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Ut = Uxxx — 3uuyx — 3uxu, u=u(x,t) e Mat(N,C).
© Other examples include

mKdV' . u = Uy — 302Uy — 3uyl?,
mKAVZ: 1 = Uy + 3[U, Uxx] — BULkU,
Burgers equation : u; = Uxx + 2uuy,

© Classification results of Olver-Sokolov, Mikhailov-Sokolov,
Olver-Wang.

© Adler-Sokolov: classification of nonlinear Schrodinger type
equations.

© Sokolov et al: nonabelian Painlevé equations.
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Introduction

Examples of integrable nonabelian differential-difference equations

@ Nonabelian Volterra equation

Unt = UplUpy1 — Up—1Up, U =u(n,t) € Mat(N,C), neZ.

Notation: u := up, Uy := Upy1, U1 :=Up_q1 ....
So we write the Volterra equation as

© Other examples:

mVL' :
mVL?

Bogoyavlensky' :

Bogoyavlensky? :
Ablowitz-Ladik :

us=uuy — u_qu.

ur=U—-a)u(Uu+a)—(U+a)u_q(u—a),
U = UPuUy — u_1U?,

n n
U = uZu,- — Z u_iu,
i—1 i—1

u=uuy---Un—Uu_p---u-_qU,
u=u(1—w), vi=(w-1)v_y.
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Aims:
@ Necessary integrability conditions for nonabelian
differential-difference equations;
© Classification of nonabelian differential-difference equations.
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Free associative difference algebra

Q Let

A= (e up,NeZ)

be a free associative unital algebra over C generated by u,, n € Z
and a unit element e.

Notation: a-e=a, a € C.
© Shift operator S : 21 — 2: an automorphism of 2 defined as

S(un) = Upr1, S(e)=e,

so S(f(up, ..., uqg)) = f(Ups1,---,Ugt1), F(Up,..., Ug) €2
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Natural grading

@ Natural grading on 2:
Rl @%

where i, consists of elements of the form uj, - - - u;, .
e i A — Ay

© Every f € 2 can be uniquely written as
f=>"10fcr fic = mk(f) € Ay

A derivation D is a C-linear map satisfying the Leibnitz’s rule

D(fg) =D(f)g +fD(g), f,geA, o, peC.

A derivation is uniquely defined by its action on generators uk. For all
derivations we have D(e) = 0.



Evolutionary derivations

Definition
A derivation is called evolutionary if it commutes with the shift operator
S.

An evolutionary derivation is completely defined by its action on the

generator u:
D(u)=a, D(up)=3S"(a), acql

@ The element ais called the characteristic of an evolutionary derivation.
We shall denote an evolutionary derivation with characteristic a by D,.



Evolutionary derivations

Definition
A derivation is called evolutionary if it commutes with the shift operator
S.

An evolutionary derivation is completely defined by its action on the

generator u:
D(u)=a, D(up)=3S"(a), acql

@ The element ais called the characteristic of an evolutionary derivation.
We shall denote an evolutionary derivation with characteristic a by D,.

© Commutator of two evolutionary derivations is also an evolutionary

derivation:
D; = [Da, Db], C= Da(b) — Db(a).
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Operators and formal series

@ Denote by L£,, R, left and right multiplication operators:
La(f) =af, Ru(f)="fa, fe
Relations:
[La,Rp) =0, Lalp=Lap, RaRp= Rpa

© Denote by M: algebra of operators M = {LsRp | a, b € 2A}.
Natural grading on M:

M = @ MP,Q7 Mp7q == {LaRb | ac Q[p, b S Q[q}
p.g>0

© Local difference operator: B= 7 b;S', bj € M,

1=

ord(B) := (p, q), total order Ord(B) := q — p.
O Local formal series: B = >icn > 40 biogS's  bipg € Mpg.
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Definition
A Fréchet derivative of an element f € 2l is defined as a local
difference operator f, :

f.(a) = %f(up +eSP(a),...,uqg+€eS%a)), VvVael

Example:

f: UU‘] - U_1 U, f* = Ru1 + £uS_ RuS_1 - £u_1.

@ Lie bracket: [a, b] := Dy(b) — Dp(a), a,be .
© Lie bracket through Fréchet derivatives:

[a, b] :== Da(b) — Dp(a) = b.(a) — a.(b).
© Natural grading: [, 2m] € Anim_1-
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Differential-difference equations on free associative algebras

Assume now that the generators ux depend on t € C: ux = uk(t). With

every evolutionary derivation Dy we can identify a differential-difference
equation on 2A:

Uy = f.
@ Evolution with respect to t of a € 2l is given by a; := D¢(a) = a.(f).
© In particular, u,; = S"(f).
© Order of the equation is defined as order of f,.

Definition

We say that g € 2 is a symmetry of a differential-difference equation
us = fif[f,g] = 0.
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Symmetry algebra

@ If g is a symmetry of u; = f then the evolutionary derivation Dy
commutes with Dy:
[va Dg] =0.

©Q If we assume that the generators uy depend on 7 € C then the
common way of representing a symmetry is associating with Dy
another differential-difference equation

u. =g.

Example: Consider the nonabelian Volterra equation
us=uuy — u_qu.

The nonabelian Volterra equation has the order (—1,1).
Symmetry of order (-2, 2):

Ur = UUtUs — U_oU_qU~+ u(U+ ug)uy —u_q(Uu+u_q)u

Infinitely many symmetries of orders (—n, n), n € N.
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Symmetry algebra

@ A C-linear combination of symmetries as well as the Lie bracket of
symmetries is again a symmetry.

© The Lie subalgebra of symmetries of u; = f is the centraliser of f
Cr={g e 2|[g,f] = 0}.

Definition

A nonabelian differential-difference equation u; = f is called integrable
if its Lie algebra of symmetries C¢ is infinite dimensional and contains
symmetries of arbitrary large order, i.e. for every N € N there exists a
symmetry g of the total order Ord(g) > N.
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Symmetry algebra

@ We consider uy = f = Sn_, fi, fi € Ag.

Q Symmetry: u, =g =S4, gk, gk € Us.
© Due to natural grading

p
[f,gl=0 <= > [f.gp-kl=0, p=1,..N+M.
k=1
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Symbolic representation

We construct the symbolic representation 2 = .., %, of the
naturally graded difference algebra 2 = @pzo'

NN i
b a— a, G U Uy - Uy — U ES - &
© Examples:

S~k ,m P ~m P n2p o1
uk'_>u£1a u " —=uv, U1U,1i—>U£1£2 s

é « o
auuyUp + Bu_ou_qu 0B(akagd + BET2E,T), a, 8 € C.

feAps "a(&y,...,6n),  al&r,....&) € ClEF, . &8

S(N) S ha(&y, ..., n) (€ - &n).
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Symmetries in the symbolic representation

Equation in the symbolic representation:

u =1, O 0w(&) + tPap(&r, &) + BPas(&r, o, Ea) + - -

Symmetry in the symbolic representation:

u =g g5 UQ(&1) + UPA (&1, &) + UPA3 (&1, &2, &) + -



Symbolic representation

If[f, g] = 0 then Ay can be found recursively:

Q(&1&) — Q&) — (&)
w(&1&2) — w(&) — w(&2) as (&4, &),

Q(51 “'53)_9(51)_"' _Q(fs)
w(ér---&s) —w(ér) — - —w(&s)

—I-Rs(ag,...,35_1,A2,...,AS_1), s=3,....

Ax(&1,62) =

As(fh'“afS):

as(&t, - -

7§S)+




Symbolic representation

If[f, g] = 0 then Ay can be found recursively:

Q(&1€2) — Q(&1) — Q(&2)

Al ) = e —wien) —wlee) %2
TN e

+Rs(a2,...,as_1,A2,...,As_1), s=3,....

@ We call Q(¢) € C[¢, ¢ '] admissible if As are Laurent polynomials in
ISIRRRRY S

@ The set of admissible Q(¢) is a vector space and if the equation is
integrable then this vector space is infinite dimensional.

@ The algebra of symmetries is completely parametrised by the set of
admissible Q(¢).



Example: Volterra chain

Consider the Volterra equation uy = uuy — u_qu.
We introduce the linear term by u — u + 1:

U= Uy —U_1+UUy —U_qU=:f.
Symbolic representation:

& (&) + Pan(&r, &), w(&r) =& — &1, ap(6,6) =& &
Let us seek a symmetry with Q(&1) = €2 — &2, Then:
AolEr 62) = (1 +&)( +&)(&& — 1)(61&% + 1)
51 52
As(Er 60, €) = (§16283 —1)(1 Jr;;: 162 +§1€2§3)
and As = 0, s > 3. This corresponds to a symmetry
Ur = Up — U_p + (U + ty)(Uy + U2) — (U_p + U_1)(U_1 + U)+
+uugtp — U_pu_qu+ u(u+ uy)uy — u_y(u_q + U)u.
Admissible linear terms: Q4 (&) = ¢k — ¢k,
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Quasi-locality and roots of formal series

@ Consider algebra of formal series 2(((S)) consisting of formal
series of the form

, i .
> > apgS, apg€ Mpg, nel.

i<n p+g>0

© Root extraction problem: for a generic formal series

i<n’ p+g>1

there is no local formal series B = S+, >, g>1 bipgS', such
that B" = A. - -

© The root exists in the extended algebra.
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S 1
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Quasi-locality and roots of formal series

Q Define b = 2rs =(1+S+--+ 8", k=12,....

© Define the operator algebra M extension as

MO =M,

M) - M) U O (M),
k=1

MO 22 A (6).

© We shall call the algebra 21((S)) with coefficients in M(6) the
algebra of quasi-local formal series.



Quasi-locality and roots of formal series

Lef
A=S8"+ > > apgS apge€ Mpg,neN,
p+g>1i<m(p,q)
be a local formal series. Then there exists a unique quasi-local formal

series )
B — S"‘ Z Z bipqsla bqu S M(9)7
p+g>1i<m(p,q)
such that B" = A.




Formal recursion operator

A quasi-local formal series

A=o(S)+ > > ¢S, wex)eClx,x7'],
p+g>1i<m(p,q)

is called a formal recursion operator for the equation
ur = f, mo(f) =0, m1(f) #0, if

N=FfoN—ANof,.




Formal recursion operator

Definition
A quasi-local formal series

A= ‘P(S) + Z Z Soipqsiv SD(X) € C[X,Xq],
p+g>1i<m(p,q)

is called a formal recursion operator for the equation
ur = f, mo(f) =0, m1(f) #0, if

/\t:f*OA—/\Of*.

If the differential-difference equation u; = f, m(f) # 0 possesses an infinite
dimensional algebra of symmetries, then it possesses a formal recursion

operator of the form
p+q>1i<m(p,q)
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m(9) =tn+ Y Gk, N>>n.
k=M
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Idea of the proof

Q u-=g(upm,...,un) - asymmetry, such that
N—1
m(9) =tn+ Y Gk, N>>n.
k=M

Q [g,f] = 0 implies

Ot +0xofi—fiog, =fr
© The first N — nterms of g, can be found from g..; = f, 0 g, — g« o f..
QO A~ g*1N.



Integrability test

The above theorems provides the following integrability test for a given
nonabelian differential-difference equation u; = f:

@ For a given f the equation Ay = f, o A — A o f, can be formally
resolved for A, i.e. its coefficients can be explicitly found in terms
of f (in the symbolic representation);

@ The requirement of quasi-locality of these coefficients provides the
necessary integrability conditions independent on the symmetry
structure.



Classification results

We classify integrable nonabelian differential-difference equations
ur=f(u—n,U_pi1,...,Up), feA, n=1273,

satisfying the following conditions
@ Non-zero linear term: m¢(f) # 0 and 7 (f) depends of u,, where
71 is the projection 7q : A — 24;
@ Quasi-linearity: (;L:Zf(eu_,,, U_nity---,Un_1,€Up) =0;
@ Skew-symmetry: T7(f) = —f, where 7 : 2 — 2l is defined as
T(un) = u_p, T(ab) = ba;
@ No lower order symmetries.



Classification of skew-symmetric quasi-linear equations: order

(_151)

Up to re-scaling and shift transformations, every skew-symmetric
quasi-linear integrable differential-difference equation of the form

ur = f(u-_1,u, uy)
can be obtained from one of the equations in the following list:

u = (a?+Bu+y)uy — u_i(at®+ Bu+7),
u = (U—a)uy(U+a)—(U+a)u_q(u—a)




Classification of skew-symmetric quasi-linear equations: order

(-2,2)

Up to re-scaling and shift transformations, every skew-symmetric
quasi-linear integrable differential-difference equation of the form

up = f(u_p, u_y, u, Uy, Up)

can be obtained from one of the equations in the following list:




Classification of skew-symmetric quasi-linear equations:

(-2,2)

Volterra type:
U = (alP+ Bu+7)Up — Uu_p(al? + Bu+7),
u = (U—a)(u+a)—(U+a)u_s(u-—a),
U = UlUiUp — U_pU_1U~+ U(U_1 — Uy)U,
u = (U1 + Ut —u_s(ur +U)+uuy —u_qu,
U = Ulilp — U_pU_qUu~+ u(u— u)uy —u_q1(u—u_q)u,
u = (U+u_q)(ur+u)u2—u_o(u_t+u)(us +u)+ u(u+ u_1)n
—u_1(u+ u)u—u(uy — u_y)u,
U = u(Uiloly — U_qU_pU_1 — UgUUy + U_1UU_1)U,
u = (uu_qs +1)(uug + 1) — u_s(U_qu+1)(tu+ 1),
U = UlUilpU_qU — UUiU_pU_1U~+ a(UltUp — U_gU_1U + U(U_1 — Uq)U),
U = UU_1UUiU2 — U_pU_qUU U + a(UUiUp — U_pU_1U + u(U_1 — Uy)U),
u = (P —a®) (U2 —®)up — u_p(t?; — ®)(U? — a?) — (1P — &®)uyuuy

Fu_quu_1(U? — o®) 4 uu_1(1? — o®)uy — u_4(U? — o®)uyu.



Classification of skew-symmetric quasi-linear equations: order

(-2,2)

Bogoyavlensky type:
u = u(uy+u)— (U1 +u_)u,
u = uuilis — U_oU_qU,
U = UlUiUp — U_pU_qU+ Ufuq, U] — [u,u_q]u,
u = (U+u_q)(u+u)(ug+ ) — (U2 +u_q1)(u+u_q)(U+u),
U = utip(U+ o) — (U+ a)u_su_qu,
u = u(u+a)ug(ue+a)— (U2 + a)u_1(Uu+ a)u
+HUu+ a)u_qu(uy + a) — (u_q1 + a)uug (U + ),
u = (uu_q+ a)(uuy + @)uutp — U_su_qu(Uu_1Uu+ a)(ugu + @),
u = (Uu_q+ a)(tiu+ a)(uur + a)u

—u(U_1U_p + a)(uu_1 + a)(uru + «).



Classification of skew-symmetric quasi-linear equations: order

(-3,3)

Up to re-scaling and shift transformations, every skew-symmetric
quasi-linear integrable differential-difference equation of the form

ur = f(u_g,u_p,U_,U,uy, U, U3)

can be obtained from one of the equations in the following list:




Classification of skew-symmetric quasi-linear equations

(-3,3)

Volterra type:

u = (P + Bu+1)us — u_s(at® + Bu+1),

u = (W—-ao)u(u+a)—(U+a)u_z(u-—a),

u = uu_qjuius —Uu_szu_qUiU,

U = UUilplz — U_sU_pU_qU — U(Uls — U_2U_1)U,

U = (U+u_1+u_)us—u_s(u+u +uw)+u(u+ ) — (U_1 + U_2)u,

U = (UU_gU_1 + Q)uuylplz — U_gU_pU_1U(UiUpU + @) — au(Uylp — U_pU_1)

U = uuilplz(U—_sU_q1U+ o) — (UUyls + @)U_3U_pU_1U — au(Uylp — U_pU_1)



Classification of skew-symmetric quasi-linear equations

(-3,3)

Bogoyavlensky type:

ur = u(ur+ U2+ us) = (U1 + U2+ U_3)U,

ug = uliuouz — U_gUu_o2U_1U,

U = UljUs — U_gU_1U~+ UPUp — U_pU? + [U, u_q4],

u = uuleus(U+a) — (U4 a)u_zu_su_qU,

u = uu_qjuiulUiuz — U_sUu_q1Uu_uu—_qUu U,

U = Ulylplz — U_gU_pU_1U+ Ufu, Uilp] — [U—_2U_1, UlU + [U, U_1Uly],

U = (U2+u_1+u)(U—1+u+u)(u+u+ t)(ur + Uz + Us)
—(U_g+u_a+u_1)(U_2+u_y+u)(u_t+u+u)(u+u + ),

u = (U+Q)uthlals — U_gU_sU_1u(U+ ) + u(U_1 + @)Uty Uz

—(U—1 + Q)uurtou — u_gu_1u(uy + @)u + uu_su_1u(Uy + @)
+a(uu_yuuy — u_quuq ),

u = (Uu_gu_q + a)(uuru—q + a)(uuy bz + a)uuy s Us
—U_gU_pU_qU(U_pU_1U+ a)(UrU_1U + o) (U U + ),



Classification of skew-symmetric quasi-linear equations: order

(-3,3)

Bogoyavlensky type:

u = (uu_qu_s + a)(thuu_1 + a)(Upuru + a)(Uslipty + @)u
—U(U_1U_pU_3 + a)(UU_1U_2 + o) (U1 UU_1 + a)(UaU1 U + ).



Abelian equations

@ Classifiaction of Volterra type equations - Yamilov (1983)

ur = f(u_y,u,uy);



Abelian equations

@ Classifiaction of Volterra type equations - Yamilov (1983)
ur = fu_q,u,u);

@ Classification of Toda type equations - Adler, Shabat, Yamilov
(1990s);



Abelian equations

@ Classifiaction of Volterra type equations - Yamilov (1983)
ur = fu_q,u,u);

@ Classification of Toda type equations - Adler, Shabat, Yamilov
(1990s);

© Classification of quasi-linear equations of order (-2, 2) - Garifullin,
Levi, Yamilov (‘17-18)

ur = A(Uu_q, U, uy)ue + B(u_q, u, uy)u_2 + C(u_1, u, uy).



Abelian equations

Q A =@, Ap - abelian associative algebra of formal series. Each

Ap consists of elements uj, - - - uj,.



Abelian equations

Q A =@, Ap - abelian associative algebra of formal series. Each
Ap consists of elements uj, - - - uj,.

© Differential-difference equation: u; = f, f € A.



Formal recursion operator

A quasi-local formal series

A=o(S)+ > > ¢S, wex)eClx,x7'],
p+g>1i<m(p,q)

is called a formal recursion operator for the equation
ur = f, mo(f) =0, m1(f) #0, if

N=FfoN—ANof,.




Formal recursion operator

Definition
A quasi-local formal series

A= ‘P(S) + Z Z Soipqsiv SD(X) € C[X,Xq],
p+g>1i<m(p,q)

is called a formal recursion operator for the equation
ur = f, mo(f) =0, m1(f) #0, if

/\t:f*OA—/\Of*.

If the differential-difference equation u; = f, m(f) # 0 possesses an infinite
dimensional algebra of symmetries, then it possesses a formal recursion

operator of the form
p+q>1i<m(p,q)




Formal recursion operator - Adler’s version

Theorem (V.E. Adler)

If a differential-difference equation u; = f admits an infinite hierarchy of

symmetries u; = g(Up, . .., Ug) With q arbitrary large then there exists a
local formal recursion operator of the form

AN="1, + Z akS’k.
k>0




Classification results

We classify integrable nonabelian differential-difference equations
ur=f(u g, uo,uq,u,us,Up,u3), feA,

satisfying the following conditions
@ Non-zero linear term: m1(f) # 0 and 7 (f) depends of uz, where
w1 is the projection mq : A — Aj;
@ Quasi-linearity: %:Zf(eu,& U o,U_1,U,Uq, U, elg) = 0;
@ Skew-symmetry: T7(f) = —f, where 7 : 2 — 2l is defined as
T (un) = u_p;
@ No lower order symmetries.



Classification results

Up to re-scaling and shift transformations, every skew-symmetric
quasi-linear integrable differential-difference equation of the form

u = f(U_s,U_Z,U_1,U, U1,U2,U3)

can be obtained from one of the equations in the following list:

Volterra type:
ur = u(us — u_s),
ur = UA(us — U_3),
ur = (U + u)(us — u_3),
ur = u_yuuq(Uus — u_3),
Ut = U(Uolz — Ujlo + Uy — UU_{ + U_1U_p — U_2U_3),
Usu Uu_zu_ u u_
sty U_3gU_1 )+ u2(—2 2

_ 7),

[07,) u_o Uy u_4
U = U(Uylols — Ul Us + UU_1U_p — U_1U_pU_3),

ur = u(



Classification results

U u_»

u=u=—- )4+ u(= - +u—u
t (U2 U_2)+ (U1 U_1) 1 T
up = P (USUBuUs — U2 WP u_g — 2uuu_q (Ut — U_1U_3)),
U= U+ Uy +U_2)uz — (U+ U+ U2)U_3 + U(Uy + Uz — U_1 — U_2),

U = (UU_1U_o + a)uty oz — (LU U2 + Q)UU_1U_2U_3 — auz(u1 Up — U_1U_2).



Classification results

Bogoyavilensky type:

Ur=U(Ur + Up+ Ug — Uy — U2+ U_3),
U = u(Uylpls — U_1U_pU_3),
Up = UP(U1lpls — U_1U_pU_3),
Ur = (U2 + u) (Ui Uals — U_1U_pU_3),
U = u(Uyls + Ul — UU_p — U_1U_3),
Ut = U(loUz + ULy — UU_1 — U_2U_3),
Ur = UPUqU_1(UyUpls — U_1U_pU_3),
Ur = U USUP UpU_p(Uy Upls — U_U_2U_3),
U = UA(LPUS U3 — U_qulBUp + uyul® u_p — U UP LU 3),
Up=(U+u_q+u)(u+u +w)(u+u +u_)
(Us+ U+ Uy —U_1—U_p—U_3),
ur = u(U—_gu_1u+ a)(uuitz + o) (U—t1uuy + a)(UbolUz — U_1U_2U_3).



Classification results

Sawada-Kotera type:

Ur=u(Uils + Uls — UU_p — U_1U_3) — U(U2 + U1 — U_1 — U_2),

U = U(Uols + Uy — UU_1 — U_pU_3) — U(U2 + Uy — U_1 — U_3),

U = u2(u1 Upls — U_qU_pU_3) — U(Utlz — U_1U_3),

Up = UPuyu_q1(Uslpls — U_1U_pU_3) — UP(Uilp — U_1U_3),

Ur = U B U2 UpU_p(Uy Uplis — U_1U_oU_3) — UPUqU_1 (Uil — U_1U_2),

U = UP(LPUSUS — U_1UUS Up + Uyul? u_p — UP U2 ou_3) — UP (Uil — U_qU_3),

up = (P +1)(usy/ud + 1 /ud +1—u_s \/u2 +1\/u2 +1).




	

