Mathematical Approaches to Lower Bounds: Complexity of Proofs and Computation 2022-Jul-04

Multiplicities in GCT: What is in #P and what is not?

Christian Ikenmeyer

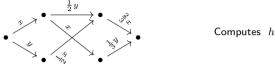
Geometric Complexity Theory

Multiplicities in GCT: What is in #P and what is not?

Geometric Complexity Theory

Multiplicities in GCT: What is in #P and what is not?

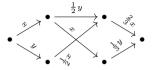
A homogeneous algebraic branching program:



fomputes
$$h = \sum_{s-t-\text{path }P} \prod_{e \in P} \ell(e)$$

Let h be a homogeneous degree d polynomial. The homogeneous ABP width complexity c(h) is defined as the smallest n such that there exist a homogeneous width n ABP computing h.

A homogeneous algebraic branching program:

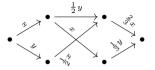


Computes
$$h = \sum_{s-t-\text{path }P} \prod_{e \in P} \ell(e)$$

Let h be a homogeneous degree d polynomial. The **homogeneous ABP** width complexity c(h) is defined as the smallest n such that there exist a **homogeneous** width n ABP computing h.

Clearly, c(h) is always finite: Compute each monomial independently.

A homogeneous algebraic branching program:



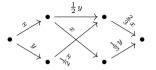
Computes
$$h = \sum_{s-t-\text{path }P} \prod_{e \in P} \ell(e)$$

Let h be a homogeneous degree d polynomial. The homogeneous ABP width complexity c(h) is defined as the smallest n such that there exist a homogeneous width n ABP computing h.

Clearly, c(h) is always finite: Compute each monomial independently.

Remark: The noncommutative version of c is completely understood (Nisan 1991).

A homogeneous algebraic branching program:



Computes
$$h = \sum_{s-t-\text{path }P} \prod_{e \in P} \ell(e)$$

Let h be a homogeneous degree d polynomial. The **homogeneous ABP width complexity** c(h) is defined as the smallest n such that there exist a **homogeneous** width n ABP computing h.

Clearly, c(h) is always finite: Compute each monomial independently.

Remark: The noncommutative version of c is completely understood (Nisan 1991).

Let
$$\operatorname{per}_m := \sum_{\pi \in \mathfrak{S}_m} x_{1,\pi(1)} x_{2,\pi(2)} \cdots x_{m,\pi(m)}.$$

Valiant's conjecture

The sequence $c(per_m)$ grows superpolynomially. In other words, $VBP \neq VNP$.

Theorem (Grenet 2012): $c(per_m) \leq {m \choose |m/2|}$.

Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogeneous linear polynomials l_i :

$$h = \sum_{i=1}^{r} (\ell_i)^d.$$

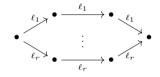
The smallest r possible is called the Waring rank WR(h) of h.

Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogeneous linear polynomials l_i :

$$h = \sum_{i=1}^{r} (\ell_i)^d.$$

The smallest r possible is called the Waring rank WR(h) of h.

Waring rank measures the size of ABPs of special format:

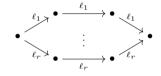


Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogeneous linear polynomials ℓ_i :

$$h = \sum_{i=1}^{r} (\ell_i)^d.$$

The smallest r possible is called the Waring rank WR(h) of h.

Waring rank measures the size of ABPs of special format:



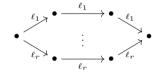
Example: $6x^2y = (x+y)^3 + (y-x)^3 - 2y^3$, hence $WR(x^2y) \le 3$. In fact, $WR(x^2y) = 3$.

Every homogeneous degree d polynomial h can be written as a sum of d-th powers of homogeneous linear polynomials ℓ_i :

$$h = \sum_{i=1}^{r} (\ell_i)^d.$$

The smallest r possible is called the Waring rank WR(h) of h.

Waring rank measures the size of ABPs of special format:

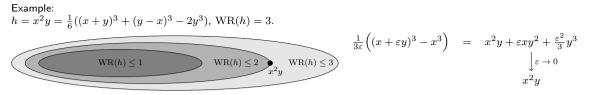


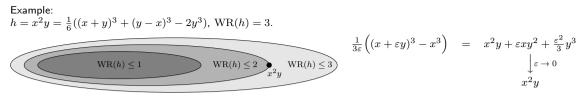
Example:
$$6x^2y = (x+y)^3 + (y-x)^3 - 2y^3$$
, hence $WR(x^2y) \le 3$. In fact, $WR(x^2y) = 3$.

Waring rank for cubic polynomials: matrix multiplication exponent [Chiantini, Hauenstein, I, Landsberg, Ottaviani, 2017]

$$\omega = \liminf_{n \to \infty} \left\{ \log_n \operatorname{WR} \left(\sum_{i,j,k=1}^n x_{i,j} x_{j,k} x_{k,i} \right) \right\}$$

Example: $h = x^2 y = \frac{1}{6}((x+y)^3 + (y-x)^3 - 2y^3)$, WR(h) = 3.





This makes determining $WR(x^2y)$ subtle!

If a continuous function Δ vanishes on all h with $WR(h) \leq 2$, then f also vanishes on x^2y .

Definition (border Waring rank)

The border Waring rank $\underline{WR}(h)$ is defined as the smallest n such that h can be approximated arbitrarily closely by polynomials of Waring rank $\leq n$. (e.g., $\underline{WR}(x^2y) = 2$)

This makes determining $WR(x^2y)$ subtle!

If a continuous function Δ vanishes on all h with $WR(h) \leq 2$, then f also vanishes on x^2y .

Definition (border Waring rank)

The border Waring rank $\underline{WR}(h)$ is defined as the smallest n such that h can be approximated arbitrarily closely by polynomials of Waring rank $\leq n$. (e.g., $\underline{WR}(x^2y) = 2$)

Main advantage: $X_n := \{h \mid \underline{\mathrm{WR}}(h) \le n\} = \overline{\{h \mid \mathrm{WR}(h) \le n\}}$ is closed, so it is guaranteed that non-membership $p \notin X_n$ can be proved by finding a continuous function Δ that vanishes on X_n , but does not vanish on p.

This makes determining $WR(x^2y)$ subtle!

If a continuous function Δ vanishes on all h with $WR(h) \leq 2$, then f also vanishes on x^2y .

Definition (border Waring rank)

The border Waring rank $\underline{WR}(h)$ is defined as the smallest n such that h can be approximated arbitrarily closely by polynomials of Waring rank $\leq n$. (e.g., $\underline{WR}(x^2y) = 2$)

Main advantage: $X_n := \{h \mid \underline{\mathrm{WR}}(h) \le n\} = \overline{\{h \mid \mathrm{WR}(h) \le n\}}$ is closed, so it is guaranteed that non-membership $p \notin X_n$ can be proved by finding a continuous function Δ that vanishes on X_n , but does not vanish on p.

Example: Consider the 3-dim vector space $\mathbb{C}[x, y]_2$. Let $X_1 := \{h \mid \underline{WR}(h) \leq 1\} = \{h \mid \exists \alpha, \beta \in \mathbb{C} : h = (\alpha x + \beta y)^2\}$

This makes determining $WR(x^2y)$ subtle!

If a continuous function Δ vanishes on all h with $WR(h) \leq 2$, then f also vanishes on x^2y .

Definition (border Waring rank)

The border Waring rank $\underline{WR}(h)$ is defined as the smallest n such that h can be approximated arbitrarily closely by polynomials of Waring rank $\leq n$. (e.g., $\underline{WR}(x^2y) = 2$)

Main advantage: $X_n := \{h \mid \underline{\mathrm{WR}}(h) \le n\} = \overline{\{h \mid \mathrm{WR}(h) \le n\}}$ is closed, so it is guaranteed that non-membership $p \notin X_n$ can be proved by finding a continuous function Δ that vanishes on X_n , but does not vanish on p.

Example: Consider the 3-dim vector space $\mathbb{C}[x,y]_2$. Let $X_1 := \{h \mid \underline{\mathrm{WR}}(h) \leq 1\} = \{h \mid \exists \alpha, \beta \in \mathbb{C} : h = (\alpha x + \beta y)^2\} = \{ax^2 + bxy + cy^2 \mid b^2 - 4ac = 0\}$

This makes determining $WR(x^2y)$ subtle!

If a continuous function Δ vanishes on all h with $WR(h) \leq 2$, then f also vanishes on x^2y .

Definition (border Waring rank)

The border Waring rank $\underline{WR}(h)$ is defined as the smallest n such that h can be approximated arbitrarily closely by polynomials of Waring rank $\leq n$. (e.g., $\underline{WR}(x^2y) = 2$)

Main advantage: $X_n := \{h \mid \underline{\mathrm{WR}}(h) \le n\} = \overline{\{h \mid \mathrm{WR}(h) \le n\}}$ is closed, so it is guaranteed that non-membership $p \notin X_n$ can be proved by finding a continuous function Δ that vanishes on X_n , but does not vanish on p.

Example: Consider the 3-dim vector space $\mathbb{C}[x, y]_2$. Let $X_1 := \{h \mid \underline{\mathrm{WR}}(h) \leq 1\} = \{h \mid \exists \alpha, \beta \in \mathbb{C} : h = (\alpha x + \beta y)^2\} = \{ax^2 + bxy + cy^2 \mid b^2 - 4ac = 0\}$ A lower bound: $\underline{\mathrm{WR}}(xy) \geq 2$, because $1^2 - 4 \cdot 0 \cdot 0 = 1 \neq 0$.

• Such $\Delta = b^2 - 4ac$ is sometimes called a polynomial obstruction or a separating polynomial.

• X_k has more structure and we can obtain more information about polynomial obstructions.

Let $\Sigma \wedge \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Let $\Sigma \wedge \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • $\overline{\Sigma \wedge \Sigma} \stackrel{?}{=} \Sigma \wedge \Sigma$.

Let $\Sigma \wedge \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • $\overline{\Sigma \wedge \Sigma} \stackrel{?}{=} \Sigma \wedge \Sigma$. • $\overline{\mathsf{VF}} \stackrel{?}{=} \mathsf{VF}$. • $\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$. • $\overline{\mathsf{VP}} \stackrel{?}{=} \mathsf{VP}$. • $\overline{\mathsf{VNP}} \stackrel{?}{=} \mathsf{VNP}$.

Let $\Sigma \wedge \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

 $\text{Open questions:} \bullet \overline{\Sigma \wedge \Sigma} \stackrel{?}{=} \Sigma \wedge \Sigma. \quad \bullet \overline{\mathsf{VF}} \stackrel{?}{=} \mathsf{VF}. \quad \bullet \overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}. \quad \bullet \overline{\mathsf{VP}} \stackrel{?}{=} \mathsf{VP}. \quad \bullet \overline{\mathsf{VNP}} \stackrel{?}{=} \mathsf{VNP}.$

Comparing a class with its closure:

• [Nisan 1991] showed that $VBP_{non-comm} = \overline{VBP_{non-comm}}$.

Let $\Sigma \wedge \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • $\overline{\Sigma \wedge \Sigma} \stackrel{?}{=} \Sigma \wedge \Sigma$. • $\overline{\mathsf{VF}} \stackrel{?}{=} \mathsf{VF}$. • $\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$. • $\overline{\mathsf{VP}} \stackrel{?}{=} \mathsf{VP}$. • $\overline{\mathsf{VNP}} \stackrel{?}{=} \mathsf{VNP}$.

Comparing a class with its closure:

- [Nisan 1991] showed that $VBP_{non-comm} = \overline{VBP_{non-comm}}$.
- [Bringmann I Zuiddam 2018] prove $VBP_2 \subsetneq \overline{VBP_2}$ (algebraic branching programs of width 2)

Let $\Sigma \wedge \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

Open questions: • $\overline{\Sigma \wedge \Sigma} \stackrel{?}{=} \Sigma \wedge \Sigma$. • $\overline{\mathsf{VF}} \stackrel{?}{=} \mathsf{VF}$. • $\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$. • $\overline{\mathsf{VP}} \stackrel{?}{=} \mathsf{VP}$. • $\overline{\mathsf{VNP}} \stackrel{?}{=} \mathsf{VNP}$.

Comparing a class with its closure:

• [Nisan 1991] showed that $VBP_{non-comm} = \overline{VBP_{non-comm}}$.

• [Bringmann I Zuiddam 2018] prove VBP₂ $\subseteq \overline{VBP_2}$ (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class ("de-bordering"):

• [Bläser Dörfler I 2020] prove $c(p) \leq \underline{WR}(p)$. Hence $\overline{\Sigma \land \Sigma} \subseteq VBP$ (which was discovered earlier by Forbes).

Let $\Sigma \wedge \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

 $\text{Open questions:} \bullet \overline{\Sigma \land \Sigma} \stackrel{?}{=} \Sigma \land \Sigma. \quad \bullet \overline{\mathsf{VF}} \stackrel{?}{=} \mathsf{VF}. \quad \bullet \overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}. \quad \bullet \overline{\mathsf{VP}} \stackrel{?}{=} \mathsf{VP}. \quad \bullet \overline{\mathsf{VNP}} \stackrel{?}{=} \mathsf{VNP}.$

Comparing a class with its closure:

• [Nisan 1991] showed that $\mathsf{VBP}_{\mathsf{non-comm}} = \overline{\mathsf{VBP}_{\mathsf{non-comm}}}.$

• [Bringmann I Zuiddam 2018] prove $VBP_2 \subsetneq \overline{VBP_2}$ (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class ("de-bordering"):

- [Bläser Dörfler I 2020] prove $c(p) \leq \underline{WR}(p)$. Hence $\overline{\Sigma \land \Sigma} \subseteq VBP$ (which was discovered earlier by Forbes).
- [Dutta Dwivedi Saxena 2021] prove $\Sigma^k \Pi \Sigma \subseteq \mathsf{VBP}$ for any constant k, using the logarithmic derivative.

Let $\Sigma \wedge \Sigma$ be the set of seq. of polynomials whose degree, number of variables, and Waring rank is polynomially bounded.

 $\text{Open questions:} \bullet \overline{\Sigma \wedge \Sigma} \stackrel{?}{=} \Sigma \wedge \Sigma. \quad \bullet \overline{\mathsf{VF}} \stackrel{?}{=} \mathsf{VF}. \quad \bullet \overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}. \quad \bullet \overline{\mathsf{VP}} \stackrel{?}{=} \mathsf{VP}. \quad \bullet \overline{\mathsf{VNP}} \stackrel{?}{=} \mathsf{VNP}.$

Comparing a class with its closure:

• [Nisan 1991] showed that $\mathsf{VBP}_{\mathsf{non-comm}} = \overline{\mathsf{VBP}_{\mathsf{non-comm}}}.$

• [Bringmann I Zuiddam 2018] prove $VBP_2 \subsetneq \overline{VBP_2}$ (algebraic branching programs of width 2)

Placing a closure of a class into a larger non-closed class ("de-bordering"):

- [Bläser Dörfler I 2020] prove $c(p) \leq \underline{WR}(p)$. Hence $\overline{\Sigma \land \Sigma} \subseteq VBP$ (which was discovered earlier by Forbes).
- [Dutta Dwivedi Saxena 2021] prove $\overline{\Sigma^k \Pi \Sigma} \subseteq \text{VBP}$ for any constant k, using the logarithmic derivative.
- Open question: Is $\overline{\mathsf{VF}} \subseteq \mathsf{VNP}$ or not?

Mulmuley-Sohoni strengthening of Valiant's conjecture:

Valiant's conjecture

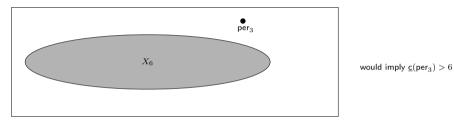
The sequence $c(per_m)$ grows superpolynomially. In other words, VBP \neq VNP.

Mulmuley-Sohoni conjecture

The sequence $\underline{c}(per_m)$ grows superpolynomially. In other words, VNP $\not\subseteq \overline{VBP}$ or equivalently $\overline{VBP} \neq \overline{VNP}$.

Fundamental open question: Are the two conjectures equivalent?

Let $X_n := \{h \mid \underline{\mathbf{c}}(h) \le n\} = \overline{\{h \mid \mathbf{c}(h) \le n\}}.$

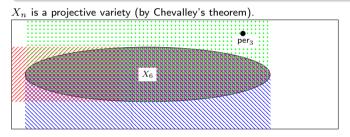


[Bläser, I, Lysikov, Pandey, Schreyer, SODA21]: In general, orbit closure containment is NP-hard (minrank of tensors).

X_n is a projective variety

Let $X_n := \overline{\{h \mid \mathsf{c}(h) \le n\}}.$

A subset $\mathcal{X} \subseteq \mathbb{C}^N$ is a **projective variety** if there exist finitely many homogeneous polynomials $\Delta_1, \ldots, \Delta_k$ such that $h \in \mathcal{X}$ iff $\Delta_1(h) = \Delta_2(h) = \cdots = \Delta_k(h) = 0.$



would imply $\underline{c}(per_3) > 6$

X_n is a projective variety

Let $X_n := \overline{\{h \mid \mathsf{c}(h) \le n\}}.$

A subset $\mathcal{X} \subseteq \mathbb{C}^N$ is a **projective variety** if there exist finitely many homogeneous polynomials $\Delta_1, \ldots, \Delta_k$ such that $h \in \mathcal{X}$ iff $\Delta_1(h) = \Delta_2(h) = \cdots = \Delta_k(h) = 0.$

 X_n is a projective variety (by Chevalley's theorem).

would imply $\underline{c}(per_3) > 6$

Fundamental Conclusion: All border complexity lower bounds can be proved via polynomials

$$\begin{split} & \mathsf{per}_m \notin X_n \text{ iff there exists a homogeneous polynomial } \Delta \text{ with} \\ & \bullet \ \Delta(h) = 0 \text{ for all } h \in X_n \quad \text{ and} \quad & \bullet \ \Delta(\mathsf{per}_m) \neq 0. \end{split}$$

Meta-complexity (algebraic natural proofs): What can be said about the complexity of the Δ_i ?

Complexity lower bounds via highest weight polynomials

Definition (highest weight polynomial)

A function Δ is called a **highest weight polynomial** of weight $\lambda = (\lambda_1, \dots, \lambda_N)$, if

- Δ is invariant under the action of upper triangular matrices with 1s on the diagonal
- and Δ gets rescaled by $\alpha_1^{\lambda_1} \cdots \alpha_N^{\lambda_N}$ under the action of diagonal matrices diag $(\alpha_1, \ldots, \alpha_N)$.

Recall: Want Δ vanishing on X_n and $\Delta(\operatorname{per}_m) \neq 0$.

Theorem (representation theory)

If $\operatorname{per}_m \notin X_n$, then there exists a highest weight polynomial Δ such that $A\Delta$ vanishes on X_n and $A\Delta(\operatorname{per}_m) \neq 0$ for a generic matrix A.

Complexity lower bounds via highest weight polynomials

Definition (highest weight polynomial)

A function Δ is called a **highest weight polynomial** of weight $\lambda = (\lambda_1, \dots, \lambda_N)$, if

- Δ is invariant under the action of upper triangular matrices with 1s on the diagonal
- and Δ gets rescaled by $\alpha_1^{\lambda_1} \cdots \alpha_N^{\lambda_N}$ under the action of diagonal matrices diag $(\alpha_1, \ldots, \alpha_N)$.

Recall: Want Δ vanishing on X_n and $\Delta(\operatorname{per}_m) \neq 0$.

Theorem (representation theory)

If $\operatorname{per}_m \notin X_n$, then there exists a highest weight polynomial Δ such that $A\Delta$ vanishes on X_n and $A\Delta(\operatorname{per}_m) \neq 0$ for a generic matrix A.

Fundamental Conclusion: All border complexity lower bounds can be proved via **highest weight polynomials**

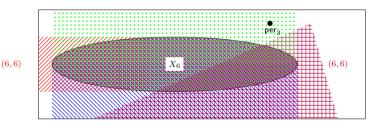
If complexity lower bounds exist, then there exist highest weight polynomials proving them.

[Bläser, Dörfler, I, CCC21]: Given a highest weight polynomial Δ , succinctly encoded as a semistandard Young tableau, then it is #P-hard to evaluate Δ at a fixed point of Waring rank 3.

Mulmuley and Sohoni's heuristic attempt: Occurrence Obstructions

(8, 4)

Proposition (a coarse technique for finding complexity lower bounds: occurrence obstructions) If there exists λ such that for a generic matrix A we have • for all (!) highest weight polynomials Δ of weight λ : $A\Delta$ vanishes on X_n • there exists a highest weight polynomial Δ of weight λ such that $A\Delta(\operatorname{per}_m) \neq 0$ then $\operatorname{per}_m \notin X_n$.



(6, 6)

[I, Panova FOCS16] and [Bürgisser, I, Panova FOCS16]: In a non-homogeneous setting, no occurrence obstructions exist. Nothing is known about the homogeneous setting.

More general heuristic attempt: Multiplicity obstructions

Let $Y_m := \overline{\{\operatorname{per}_m(A\overrightarrow{x})\}}$ $\operatorname{per}_m \in X_n \Leftrightarrow Y_m \subseteq X_n$

More general heuristic attempt: Multiplicity obstructions

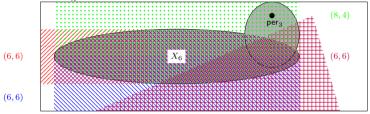
Let $Y_m := \overline{\{\operatorname{per}_m(A\overrightarrow{x})\}}$ $\operatorname{per}_m \in X_n \Leftrightarrow Y_m \subseteq X_n$

Def.: The **multiplicity** $\operatorname{mult}_{\lambda}(\mathbb{C}[X_n])$ is defined as the dimension of the space of highest weight polynomials of weight λ restricted to X_n .

More general heuristic attempt: Multiplicity obstructions

Let $Y_m := \overline{\{\operatorname{per}_m(A\overrightarrow{x})\}}$ $\operatorname{per}_m \in X_n \Leftrightarrow Y_m \subseteq X_n$

Def.: The **multiplicity** $\operatorname{mult}_{\lambda}(\mathbb{C}[X_n])$ is defined as the dimension of the space of highest weight polynomials of weight λ restricted to X_n .



If $\operatorname{mult}_{\lambda}(\mathbb{C}[Y_m]) > \operatorname{mult}_{\lambda}(\mathbb{C}[X_n])$, then $\operatorname{per}_m \notin X_n$.

Not much is known about these multiplicities!

- [Dörfler, I, Panova ICALP19] There are finite homogeneous settings where multiplicity obstructions are stronger than occurrence obstructions.
- [I, Kandasamy STOC20] Multiplicity obstructions can be created in homogeneous toy settings without contructing the highest weight polynomials.

The original GCT approach (Mulmuley-Sohoni):

- 1. The multiplicities are easier to study than the polynomials.
- 2. Oftentimes the multiplicities in representation theory have well-understood combinatorial descriptions (Littlewood-Richardson coefficient).
- 3. Positivity of the Littlewood-Richardson coefficient can be decided in polynomial time (using a combinatorial algorithm).
- 4. So maybe this works as well for $\operatorname{mult}_{\lambda}(\mathbb{C}[Y_m])$ and $\operatorname{mult}_{\lambda}(\mathbb{C}[X_n])$.
- 5. Then one could analyze the algorithms and construct an input λ with $\operatorname{mult}_{\lambda}(\mathbb{C}[Y_m]) > 0 = \operatorname{mult}_{\lambda}(\mathbb{C}[X_n])$.

The original GCT approach (Mulmuley-Sohoni):

- 1. The multiplicities are easier to study than the polynomials.
- 2. Oftentimes the multiplicities in representation theory have well-understood combinatorial descriptions (Littlewood-Richardson coefficient).
- 3. Positivity of the Littlewood-Richardson coefficient can be decided in polynomial time (using a combinatorial algorithm).
- 4. So maybe this works as well for $\operatorname{mult}_{\lambda}(\mathbb{C}[Y_m])$ and $\operatorname{mult}_{\lambda}(\mathbb{C}[X_n])$.
- 5. Then one could analyze the algorithms and construct an input λ with $\operatorname{mult}_{\lambda}(\mathbb{C}[Y_m]) > 0 = \operatorname{mult}_{\lambda}(\mathbb{C}[X_n])$.

We know by now that

- About 3.: the positivity of coefficients is often NP-hard [I Mulmuley Walter 2017], [Fischer I 2020].
- About 2.: Connections to classical questions in algebraic combinatorics!

Geometric Complexity Theory

Multiplicities in GCT: What is in #P and what is not?

Closely related multiplicities in Stanley's "Positivity Problems and Conjectures in Algebraic Combinatorics" (2000):

Problem 9

Find a combinatorial interpretation of the plethysm coefficient $a_{\lambda}(d, n)$.

Problem 10

Find a combinatorial interpretation of the Kronecker coefficient $k(\lambda, \mu, \nu)$.

Problem 11

Find a combinatorial interpretation of the Schubert coefficient.

In other words, is there a combinatorial proof that these numbers are in \mathbb{N} .

Closely related multiplicities in Stanley's "Positivity Problems and Conjectures in Algebraic Combinatorics" (2000):

Problem 9

Find a combinatorial interpretation of the plethysm coefficient $a_{\lambda}(d, n)$.

Problem 10

Find a combinatorial interpretation of the Kronecker coefficient $k(\lambda, \mu, \nu)$.

Problem 11

Find a combinatorial interpretation of the Schubert coefficient.

In other words, is there a combinatorial proof that these numbers are in $\mathbb N.$

Recall that $f: \{0,1\}^* \to \mathbb{N}$ is in $\#\mathsf{P}$ if there exists a polytime Turing machine M with

 $\forall w \in \{0,1\}^*: \ \#\mathsf{acc}_M(w) = f(w)$

Closely related multiplicities in Stanley's "Positivity Problems and Conjectures in Algebraic Combinatorics" (2000):

Problem 9

Find a combinatorial interpretation of the plethysm coefficient $a_{\lambda}(d, n)$.

Problem 10

Find a combinatorial interpretation of the Kronecker coefficient $k(\lambda, \mu, \nu)$.

Problem 11

Find a combinatorial interpretation of the Schubert coefficient.

In other words, is there a combinatorial proof that these numbers are in $\mathbb N.$

Recall that $f: \{0,1\}^* \to \mathbb{N}$ is in $\#\mathsf{P}$ if there exists a polytime Turing machine M with

 $\forall w \in \{0,1\}^*: \ \#\mathsf{acc}_M(w) = f(w)$

Problems 9, 10, 11 are in GapP = #P-#P, and all these are nonnegative. Are they in #P?

The problem #Sperner

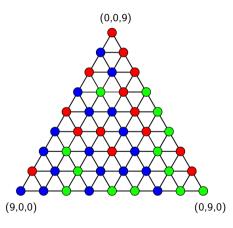
Input: A Boolean circuit C with $3\lceil \log n \rceil$ inputs and 2-bit output.

The problem #Sperner

Input: A Boolean circuit C with $3\lceil \log n \rceil$ inputs and 2-bit output. C describes a coloring of a side length n triangular grid.

• Positions are (x, y, z) with x + y + z = n

$$\bullet \ \operatorname{color}(x,y,z) = \begin{cases} \operatorname{red} & \operatorname{if} \ C(x,y,z) = (0,0) \\ \operatorname{blue} & \operatorname{if} \ C(x,y,z) = (0,1) \\ \operatorname{green} & \operatorname{if} \ C(x,y,z) \in \{(1,0),(1,1)\} \end{cases}$$



The problem #Sperner

Input: A Boolean circuit C with $3\lceil \log n \rceil$ inputs and 2-bit output. C describes a coloring of a side length n triangular grid.

• Positions are (x, y, z) with x + y + z = n

$$\bullet \ \operatorname{color}(x,y,z) = \begin{cases} \operatorname{red} & \text{ if } C(x,y,z) = (0,0) \\ \text{ blue} & \text{ if } C(x,y,z) = (0,1) \\ \text{ green} & \text{ if } C(x,y,z) \in \{(1,0),(1,1)\} \end{cases}$$

We enforce constraints at the corners and sides:

```
• Corners:

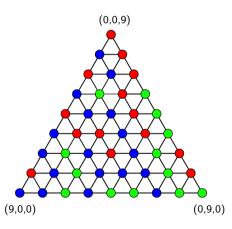
color(n, 0, 0) = blue,

color(0, n, 0) = green,

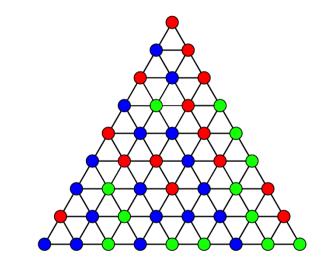
color(0, 0, n) = red
```

Sides:

```
color(i, j, 0) \in \{blue, green\},\ color(i, 0, j) \in \{blue, red\},\ color(0, i, j) \in \{green, red\}
```

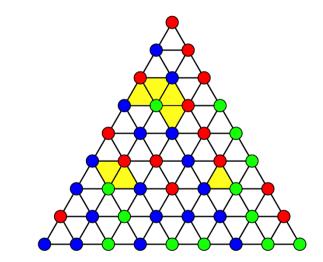


#Sperner



#Sperner(C) = the number of rainbow triangles in the coloring given by C.

#Sperner



#Sperner(C) = the number of rainbow triangles in the coloring given by C.

#Sperner(C) = the number of rainbow triangles in the coloring given by C.

Clearly #Sperner $\in \#$ P.

#Sperner(C) = the number of rainbow triangles in the coloring given by C.

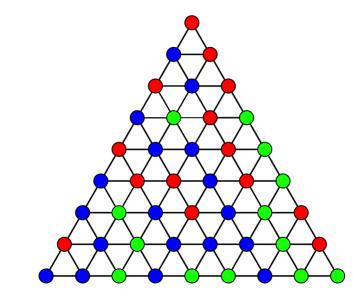
Clearly #Sperner $\in \#$ P.

Sperner's Lemma

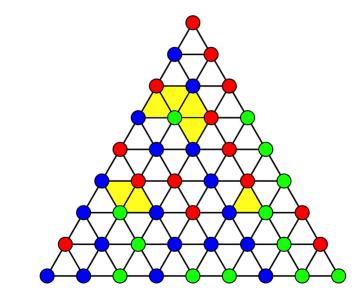
 $\forall C \in \{0,1\}^* \colon \quad \# \mathsf{Sperner}(C) \geq 1.$

Maybe #Sperner-1 is another candidate for being in GapP $\setminus \#$ P?

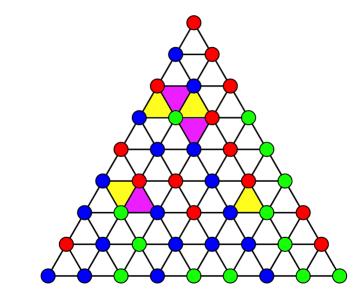
```
\#Sperner -1 \in \#P?
```



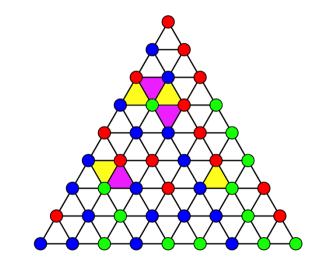
```
\#Sperner -1 \in \#P?
```



```
\#Sperner -1 \in \#P?
```



```
\#Sperner -1 \in \#P?
```



#Sperner – $1 \in \#$ P, because we can ignore the yellow triangles and count the purple triangles twice!

Given two #P functions f, g with the property that f + 1 = g.

Given two #P functions f, g with the property that f + 1 = g. Then $f + g - 1 = 2g \in \#P$.

Given two #P functions f, g with the property that f + 1 = g. Then $f + g - 1 = 2g \in \#P$.

- f + g 1 and 2g are the same element in the quotient ring $\mathbb{Q}[f,g]/(f + 1 g)$.
- doubling is a closure property of #P.

Given two #P functions f, g with the property that f + 1 = g. Then $f + g - 1 = 2g \in \#P$.

- f + g 1 and 2g are the same element in the quotient ring $\mathbb{Q}[f,g]/(f + 1 g)$.
- doubling is a closure property of #P.

The functional closure properties of #P

Given two #P functions f, g with the property that f + 1 = g. Then $f + g - 1 = 2g \in \#P$.

- f + g 1 and 2g are the same element in the quotient ring $\mathbb{Q}[f,g]/(f + 1 g)$.
- doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial $\varphi \in \mathbb{Q}[f_1, \ldots, f_k]$ has a unique expression over the binomial basis:

$$\varphi(f_1,\ldots,f_k) = \sum_{\vec{a} \in \mathbb{N}^k} c_{\vec{a}} \binom{f_1}{a_1} \cdots \binom{f_k}{a_k}.$$

If all $c_{\overrightarrow{a}} \in \mathbb{N}$, then we say that φ is **binomial-good**.

For example, $f^2g = 2{f \choose 2}{g \choose 1} + {f \choose 1}{g \choose 1}$.

Given two #P functions f, g with the property that f + 1 = g. Then $f + g - 1 = 2g \in \#P$.

- f + g 1 and 2g are the same element in the quotient ring $\mathbb{Q}[f,g]/(f + 1 g)$.
- doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial $\varphi \in \mathbb{Q}[f_1, \dots, f_k]$ has a unique expression over the binomial basis:

$$\varphi(f_1,\ldots,f_k) = \sum_{\vec{a} \in \mathbb{N}^k} c_{\vec{a}} \binom{f_1}{a_1} \cdots \binom{f_k}{a_k}.$$

If all $c_{\overrightarrow{a}} \in \mathbb{N}$, then we say that φ is **binomial-good**.

For example, $f^2g = 2\binom{f}{2}\binom{g}{1} + \binom{f}{1}\binom{g}{1}$.

Theorem (Hertrampf, Vollmer, Wagner, 1995)

The binomial-good polynomials are exactly the relativizing functional closure properties of #P.

Given two #P functions f, g with the property that f + 1 = g. Then $f + g - 1 = 2g \in \#P$.

- f + g 1 and 2g are the same element in the quotient ring $\mathbb{Q}[f,g]/(f + 1 g)$.
- doubling is a closure property of #P.

The functional closure properties of #P

Every polynomial $\varphi \in \mathbb{Q}[f_1, \dots, f_k]$ has a unique expression over the binomial basis:

$$\varphi(f_1,\ldots,f_k) = \sum_{\vec{a} \in \mathbb{N}^k} c_{\vec{a}} \binom{f_1}{a_1} \cdots \binom{f_k}{a_k}.$$

If all $c_{\overrightarrow{a}} \in \mathbb{N}$, then we say that φ is **binomial-good**.

For example, $f^2g = 2{f \choose 2}{g \choose 1} + {f \choose 1}{g \choose 1}$.

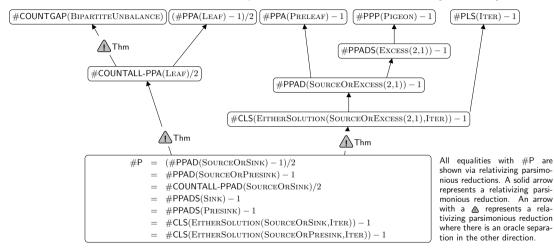
Theorem (Hertrampf, Vollmer, Wagner, 1995)

The binomial-good polynomials are exactly the relativizing functional closure properties of #P.

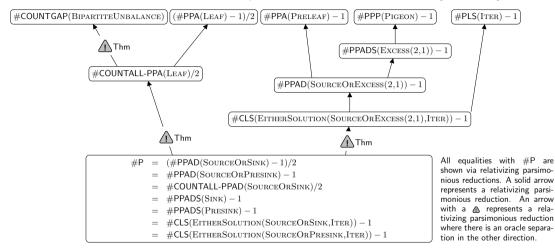
Given an ideal I, a coset $\varphi + I$ is called **binomial-good** if $\varphi + I$ contains a binomial-good representative.

- [I, Pak 2022]: For a large class of ideals, the Sperner trick works if and only if $\varphi + I$ is binomial-good.
- If the ideal is generated by linear polynomials, then checking if $\varphi + I$ is binomial-good reduces to integer programming.

This gives an algorithmic way of finding out when exactly "Sperner-type tricks" work. With some extra work (i.e., simulating #P instances in TFNP search problems) we get a TFNP-like inclusion diagram [I, Pak 2022]:



This gives an algorithmic way of finding out when exactly "Sperner-type tricks" work. With some extra work (i.e., simulating #P instances in TFNP search problems) we get a TFNP-like inclusion diagram [I, Pak 2022]:



Thank you for your attention!