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Constraint satisfaction problem (CSP) + Universal algebra notions

Definition 1 (CSP over finite domains).

The Constraint Satisfaction Problem is a problem of deciding whether there
exists an assignment to a set of variables that satisfies some specified
constraints. An instance of CSP problem over finite domains is defined as a
triple Θ = (X,D,C), where

X = {x0, ..., xn−1} is a finite set of variables,

D = {D0, ..., Dn−1} is a set of non-empty finite domains,

C = {C0, ..., Cm−1} is a set of constraints, each Cj = (x⃗j , ρj) with a
tuple of variables of some length mj , x⃗j , called the constraint scope, and
an mj-ary relation on the product of the corresponding domains, called
the constraint relation ρj .

A constraint language R is a set of relations on finite domain. CSP(R) is a
subclass of CSP defined by the property that any constraint relation in any
instance of CSP(R) must belong to R.
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Constraint satisfaction problem (CSP) + Universal algebra notions

Definition 2 (CSP, equivalent definition).

Let A = (A,RA
1 , ..., R

A
k ) be a relational structure over a vocabulary R1,..., Rn.

The Constraint Satisfaction Problem associated with A, denoted by CSP(A), is
the question: given a structure X = (X,RX

1 , ..., RX
k ) over the same vocabulary

whether there exists a homomorphism from X to A.

x0 ∈ {a, b}

x1 ∈ {a, b}

x2 ∈ {a, b}

X

a b

A

Figure 1: Equivalence of the CSP definitions
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Constraint satisfaction problem (CSP) + Universal algebra notions

We say that an m-ary operation f : Am → A preservers an n-ary relation
ρ ∈ An (or f is a polymorphism of ρ, or ρ is invariant under f) if
f(ā1, ..., ām) ∈ ρ for all choices of ā1, ..., ām ∈ ρ. We will denote the set of all
operations preserving ρ by Pol(ρ).

f


a11 a12 ... a1m

a21 a22 ... a2m

... ... ... ...
an1 an2 ... anm

 ∈ ρ

Theorem 1.

For any relational structure A = (A,R1, R2, ...) there exists an algebra
A = (A,F1, F2, ...), such that Clone(A) = Pol(A).
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Constraint satisfaction problem (CSP) + Universal algebra notions

Definition 3 (Weak-near unanimity).

An operation Ω on a set A is called the weak-near unanimity operation (WNU)
if it satisfies Ω(y, x, x, ..., x) = Ω(x, y, x..., x) = ... = Ω(x, x, ..., x, y) for all
x, y ∈ A. Furthermore, Ω is called idempotent if Ω(x, ..., x) = x for all x ∈ A,
and is called special if for all x, y ∈ A Ω(x, ..., x,Ω(x, ..., x, y)) = Ω(x, ..., x, y).

Theorem 2 (CSP Dichotomy Theorem).

Suppose R is a finite set of relations on A. Then CSP(R) can be solved in
polynomial time if there exists a WNU operation Ω on A preserving R;
CSP(R) is NP-complete otherwise. 1 2

Theorem 3.

For any constraint language R there is constraint language R′ such that

all relations in R′ are at most binary and

R and R′ pp-constructs each other.

There is a clear procedure how to construct R′.
1D. Zhuk, A proof of the csp dichotomy conjecture, J. ACM, 67(5),August 2020
2A. A. Bulatov, A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th Annual

Symposium on Foundations of Computer Science (FOCS), pages 319–330, 2017
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Constraint satisfaction problem (CSP) + Universal algebra notions

Definition 4 (Binary absorption).

If B = (B,FB) is a subalgebra of A = (A,FA), then B binary absorbs A if there
exists a binary term operation f ∈ Clone(FA) such that f(a, b) ∈ B and
f(b, a) ∈ B for any a ∈ A and b ∈ B.

Definition 5 (Center).

If A = (A,ΩA) is a finite algebra with a special WNU operation, then C ⊆ A is
a center if there exists an algebra B = (B,ΩB) with a special WNU operation
of the same arity and a subdirect subalgebra D = (D,ΩD) of A× B such that
there is no non-trivial binary absorbing subuniverse in B and
C = {a ∈ A|∀b ∈ B : (a, b) ∈ D}.

Definition 6 (Polynomially complete algebra).

We call an algebra A = (A,FA) polynomially complete if the clone generated
by FA and all constants on A is the clone of all operations on A, i.e. we can
generate any operation on A using FA, constant operations, projections and
superpositions.
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Constraint satisfaction problem (CSP) + Universal algebra notions

Definition 7 (Linear algebra).

An idempotent finite algebra A = (A,ΩA), where ΩA is an m-ary idempotent
special WNU operation, is called linear if it is isomorphic to
(Zp1 × ...× Zps , x1 + ...+ xm) for prime numbers p1, ..., ps.

Lemma 1 (Affine subspaces).

Suppose that relation ρ ⊆ (Zp1)
n1 × ...× (Zpk )

nk is preserved by x1 + ...
+xm, where p1, ..., pk are distinct prime numbers dividing m− 1 and Zpi =
(Zpi , x1 + ...+ xm) for every i. Then ρ = L1 × ...× Lk, where each Li is an
affine subspace of (Zpi)

ni .
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Constraint satisfaction problem (CSP) + Universal algebra notions

Theorem 4.

Suppose A := (A,Ω) is a finite algebra, where Ω is a special idempotent WNU
of arity m. Then at least one of the following conditions holds:

1 there exists a non-trivial binary absorbing subuniverse B ⊊ A,

2 there exists a non-trivial center C ⊊ A,

3 there exists a proper congruence σ on A such that (A,Ω)/σ is
polynomially complete,

4 there exists a proper congruence σ on A such that (A,Ω)/σ is isomorphic
to (Zp, x1 + ...+ xm) for some p.3

3Dmitriy Zhuk. A proof of the csp dichotomy conjecture. J. ACM, 67(5):1–78, August 2020
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Outline of Zhuk’s algorithm

Zhuk’s algorithm solves CSP in polynomial time for constraint languages
having a WNU polymorphism:

Consider a CSP instance of CSP(R), where R is preserved by special
WNU operation Ω, Θ = (X,D,C).

We say that a constraint C1 is weaker or equivalent to a constraint C2 if
the scope of C1 is a subset of the scope of C2 and C2 implies C1. We say
that C1 is weaker than C2 if C1 is weaker or equivalent to C2, but C1

does not imply C2.

Before the linear part it reduces domains based on consistency properties
and strong subsets.

During the linear part it makes an instance weaker (replacing constraints
by weaker constraints), restricts domains to linear congruences classes and
searches for additional linear equations.

The algorithm is deeply recursive: any time when it reduces/restricts some
domain it starts all from the beginning.
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Outline of Zhuk’s algorithm

Check if the instance is ”nice” (different types of consistency of the
instance: cycle-consistency, irreducibility, subdirect solution set of a weaker
instance). If not, reduce domains until the instance is ”nice” or there is no
solution (some domain is empty).

Check whether some domains have a non-trivial binary absorbing
subuniverse or a non-trivial center. If they do, reduce the domain to the
subuniverse or to the center.

Check whether there is a proper congruence on a domain such that its
factor algebra is polynomially complete. If there is such a congruence,
then reduce the domain to some equivalence class of the congruence.

If the algorithm cannot reduce any domain of CSP instance Θ further, it
means that on every domain Di of size greater than 1 there exists a
congruence σi such that (Di,Ω)/σi is isomorphic to some
(Zp1 × ...× Zpk , x1 + ...+ xm). Apply the linear case of the algorithm.
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Outline of Zhuk’s algorithm

Define a new CSP instance ΘL with domains D1/σ1, ..., Dn/σn, which we
will call factorized CSP instance. Every relation on Zp1 × ...× Zpr

preserved by Ω(x1, ..., xm) = x1+ ...+ xm is a conjunction of linear
equations (due to Lemma 1).

Di Dj Li = Di/σi Lj = Dj/σj

Θ ΘL

e

d

c

b

a

d

c

a

e

d

c

b

a

d

c

a
[a]

[c]

[d]

[a]

[d]

Figure 2: Factorization of the initial instance.
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Outline of Zhuk’s algorithm

Compare two sets: SΘ/Σ and SΘL . If ΘL has no solution, then so does
Θ, if SΘ/Σ = SΘL , then we are done, if SΘ/Σ ⊊ SΘL , then move on.

Repeat further steps iteratively. Start with the initial instance Θ. Every
iteration make the instance Θ weaker and check whether the solution set
to this weaker instance, factorized by congruences, contains SΘL (using
recursion).

At every iteration at the end there is some weaker instance Θ′ such that
there is a solution s ∈ SΘL and s /∈ SΘ′/Σ, but if we replace any other
constraint in Θ′ with all weaker constraints, every solution to ΘL will be
in SΘ′/Σ.

Find the solution set to instance Θ′ factorized by congruences by finding
new equations additional to the set SΘL .

Consider the factorized instance ΘL and instance Θ′, which is weaker than
Θ, and now compare two solution sets: SΘ/Σ and SΘ′/Σ ∩ SΘL . If
SΘ/Σ ⊊ SΘ′/Σ ∩ SΘL , then repeat iteration.
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Outline of Zhuk’s algorithm

SΘL

SΘL ∩ SΘ′/Σ

SΘ/Σ

Figure 3: Solution sets.
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Formalization of Zhuk’s algorithm in V 1

Setting:

Second-sorted theory (x, y, z, ... of the first kind are called number
variables, X,Y, Z, ... of the second kind are called set variables);

Sets code functions and relations using pairing function ⟨x, y⟩:
⟨x, y⟩ = (x+y)(x+y+1)

2
+ y, for any set Z, m ≥ 2:

Z(x1, ..., xm) =def Z(⟨x1, ..., xm⟩);
Fixed algebra A = (A,Ω) (size of A, arity m, all strong subsets are
known) and fixed A = (A,RA);

Only finite set of relations RA of arity at most 2, invariant under Ω.
RA = (R1

A,R
2
A), where

R1
A(j, a, a) ⇐⇒ E1

j (a) ∧R2
A(i, a, b) ⇐⇒ E2

i (a, b).

Thus, any relation on A is either of the form xi ∈ Di, or an edge between
domains Eij(a, b).
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Formalization of Zhuk’s algorithm in V 1

Definition 8.

A directed input graph is a pair X = (VX , EX ) with VX (i) for all i < |VX | = n
and EX being a binary relation on VX . A target digraph with domains is an
(n+ 2)-tuple of sets A′ = (VA′ , EA′ , D0, ..., Dn−1), where:

|VA′ | ≤ ⟨n, k⟩, where k is size of the algebra,

each Di is the subset of length k,

VA′(i, a) ⇐⇒ Di(a), which means that a ∈ Di,

|EA′ | < ⟨⟨n, k⟩, ⟨n, k⟩⟩, EA′(i, a, j, b) means that there is an edge (a, b)
from Di to Dj , and is such that:

EA′(u, v) → ∃i, j < n∃a, b < k u = ⟨i, a⟩ ∧ v = ⟨j, b⟩∧
Di(a) ∧Dj(b).

(1)

Basically, by EA′(i, a, j, b) we code the binary relation Eij
A′ .
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Formalization of Zhuk’s algorithm in V 1

Definition 9 (Theory V 1).

1 Two-sorted theory;

2 Accepts bounded comprehension axiom Σ1,b
0 -CA:

∀x∃X ≤ x∀y < x y ∈ X ≡ ϕ(y);

3 Accepts the IND scheme for all Σ1,b
1 -formulas.

V 1 is isomorphic to S1
2 (corresponds to polynomial time reasoning).

Theorem 5 (V 1 Translation).

Suppose that ϕ(x̄, X̄) is a Σ1,b
0 -formula such that

V 1 ⊢ ∀x̄∀X̄ϕ(x̄, X̄).

Then the formulas ⟨ϕ⟩⟨m̄,n̄⟩ have polynomial size extended Frege proofs and
these proofs can be constructed by a p-time algorithm.4

4Jan Krajicek. Bounded Arithmetic, Propositional Logic and Complexity Theory. Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 1995
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Formalization of Zhuk’s algorithm in V 1

We augmented theory V 1 with three universal algebra Σ1,b
1 -axioms: for

any cycle-consistent irreducible CSP instance Θ = (X,D,C)
1 if B is a nontrivial binary absorbing subuniverse of Di, then Θ has a

solution only if Θ has a solution with xi ∈ B;
2 if C is a nontrivial center of Di, then Θ has a solution only if Θ has a

solution with xi ∈ C;
3 if there does not exist a nontrivial binary absorbing subuniverse or a

nontrivial center on Dj for every j, (Di,Ω)/σi is a polynomially complete
algebra, and E is an equivalence class of σ, then Θ has a solution only if Θ
has a solution with xi ∈ E.

For this it was needed to formalize in V 1 UA-notions such as WNU
operation, Taylor algebra, polymorphism, subdirect relation, binary
absorbing, central, PC subuniverses, belonging to the clone, etc.

For the linear part of the algorithm it was needed to formalize in V 1 finite
abelian groups, matrices and matrix operation, graphs and graphs
homomorphisms, congruences and factor-algebras.
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Results

CSP(A): for any X , the question is whether it can be homomorphically
mapped into A. For unsatisfiable instances X , ¬HOM(X ,A) can be
encoded by a propositional tautology, the size of ¬HOM(X ,A) is
polynomial in the sizes of X and A.

When CSP(A) is p-time decidable: for which proof systems
¬HOM(X ,A) are not hard tautologies?

Lemma 2.

V 1 proves that instance Θ has a solution only if the instance after consistency
reductions Θnice has a solution.

Theorem 6.

V 1 proves that instance Θ has a solution only if factorized instance ΘL has a
solution.

Lemma 3.

V 1 proves that for every matrix [A|B] there is a row-echelon matrix [A′|B′]
having the same solution set.
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Results

Theorem 7.

Consider two CSP instances, the initial instance Θ = (X ,A′) and the
factorized instance ΘL = (X ,A′

L), and suppose that the solution set to the
initial instance factorized by congruences is a proper subset of the solution set
to the factorized instance, i.e. {X → A′}/Σ ⊊ {X → A′

L}.

Then V 1 proves that there exists a subsequence of instance digraphs
X = X0, ...,Xt (and a subsequence of target digraphs A = A0, ...,As), where
t ≤ n(n− 1) is the number of edges removed from X , {Xt → A′

s}/Σ ̸=
{X → A′

L}, and if one removes any other edge from Xt, every solution to ΘL

will be a solution to {Xt+1 → A′
s}/Σ.

Lemma 4.

Consider two CSP instances, the initial instance Θ = (X ,A′) and the instance
Θt,s = (Xt,A′

s), where t ≤ n(n− 1) is the number of edges removed from the
initial digraph X and s ≤ k2 is the number of edges added to the target
digraph A. V 1 proves that instance Θ has a solution only if Θt,s has a solution.
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Results

Theorem 8.

Consider two CSP instances, the initial instance Θ = (X ,A′) and the instance
Θt,s = (Xt,A′

s), where t ≤ n(n− 1) is the number of edges removed from the
initial digraph X and s ≤ k2 is the number of edges added to the target
digraph A. Suppose that the solution set to the initial instance factorized by
congruences is a proper subset of the intersection of the solution set to
instance Θt,s factorized by congruences and the solution set to the factorized
instance ΘL, i.e. {X → A′}/Σ ⊊ {Xt → A′

s}/Σ ∩ {X → A′
L}.

Then V 1 proves that there exists a subsequence of instance digraphs
X = X0, ...,Xr (and a subsequence of target digraphs A = A0, ...,Af ), where
r ≤ n(n− 1) is the number of edges removed from X such that
{Xr → A′

f}/Σ ̸= {Xt → A′
s}/Σ ∩ {X → A′

L} and if one removes any other
edge from Xr, every solution to {Xt → A′

s}/Σ ∩ {X → A′
L} will be a

solution to {Xr+1 → A′
f}/Σ.
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Thank you for your attention!
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