf{P}_2}$ (algebraic branching programs of width 2).

Placing a closure of a class into a larger non-closed class (“de-bordering”):

\bullet [Bläser Dörfler I 2020] prove $c(p) \leq \overline{\text{WR}(p)}$. Hence $\Sigma \land \Sigma \subseteq \mathbf{V} \mathbf{B} \mathbf{P}$ (which was discovered earlier by Forbes).

\bullet [Dutta Dwivedi Saxena 2021] prove $\Sigma^k \prod \Sigma \subseteq \mathbf{V} \mathbf{B} \mathbf{P}$ for any constant k, using the logarithmic derivative.

Open question: Is $\overline{\mathbf{V} \mathbf{F}} \subseteq \mathbf{V} \mathbf{N} \mathbf{P}$ or not?

Mulmuley-Sohoni strengthening of Valiant’s conjecture:

Valiant’s conjecture

The sequence $c(\text{per}_m)$ grows superpolynomially. In other words, $\mathbf{V} \mathbf{B} \mathbf{P} \neq \mathbf{V} \mathbf{N} \mathbf{P}$.

Mulmuley-Sohoni conjecture

The sequence $c(\text{per}_m)$ grows superpolynomially. In other words, $\mathbf{V} \mathbf{N} \mathbf{P} \subsetneq \overline{\mathbf{V} \mathbf{B} \mathbf{P}}$ or equivalently $\overline{\mathbf{V} \mathbf{B} \mathbf{P}} \neq \mathbf{V} \mathbf{N} \mathbf{P}$.

Fundamental open question: Are the two conjectures equivalent?
Let $X_n := \{ h \mid c(h) \leq n \} = \{ h \mid c(h) \leq n \}$.

would imply $c(\text{per}_3) > 6$

[Bläser, I, Lysikov, Pandey, Schreyer, SODA21]: In general, orbit closure containment is NP-hard (minrank of tensors).
X_n is a projective variety

Let $X_n := \{ h \mid c(h) \leq n \}$.

A subset $\mathcal{X} \subseteq \mathbb{C}^N$ is a **projective variety** if there exist finitely many homogeneous polynomials $\Delta_1, \ldots, \Delta_k$ such that

$$h \in \mathcal{X} \iff \Delta_1(h) = \Delta_2(h) = \cdots = \Delta_k(h) = 0.$$

X_n is a projective variety (by Chevalley’s theorem).

would imply $c(\text{per}_3) > 6$
X_n is a projective variety

Let $X_n := \{h \mid c(h) \leq n\}$.

A subset $\mathcal{X} \subseteq \mathbb{C}^N$ is a **projective variety** if there exist finitely many homogeneous polynomials $\Delta_1, \ldots, \Delta_k$ such that

$h \in \mathcal{X}$ iff $\Delta_1(h) = \Delta_2(h) = \cdots = \Delta_k(h) = 0$.

X_n is a projective variety (by Chevalley’s theorem).

![Diagram](image)

Fundamental Conclusion: All border complexity lower bounds can be proved via **polynomials**

$\text{per}_m \notin X_n$ iff there exists a homogeneous polynomial Δ with

- $\Delta(h) = 0$ for all $h \in X_n$
- $\Delta(\text{per}_m) \neq 0$.

Meta-complexity (algebraic natural proofs): What can be said about the complexity of the Δ_i?
Complexity lower bounds via highest weight polynomials

Definition (highest weight polynomial)

A function Δ is called a **highest weight polynomial** of weight $\lambda = (\lambda_1, \ldots, \lambda_N)$, if

- Δ is invariant under the action of upper triangular matrices with 1s on the diagonal
- and Δ gets rescaled by $\alpha_1^{\lambda_1} \cdots \alpha_N^{\lambda_N}$ under the action of diagonal matrices $\text{diag}(\alpha_1, \ldots, \alpha_N)$.

Recall: Want Δ vanishing on X_n and $\Delta(\text{per}_m) \neq 0$.

Theorem (representation theory)

If $\text{per}_m \notin X_n$, then there exists a highest weight polynomial Δ such that $A\Delta$ vanishes on X_n and $A\Delta(\text{per}_m) \neq 0$ for a generic matrix A.

[Bläser, Dörfler, I, CCC21]: Given a highest weight polynomial Δ, succinctly encoded as a semistandard Young tableau, then it is #P-hard to evaluate Δ at a fixed point of Waring rank 3.
Complexity lower bounds via highest weight polynomials

Definition (highest weight polynomial)

A function Δ is called a **highest weight polynomial** of weight $\lambda = (\lambda_1, \ldots, \lambda_N)$, if

- Δ is invariant under the action of upper triangular matrices with 1s on the diagonal
- and Δ gets rescaled by $\alpha_1^{\lambda_1} \cdots \alpha_N^{\lambda_N}$ under the action of diagonal matrices $\text{diag}(\alpha_1, \ldots, \alpha_N)$.

Recall: Want Δ vanishing on X_n and $\Delta(\text{per}_m) \neq 0$.

Theorem (representation theory)

If $\text{per}_m \notin X_n$, then there exists a highest weight polynomial Δ such that $A\Delta$ vanishes on X_n and $A\Delta(\text{per}_m) \neq 0$ for a generic matrix A.

Fundamental Conclusion: All border complexity lower bounds can be proved via highest weight polynomials

If complexity lower bounds exist, then there exist highest weight polynomials proving them.

[Bläser, Dörfler, I, CCC21]: Given a highest weight polynomial Δ, succinctly encoded as a semistandard Young tableau, then it is $\#P$-hard to evaluate Δ at a fixed point of Waring rank 3.
Proposition (a coarse technique for finding complexity lower bounds: occurrence obstructions)

If there exists λ such that for a generic matrix A we have

- for all (!) highest weight polynomials Δ of weight λ: $A\Delta$ vanishes on X_n
- there exists a highest weight polynomial Δ of weight λ such that $A\Delta(\text{per}_m) \neq 0$

then $\text{per}_m \notin X_n$.

[I, Panova FOCS16] and [Bürgisser, I, Panova FOCS16]: In a non-homogeneous setting, no occurrence obstructions exist. Nothing is known about the homogeneous setting.
More general heuristic attempt: Multiplicity obstructions

Let $Y_m := \{ \text{per}_m(Ax) \}$

$\text{per}_m \in X_n \iff Y_m \subseteq X_n$

Not much is known about these multiplicities!

[Dörfler, I, Panova ICALP19] There are finite homogeneous settings where multiplicity obstructions are stronger than occurrence obstructions.

[I, Kandasamy STOC20] Multiplicity obstructions can be created in homogeneous toy settings without constructing the highest weight polynomials.
More general heuristic attempt: Multiplicity obstructions

Let $Y_m := \{ \text{per}_m(A \vec{x}) \}$

$\text{per}_m \in X_n \iff Y_m \subseteq X_n$

Def.: The multiplicity $\text{mult}_\lambda(\mathbb{C}[X_n])$ is defined as the dimension of the space of highest weight polynomials of weight λ restricted to X_n.
More general heuristic attempt: Multiplicity obstructions

Let $Y_m := \{\text{per}_m(A \vec{x})\}$

$\text{per}_m \in X_n \iff Y_m \subseteq X_n$

Def.: The multiplicity $\text{mult}_\lambda(\mathbb{C}[X_n])$ is defined as the dimension of the space of highest weight polynomials of weight λ restricted to X_n.

If $\text{mult}_\lambda(\mathbb{C}[Y_m]) > \text{mult}_\lambda(\mathbb{C}[X_n])$, then $\text{per}_m \notin X_n$.

Not much is known about these multiplicities!

- [Dörfler, I, Panova ICALP19] There are finite homogeneous settings where multiplicity obstructions are stronger than occurrence obstructions.
- [I, Kandasamy STOC20] Multiplicity obstructions can be created in homogeneous toy settings without constructing the highest weight polynomials.
The original GCT approach (Mulmuley-Sohoni):

1. The multiplicities are easier to study than the polynomials.
2. Oftentimes the multiplicities in representation theory have well-understood combinatorial descriptions (Littlewood-Richardson coefficient).
3. Positivity of the Littlewood-Richardson coefficient can be decided in polynomial time (using a combinatorial algorithm).
4. So maybe this works as well for $\text{mult}_\lambda(\mathbb{C}[Y_m])$ and $\text{mult}_\lambda(\mathbb{C}[X_n])$.
5. Then one could analyze the algorithms and construct an input λ with $\text{mult}_\lambda(\mathbb{C}[Y_m]) > 0 = \text{mult}_\lambda(\mathbb{C}[X_n])$.

We know by now that About 3.: the positivity of coefficients is often NP-hard [I Mulmuley Walter 2017], [Fischer I 2020].

About 2.: Connections to classical questions in algebraic combinatorics!

Christian Ikenmeyer
The original GCT approach (Mulmuley-Sohoni):

1. The multiplicities are easier to study than the polynomials.
2. Oftentimes the multiplicities in representation theory have well-understood combinatorial descriptions (Littlewood-Richardson coefficient).
3. Positivity of the Littlewood-Richardson coefficient can be decided in polynomial time (using a combinatorial algorithm).
4. So maybe this works as well for \(\text{mult}_\lambda(\mathbb{C}[Y_m]) \) and \(\text{mult}_\lambda(\mathbb{C}[X_n]) \).
5. Then one could analyze the algorithms and construct an input \(\lambda \) with \(\text{mult}_\lambda(\mathbb{C}[Y_m]) > 0 = \text{mult}_\lambda(\mathbb{C}[X_n]) \).

We know by now that

- About 3.: the positivity of coefficients is often NP-hard [I Mulmuley Walter 2017], [Fischer I 2020].
- About 2.: Connections to classical questions in algebraic combinatorics!
Geometric Complexity Theory

Multiplicities in GCT: What is in \#P and what is not?
Closely related multiplicities in Stanley’s “Positivity Problems and Conjectures in Algebraic Combinatorics” (2000):

<table>
<thead>
<tr>
<th>Problem 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find a combinatorial interpretation of the plethysm coefficient $a_\lambda(d,n)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find a combinatorial interpretation of the Kronecker coefficient $k(\lambda,\mu,\nu)$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find a combinatorial interpretation of the Schubert coefficient.</td>
</tr>
</tbody>
</table>

In other words, is there a **combinatorial proof** that these numbers are in \mathbb{N}.

Christian Ikenmeyer

15
Closely related multiplicities in Stanley’s “Positivity Problems and Conjectures in Algebraic Combinatorics” (2000):

Problem 9
Find a combinatorial interpretation of the plethysm coefficient $a_\lambda(d,n)$.

Problem 10
Find a combinatorial interpretation of the Kronecker coefficient $k(\lambda,\mu,\nu)$.

Problem 11
Find a combinatorial interpretation of the Schubert coefficient.

In other words, is there a **combinatorial proof** that these numbers are in \mathbb{N}.

Recall that $f : \{0,1\}^* \to \mathbb{N}$ is in #P if there exists a polytime Turing machine M with

$$\forall w \in \{0,1\}^* : \#\text{acc}_M(w) = f(w)$$
Closely related multiplicities in Stanley’s “Positivity Problems and Conjectures in Algebraic Combinatorics” (2000):

<table>
<thead>
<tr>
<th>Problem 9</th>
<th>Find a combinatorial interpretation of the plethysm coefficient $a_{\lambda}(d, n)$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem 10</td>
<td>Find a combinatorial interpretation of the Kronecker coefficient $k(\lambda, \mu, \nu)$.</td>
</tr>
<tr>
<td>Problem 11</td>
<td>Find a combinatorial interpretation of the Schubert coefficient.</td>
</tr>
</tbody>
</table>

In other words, is there a **combinatorial proof** that these numbers are in \mathbb{N}.

Recall that $f : \{0, 1\}^* \to \mathbb{N}$ is in $\#P$ if there exists a polytime Turing machine M with

$$\forall w \in \{0, 1\}^* : \#\text{acc}_M(w) = f(w)$$

Problems 9, 10, 11 are in $\text{GapP} = \#P - \#P$, and all these are nonnegative. Are they in $\#P$?
The problem \#Sperner

Input: A Boolean circuit C with $3\lceil \log n \rceil$ inputs and 2-bit output.
The problem \#Sperner

Input: A Boolean circuit C with $3\lceil \log n \rceil$ inputs and 2-bit output. C describes a coloring of a side length n triangular grid.

- Positions are (x, y, z) with $x + y + z = n$

- $\text{color}(x, y, z) = \begin{cases}
 \text{red} & \text{if } C(x, y, z) = (0, 0) \\
 \text{blue} & \text{if } C(x, y, z) = (0, 1) \\
 \text{green} & \text{if } C(x, y, z) \in \{(1, 0), (1, 1)\}
\end{cases}$
The problem \#Sperner

Input: A Boolean circuit C with $3\lceil \log n \rceil$ inputs and 2-bit output. C describes a coloring of a side length n triangular grid.

- Positions are (x, y, z) with $x + y + z = n$
- $\text{color}(x, y, z) = \begin{cases} \text{red} & \text{if } C(x, y, z) = (0, 0) \\ \text{blue} & \text{if } C(x, y, z) = (0, 1) \\ \text{green} & \text{if } C(x, y, z) \in \{(1, 0), (1, 1)\} \end{cases}$

We enforce constraints at the corners and sides:

- Corners:
 - $\text{color}(n, 0, 0) = \text{blue}$,
 - $\text{color}(0, n, 0) = \text{green}$,
 - $\text{color}(0, 0, n) = \text{red}$

- Sides:
 - $\text{color}(i, j, 0) \in \{\text{blue, green}\}$,
 - $\text{color}(i, 0, j) \in \{\text{blue, red}\}$,
 - $\text{color}(0, i, j) \in \{\text{green, red}\}$
#Sperner

\[\#\text{Sperner}(C) = \text{the number of rainbow triangles in the coloring given by } C. \]
#Sperner

#Sperner(\(C\)) = the number of rainbow triangles in the coloring given by \(C\).
\#Sperner(C) = the number of rainbow triangles in the coloring given by C.

Clearly \#Sperner \in \#P.
\#Sperner(C) = the number of rainbow triangles in the coloring given by C.

Clearly \#Sperner \in \#P.

Sperner’s Lemma

\forall C \in \{0, 1\}^*: \ #Sperner(C) \geq 1.

Maybe \ #Sperner - 1 is another candidate for being in \text{GapP} \setminus \#P?
#Sperner − 1 ∈ #P?
#Sperner $- 1 \in \#P$?
#Sperner − 1 ∈ #P?
#Sperner $- 1 \in \#P$?

#Sperner $- 1 \in \#P$, because we can ignore the yellow triangles and count the purple triangles twice!
When does such a trick work? An easier version:

Given two \(#P\) functions \(f, g\) with the property that \(f + 1 = g\).
When does such a trick work? An easier version:

Given two \#P functions \(f, g \) with the property that \(f + 1 = g \). Then \(f + g - 1 = 2g \in \#P \).
When does such a trick work? An easier version:

Given two \#P functions \(f, g\) with the property that \(f + 1 = g\). Then \(f + g - 1 = 2g \in \#P\).

- \(f + g - 1\) and \(2g\) are the same element in the quotient ring \(\mathbb{Q}[f, g]/(f + 1 - g)\).
- Doubling is a closure property of \#P.
When does such a trick work? An easier version:

Given two #P functions \(f, g \) with the property that \(f + 1 = g \). Then \(f + g - 1 = 2g \in \#P \).

- \(f + g - 1 \) and \(2g \) are the same element in the quotient ring \(\mathbb{Q}[f, g]/(f + 1 - g) \).
- Doubling is a closure property of \(\#P \).

The functional closure properties of \(\#P \)
When does such a trick work? An easier version:

Given two \(\#P\) functions \(f, g\) with the property that \(f + 1 = g\). Then \(f + g - 1 = 2g \in \#P\).

- \(f + g - 1\) and \(2g\) are the same element in the quotient ring \(\mathbb{Q}[f, g]/(f + 1 - g)\).
- Doubling is a closure property of \(\#P\).

The functional closure properties of \(\#P\)

Every polynomial \(\varphi \in \mathbb{Q}[f_1, \ldots, f_k]\) has a unique expression over the **binomial basis**:

\[
\varphi(f_1, \ldots, f_k) = \sum_{\alpha \in \mathbb{N}^k} c_{\alpha} (f_1^{a_1}) \cdots (f_k^{a_k}).
\]

If all \(c_{\alpha} \in \mathbb{N}\), then we say that \(\varphi\) is **binomial-good**.

For example, \(f^2 g = 2\binom{f}{2}\binom{g}{1} + \binom{f}{1}\binom{g}{1}\).
When does such a trick work? An easier version:

Given two \#P functions \(f, g \) with the property that \(f + 1 = g \). Then \(f + g - 1 = 2g \in \#P \).

- \(f + g - 1 \) and \(2g \) are the same element in the quotient ring \(\mathbb{Q}[f, g]/(f + 1 - g) \).
- Doubling is a closure property of \#P.

The functional closure properties of \#P

Every polynomial \(\varphi \in \mathbb{Q}[f_1, \ldots, f_k] \) has a unique expression over the **binomial basis**:

\[
\varphi(f_1, \ldots, f_k) = \sum_{\overline{a} \in \mathbb{N}^k} c_{\overline{a}} (f_1)^{a_1} \cdots (f_k)^{a_k}.
\]

If all \(c_{\overline{a}} \in \mathbb{N} \), then we say that \(\varphi \) is **binomial-good**.

For example, \(f^2 g = 2(f)_2^1 (g)_1^1 + (f)_1^1 (g)_1^1 \).

Theorem (Hertrampf, Vollmer, Wagner, 1995)

The binomial-good polynomials are exactly the relativizing functional closure properties of \#P.
When does such a trick work? An easier version:

Given two \(\#P \) functions \(f, g \) with the property that \(f + 1 = g \). Then \(f + g - 1 = 2g \in \#P \).
- \(f + g - 1 \) and \(2g \) are the same element in the quotient ring \(\mathbb{Q}[f, g]/(f + 1 - g) \).
- Doubling is a closure property of \(\#P \).

The functional closure properties of \(\#P \)

Every polynomial \(\varphi \in \mathbb{Q}[f_1, \ldots, f_k] \) has a unique expression over the **binomial basis**:

\[
\varphi(f_1, \ldots, f_k) = \sum_{\underline{a} \in \mathbb{N}^k} c_{\underline{a}} (f_1)^{a_1} \cdots (f_k)^{a_k}.
\]

If all \(c_{\underline{a}} \in \mathbb{N} \), then we say that \(\varphi \) is **binomial-good**.

For example, \(f^2 g = 2(f_2^1)(g_1^1) + (f_1^1)(g_1^1) \).

Theorem (Hertrampf, Vollmer, Wagner, 1995)

The binomial-good polynomials are exactly the relativizing functional closure properties of \(\#P \).

Given an ideal \(I \), a coset \(\varphi + I \) is called **binomial-good** if \(\varphi + I \) contains a binomial-good representative.

- [I, Pak 2022]: For a large class of ideals, the Sperner trick works if and only if \(\varphi + I \) is binomial-good.
- If the ideal is generated by linear polynomials, then checking if \(\varphi + I \) is binomial-good reduces to integer programming.
This gives an algorithmic way of finding out when exactly “Sperner-type tricks” work. With some extra work (i.e., simulating #P instances in TFNP search problems) we get a TFNP-like inclusion diagram [I, Pak 2022]:

\[
\begin{align*}
#\text{COUNTGAP(BIPARTITEUNBALANCE)} & \rightarrow (#\text{PPA(LEAF)} - 1)/2 \rightarrow (#\text{PPA(PRELEAF)} - 1) \rightarrow (#\text{PPP(PIGEON)} - 1) \rightarrow (#\text{PLS(ITER)} - 1) \\
#\text{COUNTALL-PPA(LEAF)}/2 & \rightarrow (#\text{PPAD(SOURCEOREXCESS(2,1))} - 1) \rightarrow (#\text{CLS(EITHERSOLUTION(SOURCEOREXCESS(2,1),ITER))} - 1) \rightarrow \text{Thm} \\
#P & = (#\text{PPAD(SOURCEORSINK)} - 1)/2 \\
& = (#\text{PPAD(SOURCEORPRESink)} - 1) \\
& = (#\text{COUNTALL-PPAD(SOURCEORSINK)})/2 \\
& = (#\text{PPADS(SINK)} - 1) \\
& = (#\text{PPADS(PRESINK)} - 1) \\
& = (#\text{CLS(EITHERSOLUTION(SOURCEORSINK,ITER))} - 1) \\
& = (#\text{CLS(EITHERSOLUTION(SOURCEORPRESink,ITER))} - 1) \\
\end{align*}
\]

All equalities with #P are shown via relativizing parsimonious reductions. A solid arrow represents a relativizing parsimonious reduction. An arrow with a ∆ represents a relativizing parsimonious reduction where there is an oracle separation in the other direction.
This gives an algorithmic way of finding out when exactly “Sperner-type tricks” work. With some extra work (i.e., simulating #P instances in TFNP search problems) we get a TFNP-like inclusion diagram [I, Pak 2022]:

All equalities with #P are shown via relativizing parsimonious reductions. A solid arrow represents a relativizing parsimonious reduction. An arrow with a △ represents a relativizing parsimonious reduction where there is an oracle separation in the other direction.

Thank you for your attention!

Christian Ikenmeyer