Lower Bounds for Symmetric Arithmetic Circuits

Anuj Dawar

Department of Computer Science and Technology, University of Cambridge

Joint work with Gregory Wilsenach (ICALP 2020 and ITCS 2022)

ICMS, 7 July 2022

Arithmetic Circuits

An Arithmetic Circuit over a field K computes (or represents) a polynomial in K[X].

Matrix Inputs

We are often interested in inputs which are entries of *a matrix*.

 $X = \{x_{ij} \mid 1 \le i \le m; 1 \le j \le n\}$

Especially, when the input is a square matrix, so m = n.

$$\operatorname{tr}(X) = \sum_{i} x_{ii}$$

$$\det(X) = \sum_{\sigma \in \operatorname{Sym}_n} \operatorname{sgn}(\sigma) \prod_{i \in [n]} x_{i\sigma(i)}$$

$$\operatorname{per}(X) = \sum_{\sigma \in \operatorname{Sym}_n} \prod_{i \in [n]} x_{i\sigma(i)}$$

Lower Bounds for Arithmetic Circuits

We have lower bounds for *restricted* classes of circuits computing the permanent.

No monotone family of circuits of sub-exponential size for the permanent. (Jerrum, Snir 1982)

No sub-exponential size family of depth 3 circuits for the permanent over any finite field.

(Grigoriev, Karpinski 1998)

Both methods also yield similar lower bounds for the *determinant*

We consider upper and lower bounds for *symmetric* circuits computing the determinant and the permanent.

Symmetric Arithmetic Circuits

Suppose C is a circuit computing a polynomal $p \in K[X]$. Sym_X—the group of *permutations* of X.

Let Γ be a group acting on X (or simply $\Gamma \leq \text{Sym}_X$). p is Γ -symmetric if for all $\pi \in \Gamma$, $p^{\pi} = p$.

C is Γ -symmetric if the action of Γ on the inputs *X* extends to an *automorphism* of *C*.

Elementary Symmetric Polynomials

The *elementary symmetric polynomials* on a set of variables X are Sym_X -symmetric.

Example: x_i . $1{\leq}i{\leq}n$ Knu Xn

Square Symmetric Action

When the input is a square matrix $X = \{x_{ij} \mid 1 \le i, j \le n\}$, the full symmetric group is $\text{Sym}_X = \text{Sym}_{[n] \times [n]}$.

The matrix polynomials tr(X), det(X) and per(X) are all invariant under the action of $Sym_{[n]}$ given by

$$x_{ij}^{\pi} = x_{\pi(i)\pi(j)}.$$

i.e., simultaneous row and column permutations.

We say that these polynomials are square symmetric.

Matrix Symmetric Action

The *permanent*

$$\operatorname{per}(X) = \sum_{\sigma \in \operatorname{Sym}_n} \prod_{i \in [n]} x_{i\sigma(i)}$$

is further invariant under independent row and column permutations.

That is, under the action of $\operatorname{Sym}_{[n]} \times \operatorname{Sym}_{[n]}$ given by

 $x_{ij}^{(\sigma,\pi)} = x_{\sigma(i)\pi(j)}.$

We say that per(X) is *matrix symmetric*.

tr(X) and det(X) are not matrix symmetric.

Determinant

The invariance group of

$$\det(X) = \sum_{\sigma \in \operatorname{Sym}_n} \operatorname{sgn}(\sigma) \prod_{i \in [n]} x_{i\sigma(i)}$$

includes

$$D = \{(\sigma, \pi) \in \operatorname{Sym}_{[n]} \times \operatorname{Sym}_{[n]} | \operatorname{sgn}(\sigma) = \operatorname{sgn}(\pi)\} \times \mathbb{Z}_2.$$

In particular, it is $Alt_{[n]} \times Alt_{[n]}$ -symmetric.

The defining expression yields a circuit with these symmetries, but of $\Omega(n!)$ size.

Circuits for the Determinant

Many different algorithms yield small circuits for the determinant, but they are not often *symmetric*.

e.g. pivot choice is a symmetry-breaking operation.

Le Verrier's method shows how to compute det(X) (for fields of *characteristic 0*) from

 $\operatorname{tr}(X), \operatorname{tr}(X^2), \dots, \operatorname{tr}(X^n).$

Since each $tr(X^i)$ can be computed by a small *square-symmetric* circuit, this gives a *polynomial-size*, *square-symmetric* (i.e. $Sym_{[n]}$ -symmetric) circuit for the determinant.

Permanent

The defining expression for the permanent yields *matrix-symmetric* circuits of size $\Omega(n!)$.

The smallest known circuits for the permanent are given by *Ryser's formula*:

$$per(X) = (-1)^n \sum_{S \subseteq [n]} (-1)^{|S|} \prod_{i=1}^n \sum_{j \in S} x_{ij}.$$

This gives a *matrix-symmetric* circuit of size $O(n^22^n)$.

Results

Г	{id}	$\operatorname{Sym}_{[n]}$	$\operatorname{Alt}_{[n]} \times \operatorname{Alt}_{[n]}$	$\operatorname{Sym}_{[n]}\times\operatorname{Sym}_{[n]}$
Det	$O(n^4)$	<i>O</i> (<i>n</i> ⁴) (char 0)	$2^{\Omega(n)}$ (char 0)	N/A
Perm	$O(n^2 2^n)$ VP = VNP?	$2^{\Omega(n)}$ (char 0)	$2^{\Omega(n)}$ (char $ eq 2$)	$2^{\Omega(n)}$ (char $ eq 2$)

Actually, all lower bounds are not just on the *size* of the circuit, but on *orbit size*.

Proof Ingredients - Support Theorem

Any group $\Delta \leq \operatorname{Alt}_A$ with small index ($[\operatorname{Alt}_A : \Delta]$) has small support i.e. a small set $S \subset A$ such that any $\pi \in \operatorname{Alt}_A$ which fixes Spointwise is in Δ .

So, if C is a *small* Γ -symmetric circuit (where Γ is any of Sym_A , $\operatorname{Alt}_A \times \operatorname{Alt}_B$, $\operatorname{Sym}_A \times \operatorname{Sym}_B$) then we can associate with each gate g of C, a *small support*

i.e. a small set $S \subset A \cup B$ such that any automorphism of C which fixes S pointwise fixes g.

Aim to show lower bounds on support size

- *super-constant* support size implies *super-polynomial* orbit size.
- *linear* support size implies *exponential* orbit size.

Proof Ingredients – Indistinguishable Pairs

Aim to construct, for a polynomial p, a pair of matrices M, M' such that

- $p(M) \neq p(M')$
- M and M' cannot be distinguished by circuits with small support.

The matrices we construct are $\{0, 1\}$ -matrices, so can be seen as the *biadjacency* matrices of a *bipartite graph*

 $(A, B, E \subseteq A \times B).$

Proof Ingredients – Bijection Games

A *two-player game* played on a pair of graphs G and H with k pairs of pebbles (a_i, b_i) . We fix a group $\Gamma \leq \text{Sym}_{V(H)}$ and an initial bijection $h: V(G) \rightarrow V(H)$. At any point, the pebbles a_i are on elements of V(G) and b_i on elements of V(H).

- *Spoiler* chooses a pair of pebbles a_i and b_i ;
- Duplicator chooses a permutation π ∈ Γ such that for pebbles a_j and b_j(j ≠ i), π ∘ h(a_j) = b_j;
- Spoiler chooses $a \in V(G)$ and places a_i on a and b_i on $\pi \circ h(a)$.

Spoiler wins if the partial map $a_i \mapsto b_i$ is not a partial isomorphism. Duplicator wins if it has a strategy to play forever.

If *Duplicator* has a winning strategy, then G and H cannot be distinguished by a Γ -symmetric circuit with support size $\leq k/2$.

Permanent Lower Bound

We construct bipartite graphs G = (A, B, E) and H = (A, B, E') with

- $\bullet ||A| = |B| = O(k)$
- G and H have different numbers of pefect matchings (indeed, they differ by 2^l for some l > 0.)
- Duplicator wins the k-pebble, Sym_A × Sym_B bijection game on G and H starting with the identity.

Permanent

$$per(X) = \sum_{\sigma \in Sym_n} \prod_{i \in [n]} x_{i\sigma(i)}$$

If G is a bipartite graph with *biadjacency matrix* N, then per(N) is the number of perfect matchings in G.

Determinant Lower Bound

We construct a bipartite graph G = (A, B, E) with

- $\bullet ||A| = |B| = O(k)$
- the bi-adjacency matrix has non-zero determinant
- *Duplicator* wins the *k*-pebble, Alt_A × Alt_B bijection game on two copies of *G* starting with any bijection swapping two elements of *B*.

Results

	${id}$	$\operatorname{Sym}_{[n]}$	$\operatorname{Alt}_{[n]} imes \operatorname{Alt}_{[n]}$	$\operatorname{Sym}_{[n]}\times\operatorname{Sym}_{[n]}$
Det	$O(n^{\omega})$	<i>O</i> (<i>n</i> ³) (char 0)	$\frac{2^{\Omega(n)}}{(char \ 0)}$	N/A
Perm	$O(n^2 2^n)$ VP = VNP?	$2^{\Omega(n)}$ (char 0)	$rac{2^{\Omega(n)}}{(char eq 2)}$	$2^{\Omega(n)}$ (char $ eq 2$)