Proof complexity of CSP

Azza Gaysin

Department of Algebra, Charles University in Prague

ICMS, Mathematical Approaches to Lower Bounds: Complexity of Proofs and Computation, online, 8 July 2022

- **I** Constraint satisfaction problem (CSP) + Universal algebra notions;
- Outline of Zhuk's algorithm;
- **3** Formalization of Zhuk's algorithm in V^1 ;
- 4 Results.

Definition 1 (CSP over finite domains).

The *Constraint Satisfaction Problem* is a problem of deciding whether there exists an assignment to a set of variables that satisfies some specified constraints. An *instance of CSP problem* over finite domains is defined as a triple $\Theta = (X, D, C)$, where

- $X = \{x_0, ..., x_{n-1}\}$ is a finite set of variables,
- $D = \{D_0, ..., D_{n-1}\}$ is a set of non-empty finite domains,
- $C = \{C_0, ..., C_{m-1}\}$ is a set of constraints, each $C_j = (\vec{x}_j, \rho_j)$ with a tuple of variables of some length m_j , \vec{x}_j , called *the constraint scope*, and an m_j -ary relation on the product of the corresponding domains, called the *constraint relation* ρ_j .

A constraint language \mathbf{R} is a set of relations on finite domain. CSP(\mathbf{R}) is a subclass of CSP defined by the property that any constraint relation in any instance of CSP(\mathbf{R}) must belong to \mathbf{R} .

Definition 2 (CSP, equivalent definition).

Let $\mathcal{A} = (A, R_1^A, ..., R_k^A)$ be a relational structure over a vocabulary $R_1, ..., R_n$. The *Constraint Satisfaction Problem* associated with \mathcal{A} , denoted by CSP(\mathcal{A}), is the question: given a structure $\mathcal{X} = (X, R_1^X, ..., R_k^X)$ over the same vocabulary whether there exists a homomorphism from \mathcal{X} to \mathcal{A} .

Figure 1: Equivalence of the CSP definitions

We say that an *m*-ary operation $f : A^m \to A$ preservers an *n*-ary relation $\rho \in A^n$ (or *f* is a *polymorphism* of ρ , or ρ is *invariant* under *f*) if $f(\bar{a_1}, ..., \bar{a_m}) \in \rho$ for all choices of $\bar{a_1}, ..., \bar{a_m} \in \rho$. We will denote the set of all operations preserving ρ by $Pol(\rho)$.

$$f\left(\begin{array}{ccccc} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{array}\right) \in \rho$$

Theorem 1.

For any relational structure $\mathcal{A} = (A, R_1, R_2, ...)$ there exists an algebra $\mathbb{A} = (A, F_1, F_2, ...)$, such that $Clone(\mathbb{A}) = Pol(\mathcal{A})$.

Definition 3 (Weak-near unanimity).

An operation Ω on a set A is called the *weak-near unanimity operation* (WNU) if it satisfies $\Omega(y, x, x, ..., x) = \Omega(x, y, x..., x) = ... = \Omega(x, x, ..., x, y)$ for all $x, y \in A$. Furthermore, Ω is called *idempotent* if $\Omega(x, ..., x) = x$ for all $x \in A$, and is called *special* if for all $x, y \in A$ $\Omega(x, ..., x, \Omega(x, ..., x, y)) = \Omega(x, ..., x, y)$.

Theorem 2 (CSP Dichotomy Theorem).

Suppose **R** is a finite set of relations on *A*. Then $CSP(\mathbf{R})$ can be solved in polynomial time if there exists a WNU operation Ω on *A* preserving **R**; $CSP(\mathbf{R})$ is NP-complete otherwise.¹

Theorem 3.

For any constraint language ${f R}$ there is constraint language ${f R}'$ such that

- all relations in **R**′ are at most binary and
- **R** and **R**' *pp*-constructs each other.

There is a clear procedure how to construct \mathbf{R}' .

¹D. Zhuk, A proof of the csp dichotomy conjecture, J. ACM, 67(5),August 2020

²A. A. Bulatov, A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 319–330, 2017

Definition 4 (Binary absorption).

If $\mathbb{B} = (B, F_{\mathbb{B}})$ is a subalgebra of $\mathbb{A} = (A, F_{\mathbb{A}})$, then *B* binary absorbs \mathbb{A} if there exists a binary term operation $f \in Clone(F_{\mathbb{A}})$ such that $f(a, b) \in B$ and $f(b, a) \in B$ for any $a \in A$ and $b \in B$.

Definition 5 (Center).

If $\mathbb{A} = (A, \Omega_{\mathbb{A}})$ is a finite algebra with a special WNU operation, then $C \subseteq A$ is a *center* if there exists an algebra $\mathbb{B} = (B, \Omega_{\mathbb{B}})$ with a special WNU operation of the same arity and a subdirect subalgebra $\mathbb{D} = (D, \Omega_{\mathbb{D}})$ of $\mathbb{A} \times \mathbb{B}$ such that there is no non-trivial binary absorbing subuniverse in \mathbb{B} and $C = \{a \in A | \forall b \in B : (a, b) \in D\}.$

Definition 6 (Polynomially complete algebra).

We call an algebra $\mathbb{A} = (A, F_{\mathbb{A}})$ polynomially complete if the clone generated by $F_{\mathbb{A}}$ and all constants on A is the clone of all operations on A, i.e. we can generate any operation on A using $F_{\mathbb{A}}$, constant operations, projections and superpositions.

Definition 7 (Linear algebra).

An idempotent finite algebra $\mathbb{A} = (A, \Omega_{\mathbb{A}})$, where $\Omega_{\mathbb{A}}$ is an *m*-ary idempotent special WNU operation, is called *linear* if it is isomorphic to $(\mathbb{Z}_{p_1} \times \ldots \times \mathbb{Z}_{p_s}, x_1 + \ldots + x_m)$ for prime numbers p_1, \ldots, p_s .

Lemma 1 (Affine subspaces).

Suppose that relation $\rho \subseteq (\mathbb{Z}_{p_1})^{n_1} \times ... \times (\mathbb{Z}_{p_k})^{n_k}$ is preserved by $x_1 + ... + x_m$, where $p_1, ..., p_k$ are distinct prime numbers dividing m - 1 and $\mathbb{Z}_{p_i} = (\mathbb{Z}_{p_i}, x_1 + ... + x_m)$ for every *i*. Then $\rho = L_1 \times ... \times L_k$, where each L_i is an affine subspace of $(\mathbb{Z}_{p_i})^{n_i}$.

Theorem 4.

Suppose $\mathbb{A} := (A, \Omega)$ is a finite algebra, where Ω is a special idempotent WNU of arity m. Then at least one of the following conditions holds:

- **1** there exists a non-trivial binary absorbing subuniverse $B \subsetneq A$,
- **2** there exists a non-trivial center $C \subsetneq A$,
- B there exists a proper congruence σ on A such that $(A, \Omega)/\sigma$ is polynomially complete,
- there exists a proper congruence σ on A such that (A, Ω)/σ is isomorphic to (Z_p, x₁ + ... + x_m) for some p.³

³Dmitriy Zhuk. A proof of the csp dichotomy conjecture. J. ACM, 67(5):1-78, August 2020

Zhuk's algorithm solves CSP in polynomial time for constraint languages having a WNU polymorphism:

- Consider a CSP instance of CSP(**R**), where **R** is preserved by special WNU operation Ω , $\Theta = (X, D, C)$.
- We say that a constraint C₁ is *weaker or equivalent* to a constraint C₂ if the scope of C₁ is a subset of the scope of C₂ and C₂ implies C₁. We say that C₁ is *weaker* than C₂ if C₁ is weaker or equivalent to C₂, but C₁ does not imply C₂.
- Before the linear part it reduces domains based on consistency properties and strong subsets.
- During the linear part it makes an instance weaker (replacing constraints by weaker constraints), restricts domains to linear congruences classes and searches for additional linear equations.
- The algorithm is deeply recursive: any time when it reduces/restricts some domain it starts all from the beginning.

- Check if the instance is "nice" (different types of consistency of the instance: cycle-consistency, irreducibility, subdirect solution set of a weaker instance). If not, reduce domains until the instance is "nice" or there is no solution (some domain is empty).
- Check whether some domains have a non-trivial binary absorbing subuniverse or a non-trivial center. If they do, reduce the domain to the subuniverse or to the center.
- Check whether there is a proper congruence on a domain such that its factor algebra is polynomially complete. If there is such a congruence, then reduce the domain to some equivalence class of the congruence.
- If the algorithm cannot reduce any domain of CSP instance Θ further, it means that on every domain D_i of size greater than 1 there exists a congruence σ_i such that $(D_i, \Omega)/\sigma_i$ is isomorphic to some $(\mathbb{Z}_{p_1} \times \ldots \times \mathbb{Z}_{p_k}, x_1 + \ldots + x_m)$. Apply the linear case of the algorithm.

Outline of Zhuk's algorithm

• Define a new CSP instance Θ_L with domains $D_1/\sigma_1, ..., D_n/\sigma_n$, which we will call factorized CSP instance. Every relation on $\mathbb{Z}_{p_1} \times ... \times \mathbb{Z}_{p_r}$ preserved by $\Omega(x_1, ..., x_m) = x_1 + ... + x_m$ is a conjunction of linear equations (due to Lemma 1).

Figure 2: Factorization of the initial instance.

Outline of Zhuk's algorithm

- Compare two sets: S_{Θ}/Σ and S_{Θ_L} . If Θ_L has no solution, then so does Θ , if $S_{\Theta}/\Sigma = S_{\Theta_L}$, then we are done, if $S_{\Theta}/\Sigma \subsetneq S_{\Theta_L}$, then move on.
- Repeat further steps iteratively. Start with the initial instance Θ . Every iteration make the instance Θ weaker and check whether the solution set to this weaker instance, factorized by congruences, contains S_{Θ_L} (using recursion).
- At every iteration at the end there is some weaker instance Θ' such that there is a solution $s \in S_{\Theta_L}$ and $s \notin S_{\Theta'}/\Sigma$, but if we replace any other constraint in Θ' with all weaker constraints, every solution to Θ_L will be in $S_{\Theta'}/\Sigma$.
- Find the solution set to instance Θ' factorized by congruences by finding new equations additional to the set S_{Θ_L} .
- Consider the factorized instance Θ_L and instance Θ' , which is weaker than Θ , and now compare two solution sets: S_{Θ}/Σ and $S_{\Theta'}/\Sigma \cap S_{\Theta_L}$. If $S_{\Theta}/\Sigma \subsetneq S_{\Theta'}/\Sigma \cap S_{\Theta_L}$, then repeat iteration.

Outline of Zhuk's algorithm

Figure 3: Solution sets.

Setting:

- Second-sorted theory (x, y, z, ... of the first kind are called number variables, X, Y, Z, ... of the second kind are called set variables);
- Sets code functions and relations using pairing function $\langle x, y \rangle$: $\langle x, y \rangle = \frac{(x+y)(x+y+1)}{2} + y$, for any set Z, $m \ge 2$: $Z(x_1, ..., x_m) =_{def} Z(\langle x_1, ..., x_m \rangle)$;
- Fixed algebra A = (A, Ω) (size of A, arity m, all strong subsets are known) and fixed A = (A, R_A);
- Only finite set of relations \mathbf{R}_A of arity at most 2, invariant under Ω . $\mathbf{R}_A = (\mathbf{R}_A^1, \mathbf{R}_A^2)$, where

$$\mathbf{R}^1_A(j,a,a) \iff E^1_j(a) \wedge \mathbf{R}^2_A(i,a,b) \iff E^2_i(a,b).$$

Thus, any relation on A is either of the form $x_i \in D_i$, or an edge between domains $E^{ij}(a,b)$.

Definition 8.

A directed input graph is a pair $\mathcal{X} = (V_{\mathcal{X}}, E_{\mathcal{X}})$ with $V_{\mathcal{X}}(i)$ for all $i < |V_{\mathcal{X}}| = n$ and $E_{\mathcal{X}}$ being a binary relation on $V_{\mathcal{X}}$. A target digraph with domains is an (n+2)-tuple of sets $\mathcal{A}' = (V_{\mathcal{A}'}, E_{\mathcal{A}'}, D_0, ..., D_{n-1})$, where:

- $|V_{\mathcal{A}'}| \leq \langle n,k \rangle$, where k is size of the algebra,
- each D_i is the subset of length k,
- $V_{\mathcal{A}'}(i,a) \iff D_i(a)$, which means that $a \in D_i$,
- $|E_{\mathcal{A}'}| < \langle \langle n,k \rangle, \langle n,k \rangle \rangle, E_{\mathcal{A}'}(i,a,j,b) \text{ means that there is an edge } (a,b) \\ \text{from } D_i \text{ to } D_j, \text{ and is such that:}$

$$E_{\mathcal{A}'}(u,v) \to \exists i, j < n \, \exists a, b < k \ u = \langle i, a \rangle \land v = \langle j, b \rangle \land$$
$$D_i(a) \land D_j(b).$$
(1)

Basically, by $E_{\mathcal{A}'}(i, a, j, b)$ we code the binary relation $E_{\mathcal{A}'}^{ij}$.

Definition 9 (Theory V^1).

Two-sorted theory;

- 2 Accepts bounded comprehension axiom $\Sigma_0^{1,b}$ -CA: $\forall x \exists X \leq x \, \forall y < x \, y \in X \equiv \phi(y);$
- 3 Accepts the IND scheme for all $\Sigma_1^{1,b}$ -formulas.

 V^1 is isomorphic to S_2^1 (corresponds to polynomial time reasoning).

Theorem 5 (V^1 Translation).

Suppose that $\phi(\bar{x}, \bar{X})$ is a $\Sigma_0^{1,b}$ -formula such that

 $V^1 \vdash \forall \bar{x} \forall \bar{X} \phi(\bar{x}, \bar{X}).$

Then the formulas $\langle \phi \rangle_{\langle \bar{m}, \bar{n} \rangle}$ have polynomial size extended Frege proofs and these proofs can be constructed by a *p*-time algorithm.⁴

⁴Jan Krajicek. Bounded Arithmetic, Propositional Logic and Complexity Theory. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1995

Formalization of Zhuk's algorithm in V^1

- We augmented theory V^1 with three universal algebra $\Sigma_1^{1,b}$ -axioms: for any cycle-consistent irreducible CSP instance $\Theta = (X, D, C)$
 - 1 if B is a nontrivial binary absorbing subuniverse of D_i , then Θ has a solution only if Θ has a solution with $x_i \in B$;
 - 2 if C is a nontrivial center of D_i , then Θ has a solution only if Θ has a solution with $x_i \in C$;
 - **3** if there does not exist a nontrivial binary absorbing subuniverse or a nontrivial center on D_j for every j, $(D_i, \Omega)/\sigma_i$ is a polynomially complete algebra, and E is an equivalence class of σ , then Θ has a solution only if Θ has a solution with $x_i \in E$.

For this it was needed to formalize in V^1 UA-notions such as WNU operation, Taylor algebra, polymorphism, subdirect relation, binary absorbing, central, PC subuniverses, belonging to the clone, etc.

■ For the linear part of the algorithm it was needed to formalize in V¹ finite abelian groups, matrices and matrix operation, graphs and graphs homomorphisms, congruences and factor-algebras.

Results

- CSP(A): for any X, the question is whether it can be homomorphically mapped into A. For unsatisfiable instances X, ¬HOM(X, A) can be encoded by a propositional tautology, the size of ¬HOM(X, A) is polynomial in the sizes of X and A.
- When CSP(A) is *p*-time decidable: for which proof systems ¬*HOM*(X, A) are not hard tautologies?

Lemma 2.

 V^1 proves that instance Θ has a solution only if the instance after consistency reductions Θ_{nice} has a solution.

Theorem 6.

 V^1 proves that instance Θ has a solution only if factorized instance Θ_L has a solution.

Lemma 3.

 V^1 proves that for every matrix [A|B] there is a row-echelon matrix [A'|B'] having the same solution set.

Results

Theorem 7.

Consider two CSP instances, the initial instance $\Theta = (\mathcal{X}, \mathcal{A}')$ and the factorized instance $\Theta_L = (\mathcal{X}, \mathcal{A}'_L)$, and suppose that the solution set to the initial instance factorized by congruences is a proper subset of the solution set to the factorized instance, i.e. $\{\mathcal{X} \to \mathcal{A}'\}/\Sigma \subsetneq \{\mathcal{X} \to \mathcal{A}'_L\}$.

Then V^1 proves that there exists a subsequence of instance digraphs $\mathcal{X} = \mathcal{X}_0, ..., \mathcal{X}_t$ (and a subsequence of target digraphs $\mathcal{A} = \mathcal{A}_0, ..., \mathcal{A}_s$), where $t \leq n(n-1)$ is the number of edges removed from \mathcal{X} , $\{\mathcal{X}_t \to \mathcal{A}'_s\}/\Sigma \neq \{\mathcal{X} \to \mathcal{A}'_L\}$, and if one removes any other edge from \mathcal{X}_t , every solution to Θ_L will be a solution to $\{\mathcal{X}_{t+1} \to \mathcal{A}'_s\}/\Sigma$.

Lemma 4.

Consider two CSP instances, the initial instance $\Theta = (\mathcal{X}, \mathcal{A}')$ and the instance $\Theta_{t,s} = (\mathcal{X}_t, \mathcal{A}'_s)$, where $t \leq n(n-1)$ is the number of edges removed from the initial digraph \mathcal{X} and $s \leq k^2$ is the number of edges added to the target digraph \mathcal{A} . V^1 proves that instance Θ has a solution only if $\Theta_{t,s}$ has a solution.

Theorem 8.

Consider two CSP instances, the initial instance $\Theta = (\mathcal{X}, \mathcal{A}')$ and the instance $\Theta_{t,s} = (\mathcal{X}_t, \mathcal{A}'_s)$, where $t \leq n(n-1)$ is the number of edges removed from the initial digraph \mathcal{X} and $s \leq k^2$ is the number of edges added to the target digraph \mathcal{A} . Suppose that the solution set to the initial instance factorized by congruences is a proper subset of the intersection of the solution set to instance $\Theta_{t,s}$ factorized by congruences and the solution set to the factorized instance Θ_L , i.e. $\{\mathcal{X} \to \mathcal{A}'\}/\Sigma \subsetneq \{\mathcal{X}_t \to \mathcal{A}'_s\}/\Sigma \cap \{\mathcal{X} \to \mathcal{A}'_L\}$.

Then V^1 proves that there exists a subsequence of instance digraphs $\mathcal{X} = \mathcal{X}_0, ..., \mathcal{X}_r$ (and a subsequence of target digraphs $\mathcal{A} = \mathcal{A}_0, ..., \mathcal{A}_f$), where $r \leq n(n-1)$ is the number of edges removed from \mathcal{X} such that $\{\mathcal{X}_r \to \mathcal{A}'_f\}/\Sigma \neq \{\mathcal{X}_t \to \mathcal{A}'_s\}/\Sigma \cap \{\mathcal{X} \to \mathcal{A}'_L\}$ and if one removes any other edge from \mathcal{X}_r , every solution to $\{\mathcal{X}_t \to \mathcal{A}'_s\}/\Sigma \cap \{\mathcal{X} \to \mathcal{A}'_L\}$ will be a solution to $\{\mathcal{X}_{r+1} \to \mathcal{A}'_f\}/\Sigma$.

Thank you for your attention!