Lower Bounds for Symmetric Arithmetic Circuits

Anuj Dawar
Department of Computer Science and Technology, University of Cambridge

Joint work with Gregory Wilsenach (ICALP 2020 and ITCS 2022)
ICMS, 7 July 2022

Arithmetic Circuits

An Arithmetic Circuit over a field K computes (or represents) a polynomial in $K[X]$.

Matrix Inputs

We are often interested in inputs which are entries of a matrix.

$$
X=\left\{x_{i j} \mid 1 \leq i \leq m ; 1 \leq j \leq n\right\}
$$

Especially, when the input is a square matrix, so $m=n$.

$$
\begin{gathered}
\operatorname{tr}(X)=\sum_{i} x_{i i} \\
\operatorname{det}(X)=\sum_{\sigma \in \operatorname{Sym}_{n}} \operatorname{sgn}(\sigma) \prod_{i \in[n]} x_{i \sigma(i)} \\
\operatorname{per}(X)=\sum_{\sigma \in \operatorname{Sym}_{n}} \prod_{i \in[n]} x_{i \sigma(i)}
\end{gathered}
$$

Lower Bounds for Arithmetic Circuits

We have lower bounds for restricted classes of circuits computing the permanent.

No monotone family of circuits of sub-exponential size for the permanent.
(Jerrum, Snir 1982)

No sub-exponential size family of depth 3 circuits for the permanent over any finite field.
(Grigoriev, Karpinski 1998)
Both methods also yield similar lower bounds for the determinant
We consider upper and lower bounds for symmetric circuits computing the determinant and the permanent.

Symmetric Arithmetic Circuits

Suppose C is a circuit computing a polynomal $p \in K[X]$. Sym_{X}-the group of permutations of X.

Let Γ be a group acting on X (or simply $\Gamma \leq \operatorname{Sym}_{X}$).
p is Γ-symmetric if for all $\pi \in \Gamma, p^{\pi}=p$.
C is Γ-symmetric if the action of Γ on the inputs X extends to an automorphism of C.

Elementary Symmetric Polynomials

The elementary symmetric polynomials on a set of variables X are Sym_{X}-symmetric.

Example: $\prod_{1 \leq i \leq n} x_{i}$.

$\not \subset$
Fan-in matters!

Square Symmetric Action

When the input is a square matrix $X=\left\{x_{i j} \mid 1 \leq i, j \leq n\right\}$, the full symmetric group is $\operatorname{Sym}_{X}=\operatorname{Sym}_{[n] \times[n]}$.

The matrix polynomials $\operatorname{tr}(X), \operatorname{det}(X)$ and $\operatorname{per}(X)$ are all invariant under the action of $\operatorname{Sym}_{[n]}$ given by

$$
x_{i j}^{\pi}=x_{\pi(i) \pi(j)} .
$$

i.e., simultaneous row and column permutations.

We say that these polynomials are square symmetric.

Matrix Symmetric Action

The permanent

$$
\operatorname{per}(X)=\sum_{\sigma \in \operatorname{Sym}_{n}} \prod_{i \in[n]} x_{i \sigma(i)}
$$

is further invariant under independent row and column permutations.
That is, under the action of $\operatorname{Sym}_{[n]} \times \operatorname{Sym}_{[n]}$ given by

$$
x_{i j}^{(\sigma, \pi)}=x_{\sigma(i) \pi(j)}
$$

We say that $\operatorname{per}(X)$ is matrix symmetric.
$\operatorname{tr}(X)$ and $\operatorname{det}(X)$ are not matrix symmetric.

Determinant

The invariance group of

$$
\operatorname{det}(X)=\sum_{\sigma \in \operatorname{Sym}_{n}} \operatorname{sgn}(\sigma) \prod_{i \in[n]} x_{i \sigma(i)}
$$

includes

$$
D=\left\{(\sigma, \pi) \in \operatorname{Sym}_{[n]} \times \operatorname{Sym}_{[n]} \mid \operatorname{sgn}(\sigma)=\operatorname{sgn}(\pi)\right\} \times \mathbb{Z}_{2} .
$$

In particular, it is $\mathrm{Alt}_{[n]} \times$ Alt $_{[n]}$-symmetric.
The defining expression yields a circuit with these symmetries, but of $\Omega(n!)$ size.

Circuits for the Determinant

Many different algorithms yield small circuits for the determinant, but they are not often symmetric.
e.g. pivot choice is a symmetry-breaking operation.

Le Verrier's method shows how to compute $\operatorname{det}(X)$ (for fields of characteristic 0) from

$$
\operatorname{tr}(X), \operatorname{tr}\left(X^{2}\right), \ldots, \operatorname{tr}\left(X^{n}\right) .
$$

Since each $\operatorname{tr}\left(X^{i}\right)$ can be computed by a small square-symmetric circuit, this gives a polynomial-size, square-symmetric (i.e. $\mathrm{Sym}_{[n]}$-symmetric) circuit for the determinant.

Permanent

The defining expression for the permanent yields matrix-symmetric circuits of size $\Omega(n!)$.

The smallest known circuits for the permanent are given by Ryser's formula:

$$
\operatorname{per}(X)=(-1)^{n} \sum_{S \subseteq[n]}(-1)^{|S|} \prod_{i=1}^{n} \sum_{j \in S} x_{i j} .
$$

This gives a matrix-symmetric circuit of size $O\left(n^{2} 2^{n}\right)$.

Results

Γ	$\{\mathrm{id}\}$	$\operatorname{Sym}_{[n]}$	$\operatorname{Alt}_{[n]} \times \operatorname{Alt}_{[n]}$	$\operatorname{Sym}_{[n]} \times \operatorname{Sym}_{[n]}$
Det	$O\left(n^{4}\right)$	$O\left(n^{4}\right)$ $($ char 0)	$2^{\Omega(n)}$ $($ char 0)	N / A
Perm	$O\left(n^{2} 2^{n}\right)$ VP $=$ VNP?	$2^{\Omega(n)}$ (char 0)	$2^{\Omega(n)}$ $($ char $\neq 2)$	$2^{\Omega(n)}$ $($ char $\neq 2)$

Actually, all lower bounds are not just on the size of the circuit, but on orbit size.

Proof Ingredients - Support Theorem

Any group $\Delta \leq \operatorname{Alt}_{A}$ with small index $\left(\left[\operatorname{Alt}_{A}: \Delta\right]\right)$ has small support i.e. a small set $S \subset A$ such that any $\pi \in \operatorname{Alt}_{A}$ which fixes S pointwise is in Δ.

So, if C is a small Γ-symmetric circuit (where Γ is any of $\operatorname{Sym}_{A}, \operatorname{Alt}_{A} \times \operatorname{Alt}_{B}, \operatorname{Sym}_{A} \times \operatorname{Sym}_{B}$) then we can associate with each gate g of C, a small support
i.e. a small set $S \subset A \cup B$ such that any automorphism of C which fixes S pointwise fixes g.

Aim to show lower bounds on support size

- super-constant support size implies super-polynomial orbit size.
- linear support size implies exponential orbit size.

Proof Ingredients - Indistinguishable Pairs

Aim to construct, for a polynomial p, a pair of matrices M, M^{\prime} such that

- $p(M) \neq p\left(M^{\prime}\right)$
- M and M^{\prime} cannot be distinguished by circuits with small support.

The matrices we construct are $\{0,1\}$-matrices, so can be seen as the biadjacency matrices of a bipartite graph

$$
(A, B, E \subseteq A \times B)
$$

Proof Ingredients - Bijection Games

A two-player game played on a pair of graphs G and H with k pairs of pebbles $\left(a_{i}, b_{i}\right)$.
We fix a group $\Gamma \leq \operatorname{Sym}_{V(H)}$ and an initial bijection $h: V(G) \rightarrow V(H)$. At any point, the pebbles a_{i} are on elements of $V(G)$ and b_{i} on elements of $V(H)$.

- Spoiler chooses a pair of pebbles a_{i} and b_{i};
- Duplicator chooses a permutation $\pi \in \Gamma$ such that for pebbles a_{j} and $b_{j}(j \neq i), \pi \circ h\left(a_{j}\right)=b_{j}$;
- Spoiler chooses $a \in V(G)$ and places a_{i} on a and b_{i} on $\pi \circ h(a)$.

Spoiler wins if the partial map $a_{i} \mapsto b_{i}$ is not a partial isomorphism. Duplicator wins if it has a strategy to play forever.
If Duplicator has a winning strategy, then G and H cannot be distinguished by a Γ-symmetric circuit with support size $\leq k / 2$.

Permanent Lower Bound

We construct bipartite graphs $G=(A, B, E)$ and $H=\left(A, B, E^{\prime}\right)$ with

- $|A|=|B|=O(k)$
- G and H have different numbers of pefect matchings (indeed, they differ by 2^{l} for some $l>0$.)
- Duplicator wins the k-pebble, $\operatorname{Sym}_{A} \times \operatorname{Sym}_{B}$ bijection game on G and H starting with the identity.

Permanent

$$
\operatorname{per}(X)=\sum_{\sigma \in \operatorname{Sym}_{n}} \prod_{i \in[n]} x_{i \sigma(i)}
$$

If G is a bipartite graph with biadjacency matrix N, then $\operatorname{per}(N)$ is the number of perfect matchings in G.

If the adjacency matrix of G is M, then

$$
\operatorname{per}(M)=\operatorname{per}(N)^{2}
$$

Determinant Lower Bound

We construct a bipartite graph $G=(A, B, E)$ with

- $|A|=|B|=O(k)$
- the bi-adjacency matrix has non-zero determinant
- Duplicator wins the k-pebble, $\mathrm{Alt}_{A} \times \mathrm{Alt}_{B}$ bijection game on two copies of G starting with any bijection swapping two elements of B.

Results

	$\{\mathrm{id} \mathrm{\}}$	$\operatorname{Sym}_{[n]}$	$\operatorname{Alt}_{[n]} \times \operatorname{Alt}_{[n]}$	$\operatorname{Sym}_{[n]} \times \operatorname{Sym}_{[n]}$
Det	$O\left(n^{\omega}\right)$	$O\left(n^{3}\right)$ $($ char 0)	$2^{\Omega(n)}$ $($ char 0)	N / A
Perm	$O\left(n^{2} 2^{n}\right)$ $\mathrm{VP}=$ VNP?	$2^{\Omega(n)}$ (char 0)	$2^{\Omega(n)}$ $($ char $\neq 2)$	$2^{\Omega(n)}$ $($ char $\neq 2)$

