Proof complexity of CSP

Azza Gaysin

Department of Algebra, Charles University in Prague

ICMS, Mathematical Approaches to Lower Bounds: Complexity of Proofs and Computation, online, 8 July 2022

Presentation Plan

1 Constraint satisfaction problem (CSP) + Universal algebra notions;
2 Outline of Zhuk's algorithm;
3 Formalization of Zhuk's algorithm in V^{1};
4 Results.

Constraint satisfaction problem (CSP) + Universal algebra notions

Definition 1 (CSP over finite domains).

The Constraint Satisfaction Problem is a problem of deciding whether there exists an assignment to a set of variables that satisfies some specified constraints. An instance of CSP problem over finite domains is defined as a triple $\Theta=(X, D, C)$, where

■ $X=\left\{x_{0}, \ldots, x_{n-1}\right\}$ is a finite set of variables,

- $D=\left\{D_{0}, \ldots, D_{n-1}\right\}$ is a set of non-empty finite domains,
- $C=\left\{C_{0}, \ldots, C_{m-1}\right\}$ is a set of constraints, each $C_{j}=\left(\vec{x}_{j}, \rho_{j}\right)$ with a tuple of variables of some length m_{j}, \vec{x}_{j}, called the constraint scope, and an m_{j}-ary relation on the product of the corresponding domains, called the constraint relation ρ_{j}.

A constraint language \mathbf{R} is a set of relations on finite domain. $\operatorname{CSP}(\mathbf{R})$ is a subclass of CSP defined by the property that any constraint relation in any instance of $\operatorname{CSP}(\mathbf{R})$ must belong to \mathbf{R}.

Constraint satisfaction problem (CSP) + Universal algebra notions

Definition 2 (CSP, equivalent definition).

Let $\mathcal{A}=\left(A, R_{1}^{A}, \ldots, R_{k}^{A}\right)$ be a relational structure over a vocabulary R_{1}, \ldots, R_{n}. The Constraint Satisfaction Problem associated with \mathcal{A}, denoted by $\operatorname{CSP}(\mathcal{A})$, is the question: given a structure $\mathcal{X}=\left(X, R_{1}^{X}, \ldots, R_{k}^{X}\right)$ over the same vocabulary whether there exists a homomorphism from \mathcal{X} to \mathcal{A}.

Figure 1: Equivalence of the CSP definitions

Constraint satisfaction problem (CSP) + Universal algebra notions

We say that an m-ary operation $f: A^{m} \rightarrow A$ preservers an n-ary relation $\rho \in A^{n}$ (or f is a polymorphism of ρ, or ρ is invariant under f) if $f\left(\overline{a_{1}}, \ldots, \overline{a_{m}}\right) \in \rho$ for all choices of $\overline{a_{1}}, \ldots, \overline{a_{m}} \in \rho$. We will denote the set of all operations preserving ρ by $\operatorname{Pol}(\rho)$.

$$
f\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n m}
\end{array}\right) \in \rho
$$

Theorem 1.

For any relational structure $\mathcal{A}=\left(A, R_{1}, R_{2}, \ldots\right)$ there exists an algebra $\mathbb{A}=\left(A, F_{1}, F_{2}, \ldots\right)$, such that $\operatorname{Clone}(\mathbb{A})=\operatorname{Pol}(\mathcal{A})$.

Constraint satisfaction problem (CSP) + Universal algebra notions

Definition 3 (Weak-near unanimity).

An operation Ω on a set A is called the weak-near unanimity operation (WNU) if it satisfies $\Omega(y, x, x, \ldots, x)=\Omega(x, y, x \ldots, x)=\ldots=\Omega(x, x, \ldots, x, y)$ for all $x, y \in A$. Furthermore, Ω is called idempotent if $\Omega(x, \ldots, x)=x$ for all $x \in A$, and is called special if for all $x, y \in A \Omega(x, \ldots, x, \Omega(x, \ldots, x, y))=\Omega(x, \ldots, x, y)$.

Theorem 2 (CSP Dichotomy Theorem).

Suppose \mathbf{R} is a finite set of relations on A. Then $\operatorname{CSP}(\mathbf{R})$ can be solved in polynomial time if there exists a WNU operation Ω on A preserving \mathbf{R}; $\operatorname{CSP}(\mathbf{R})$ is NP-complete otherwise. ${ }^{1} 2$

Theorem 3.

For any constraint language \mathbf{R} there is constraint language \mathbf{R}^{\prime} such that

- all relations in \mathbf{R}^{\prime} are at most binary and
- \mathbf{R} and \mathbf{R}^{\prime} pp-constructs each other.

There is a clear procedure how to construct \mathbf{R}^{\prime}.

[^0]
Constraint satisfaction problem (CSP) + Universal algebra notions

Definition 4 (Binary absorption).

If $\mathbb{B}=\left(B, F_{\mathbb{B}}\right)$ is a subalgebra of $\mathbb{A}=\left(A, F_{\mathbb{A}}\right)$, then B binary absorbs \mathbb{A} if there exists a binary term operation $f \in \operatorname{Clone}\left(F_{\mathbb{A}}\right)$ such that $f(a, b) \in B$ and $f(b, a) \in B$ for any $a \in A$ and $b \in B$.

Definition 5 (Center).

If $\mathbb{A}=\left(A, \Omega_{\mathbb{A}}\right)$ is a finite algebra with a special WNU operation, then $C \subseteq A$ is a center if there exists an algebra $\mathbb{B}=\left(B, \Omega_{\mathbb{B}}\right)$ with a special WNU operation of the same arity and a subdirect subalgebra $\mathbb{D}=\left(D, \Omega_{\mathbb{D}}\right)$ of $\mathbb{A} \times \mathbb{B}$ such that there is no non-trivial binary absorbing subuniverse in \mathbb{B} and
$C=\{a \in A \mid \forall b \in B:(a, b) \in D\}$.

Definition 6 (Polynomially complete algebra).

We call an algebra $\mathbb{A}=\left(A, F_{\mathbb{A}}\right)$ polynomially complete if the clone generated by $F_{\mathbb{A}}$ and all constants on A is the clone of all operations on A, i.e. we can generate any operation on A using F_{A}, constant operations, projections and superpositions.

Constraint satisfaction problem (CSP) + Universal algebra notions

Definition 7 (Linear algebra).

An idempotent finite algebra $\mathbb{A}=\left(A, \Omega_{\mathbb{A}}\right)$, where $\Omega_{\mathbb{A}}$ is an m-ary idempotent special WNU operation, is called linear if it is isomorphic to
$\left(\mathbb{Z}_{p_{1}} \times \ldots \times \mathbb{Z}_{p_{s}}, x_{1}+\ldots+x_{m}\right)$ for prime numbers p_{1}, \ldots, p_{s}.

Lemma 1 (Affine subspaces).

Suppose that relation $\rho \subseteq\left(\mathbb{Z}_{p_{1}}\right)^{n_{1}} \times \ldots \times\left(\mathbb{Z}_{p_{k}}\right)^{n_{k}}$ is preserved by $x_{1}+\ldots$ $+x_{m}$, where p_{1}, \ldots, p_{k} are distinct prime numbers dividing $m-1$ and $\mathbb{Z}_{p_{i}}=$ $\left(\mathbb{Z}_{p_{i}}, x_{1}+\ldots+x_{m}\right)$ for every i. Then $\rho=L_{1} \times \ldots \times L_{k}$, where each L_{i} is an affine subspace of $\left(\mathbb{Z}_{p_{i}}\right)^{n_{i}}$.

Constraint satisfaction problem (CSP) + Universal algebra notions

Theorem 4.

Suppose $\mathbb{A}:=(A, \Omega)$ is a finite algebra, where Ω is a special idempotent WNU of arity m. Then at least one of the following conditions holds:

1 there exists a non-trivial binary absorbing subuniverse $B \subsetneq A$,
[2 there exists a non-trivial center $C \subsetneq A$,
3 there exists a proper congruence σ on A such that $(A, \Omega) / \sigma$ is polynomially complete,
4 there exists a proper congruence σ on A such that $(A, \Omega) / \sigma$ is isomorphic to $\left(\mathbb{Z}_{p}, x_{1}+\ldots+x_{m}\right)$ for some p. ${ }^{3}$

[^1]
Outline of Zhuk's algorithm

Zhuk's algorithm solves CSP in polynomial time for constraint languages having a WNU polymorphism:

- Consider a CSP instance of $\operatorname{CSP}(\mathbf{R})$, where \mathbf{R} is preserved by special WNU operation $\Omega, \Theta=(X, D, C)$.
- We say that a constraint C_{1} is weaker or equivalent to a constraint C_{2} if the scope of C_{1} is a subset of the scope of C_{2} and C_{2} implies C_{1}. We say that C_{1} is weaker than C_{2} if C_{1} is weaker or equivalent to C_{2}, but C_{1} does not imply C_{2}.
- Before the linear part it reduces domains based on consistency properties and strong subsets.
- During the linear part it makes an instance weaker (replacing constraints by weaker constraints), restricts domains to linear congruences classes and searches for additional linear equations.
- The algorithm is deeply recursive: any time when it reduces/restricts some domain it starts all from the beginning.

Outline of Zhuk's algorithm

- Check if the instance is "nice" (different types of consistency of the instance: cycle-consistency, irreducibility, subdirect solution set of a weaker instance). If not, reduce domains until the instance is "nice" or there is no solution (some domain is empty).
- Check whether some domains have a non-trivial binary absorbing subuniverse or a non-trivial center. If they do, reduce the domain to the subuniverse or to the center.
- Check whether there is a proper congruence on a domain such that its factor algebra is polynomially complete. If there is such a congruence, then reduce the domain to some equivalence class of the congruence.
- If the algorithm cannot reduce any domain of CSP instance Θ further, it means that on every domain D_{i} of size greater than 1 there exists a congruence σ_{i} such that $\left(D_{i}, \Omega\right) / \sigma_{i}$ is isomorphic to some $\left(\mathbb{Z}_{p_{1}} \times \ldots \times \mathbb{Z}_{p_{k}}, x_{1}+\ldots+x_{m}\right)$. Apply the linear case of the algorithm.

Outline of Zhuk's algorithm

■ Define a new CSP instance Θ_{L} with domains $D_{1} / \sigma_{1}, \ldots, D_{n} / \sigma_{n}$, which we will call factorized CSP instance. Every relation on $\mathbb{Z}_{p_{1}} \times \ldots \times \mathbb{Z}_{p_{r}}$ preserved by $\Omega\left(x_{1}, \ldots, x_{m}\right)=x_{1}+\ldots+x_{m}$ is a conjunction of linear equations (due to Lemma 1).

Figure 2: Factorization of the initial instance.

Outline of Zhuk's algorithm

- Compare two sets: S_{Θ} / Σ and $S_{\Theta_{L}}$. If Θ_{L} has no solution, then so does Θ, if $S_{\Theta} / \Sigma=S_{\Theta_{L}}$, then we are done, if $S_{\Theta} / \Sigma \subsetneq S_{\Theta_{L}}$, then move on.
- Repeat further steps iteratively. Start with the initial instance Θ. Every iteration make the instance Θ weaker and check whether the solution set to this weaker instance, factorized by congruences, contains $S_{\Theta_{L}}$ (using recursion).
- At every iteration at the end there is some weaker instance Θ^{\prime} such that there is a solution $s \in S_{\Theta_{L}}$ and $s \notin S_{\Theta^{\prime}} / \Sigma$, but if we replace any other constraint in Θ^{\prime} with all weaker constraints, every solution to Θ_{L} will be in $S_{\Theta^{\prime}} / \Sigma$.
- Find the solution set to instance Θ^{\prime} factorized by congruences by finding new equations additional to the set $S_{\Theta_{L}}$.
- Consider the factorized instance Θ_{L} and instance Θ^{\prime}, which is weaker than Θ, and now compare two solution sets: S_{Θ} / Σ and $S_{\Theta^{\prime}} / \Sigma \cap S_{\Theta_{L}}$. If $S_{\Theta} / \Sigma \subsetneq S_{\Theta^{\prime}} / \Sigma \cap S_{\Theta_{L}}$, then repeat iteration.

Outline of Zhuk's algorithm

Figure 3: Solution sets.

Formalization of Zhuk's algorithm in V^{1}

Setting:

- Second-sorted theory $(x, y, z, \ldots$ of the first kind are called number variables, X, Y, Z, \ldots of the second kind are called set variables);
■ Sets code functions and relations using pairing function $\langle x, y\rangle$:
$\langle x, y\rangle=\frac{(x+y)(x+y+1)}{2}+y$, for any set $Z, m \geq 2$:
$Z\left(x_{1}, \ldots, x_{m}\right)=\operatorname{def} Z\left(\left\langle x_{1}, \ldots, x_{m}\right\rangle\right) ;$
■ Fixed algebra $\mathbb{A}=(A, \Omega)$ (size of A, arity m, all strong subsets are known) and fixed $\mathcal{A}=\left(A, \mathbf{R}_{A}\right)$;
- Only finite set of relations \mathbf{R}_{A} of arity at most 2 , invariant under Ω. $\mathbf{R}_{A}=\left(\mathbf{R}_{A}^{1}, \mathbf{R}_{A}^{2}\right)$, where

$$
\mathbf{R}_{A}^{1}(j, a, a) \Longleftrightarrow E_{j}^{1}(a) \wedge \mathbf{R}_{A}^{2}(i, a, b) \Longleftrightarrow E_{i}^{2}(a, b)
$$

Thus, any relation on A is either of the form $x_{i} \in D_{i}$, or an edge between domains $E^{i j}(a, b)$.

Formalization of Zhuk's algorithm in V^{1}

Definition 8.

A directed input graph is a pair $\mathcal{X}=\left(V_{\mathcal{X}}, E_{\mathcal{X}}\right)$ with $V_{\mathcal{X}}(i)$ for all $i<\left|V_{\mathcal{X}}\right|=n$ and $E_{\mathcal{X}}$ being a binary relation on $V_{\mathcal{X}}$. A target digraph with domains is an $(n+2)$-tuple of sets $\mathcal{A}^{\prime}=\left(V_{\mathcal{A}^{\prime}}, E_{\mathcal{A}^{\prime}}, D_{0}, \ldots, D_{n-1}\right)$, where:

- $\left|V_{\mathcal{A}^{\prime}}\right| \leq\langle n, k\rangle$, where k is size of the algebra,
- each D_{i} is the subset of length k,
- $V_{\mathcal{A}^{\prime}}(i, a) \Longleftrightarrow D_{i}(a)$, which means that $a \in D_{i}$,
- $\left|E_{\mathcal{A}^{\prime}}\right|<\langle\langle n, k\rangle,\langle n, k\rangle\rangle, E_{\mathcal{A}^{\prime}}(i, a, j, b)$ means that there is an edge (a, b) from D_{i} to D_{j}, and is such that:

$$
\begin{align*}
E_{\mathcal{A}^{\prime}}(u, v) \rightarrow \exists i, j< & n \exists a, b<k u=\langle i, a\rangle \wedge v=\langle j, b\rangle \wedge \\
& D_{i}(a) \wedge D_{j}(b) . \tag{1}
\end{align*}
$$

Basically, by $E_{\mathcal{A}^{\prime}}(i, a, j, b)$ we code the binary relation $E_{\mathcal{A}^{\prime}}^{i j}$.

Formalization of Zhuk's algorithm in V^{1}

Definition 9 (Theory V^{1}).

1 Two-sorted theory;
2. Accepts bounded comprehension axiom $\Sigma_{0}^{1, b}$ - CA:

$$
\forall x \exists X \leq x \forall y<x y \in X \equiv \phi(y)
$$

3 Accepts the IND scheme for all $\Sigma_{1}^{1, b}$-formulas.
V^{1} is isomorphic to S_{2}^{1} (corresponds to polynomial time reasoning).

Theorem 5 (V^{1} Translation).

Suppose that $\phi(\bar{x}, \bar{X})$ is a $\Sigma_{0}^{1, b}$-formula such that

$$
V^{1} \vdash \forall \bar{x} \forall \bar{X} \phi(\bar{x}, \bar{X})
$$

Then the formulas $\langle\phi\rangle_{\langle\bar{m}, \bar{n}\rangle}$ have polynomial size extended Frege proofs and these proofs can be constructed by a p-time algorithm. ${ }^{4}$

[^2]
Formalization of Zhuk's algorithm in V^{1}

- We augmented theory V^{1} with three universal algebra $\Sigma_{1}^{1, b}$-axioms: for any cycle-consistent irreducible CSP instance $\Theta=(X, D, C)$

1 if B is a nontrivial binary absorbing subuniverse of D_{i}, then Θ has a solution only if Θ has a solution with $x_{i} \in B$;
2 if C is a nontrivial center of D_{i}, then Θ has a solution only if Θ has a solution with $x_{i} \in C$;
3 if there does not exist a nontrivial binary absorbing subuniverse or a nontrivial center on D_{j} for every $j,\left(D_{i}, \Omega\right) / \sigma_{i}$ is a polynomially complete algebra, and E is an equivalence class of σ, then Θ has a solution only if Θ has a solution with $x_{i} \in E$.
For this it was needed to formalize in V^{1} UA-notions such as WNU operation, Taylor algebra, polymorphism, subdirect relation, binary absorbing, central, PC subuniverses, belonging to the clone, etc.

- For the linear part of the algorithm it was needed to formalize in V^{1} finite abelian groups, matrices and matrix operation, graphs and graphs homomorphisms, congruences and factor-algebras.

Results

- $\operatorname{CSP}(\mathcal{A})$: for any \mathcal{X}, the question is whether it can be homomorphically mapped into \mathcal{A}. For unsatisfiable instances $\mathcal{X}, \neg H O M(\mathcal{X}, \mathcal{A})$ can be encoded by a propositional tautology, the size of $\neg H O M(\mathcal{X}, \mathcal{A})$ is polynomial in the sizes of \mathcal{X} and \mathcal{A}.
- When $\operatorname{CSP}(\mathcal{A})$ is p-time decidable: for which proof systems $\neg H O M(\mathcal{X}, \mathcal{A})$ are not hard tautologies?

Lemma 2.

V^{1} proves that instance Θ has a solution only if the instance after consistency reductions $\Theta_{\text {nice }}$ has a solution.

Theorem 6.

V^{1} proves that instance Θ has a solution only if factorized instance Θ_{L} has a solution.

Lemma 3.

V^{1} proves that for every matrix $[A \mid B]$ there is a row-echelon matrix $\left[A^{\prime} \mid B^{\prime}\right]$ having the same solution set.

Results

Theorem 7.

Consider two CSP instances, the initial instance $\Theta=\left(\mathcal{X}, \mathcal{A}^{\prime}\right)$ and the factorized instance $\Theta_{L}=\left(\mathcal{X}, \mathcal{A}^{\prime}{ }_{L}\right)$, and suppose that the solution set to the initial instance factorized by congruences is a proper subset of the solution set to the factorized instance, i.e. $\left\{\mathcal{X} \rightarrow \mathcal{A}^{\prime}\right\} / \Sigma \subsetneq\left\{\mathcal{X} \rightarrow \mathcal{A}^{\prime}{ }_{L}\right\}$.

Then V^{1} proves that there exists a subsequence of instance digraphs $\mathcal{X}=\mathcal{X}_{0}, \ldots, \mathcal{X}_{t}$ (and a subsequence of target digraphs $\mathcal{A}=\mathcal{A}_{0}, \ldots, \mathcal{A}_{s}$), where $t \leq n(n-1)$ is the number of edges removed from $\mathcal{X},\left\{\mathcal{X}_{t} \rightarrow \mathcal{A}^{\prime}{ }_{s}\right\} / \Sigma \neq$ $\left\{\mathcal{X} \rightarrow \mathcal{A}^{\prime}{ }_{L}\right\}$, and if one removes any other edge from \mathcal{X}_{t}, every solution to Θ_{L} will be a solution to $\left\{\mathcal{X}_{t+1} \rightarrow \mathcal{A}^{\prime}{ }_{s}\right\} / \Sigma$.

Lemma 4.

Consider two CSP instances, the initial instance $\Theta=\left(\mathcal{X}, \mathcal{A}^{\prime}\right)$ and the instance $\Theta_{t, s}=\left(\mathcal{X}_{t}, \mathcal{A}^{\prime}{ }_{s}\right)$, where $t \leq n(n-1)$ is the number of edges removed from the initial digraph \mathcal{X} and $s \leq k^{2}$ is the number of edges added to the target digraph \mathcal{A}. V^{1} proves that instance Θ has a solution only if $\Theta_{t, s}$ has a solution.

Results

Theorem 8.

Consider two CSP instances, the initial instance $\Theta=\left(\mathcal{X}, \mathcal{A}^{\prime}\right)$ and the instance $\Theta_{t, s}=\left(\mathcal{X}_{t}, \mathcal{A}^{\prime}{ }_{s}\right)$, where $t \leq n(n-1)$ is the number of edges removed from the initial digraph \mathcal{X} and $s \leq k^{2}$ is the number of edges added to the target digraph \mathcal{A}. Suppose that the solution set to the initial instance factorized by congruences is a proper subset of the intersection of the solution set to instance $\Theta_{t, s}$ factorized by congruences and the solution set to the factorized instance Θ_{L}, i.e. $\left\{\mathcal{X} \rightarrow \mathcal{A}^{\prime}\right\} / \Sigma \subsetneq\left\{\mathcal{X}_{t} \rightarrow \mathcal{A}^{\prime}{ }_{s}\right\} / \Sigma \cap\left\{\mathcal{X} \rightarrow \mathcal{A}^{\prime}{ }_{L}\right\}$.

Then V^{1} proves that there exists a subsequence of instance digraphs $\mathcal{X}=\mathcal{X}_{0}, \ldots, \mathcal{X}_{r}$ (and a subsequence of target digraphs $\mathcal{A}=\mathcal{A}_{0}, \ldots, \mathcal{A}_{f}$), where $r \leq n(n-1)$ is the number of edges removed from \mathcal{X} such that $\left\{\mathcal{X}_{r} \rightarrow \mathcal{A}^{\prime}{ }_{f}\right\} / \Sigma \neq\left\{\mathcal{X}_{t} \rightarrow \mathcal{A}^{\prime}{ }_{s}\right\} / \Sigma \cap\left\{\mathcal{X} \rightarrow \mathcal{A}^{\prime}{ }_{L}\right\}$ and if one removes any other edge from \mathcal{X}_{r}, every solution to $\left\{\mathcal{X}_{t} \rightarrow \mathcal{A}^{\prime}{ }_{s}\right\} / \Sigma \cap\left\{\mathcal{X} \rightarrow \mathcal{A}^{\prime}{ }_{L}\right\}$ will be a solution to $\left\{\mathcal{X}_{r+1} \rightarrow \mathcal{A}^{\prime}{ }_{f}\right\} / \Sigma$.

Thank you for your attention!

[^0]: ${ }^{1}$ D. Zhuk, A proof of the csp dichotomy conjecture, J. ACM, 67(5),August 2020
 ${ }^{2}$ A. A. Bulatov, A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 319-330, 2017

[^1]: ${ }^{3}$ Dmitriy Zhuk. A proof of the csp dichotomy conjecture. J. ACM, 67(5):1-78, August 2020

[^2]: ${ }^{4}$ Jan Krajicek. Bounded Arithmetic, Propositional Logic and Complexity Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1995

