Symmetry approach for differential-difference equations

Vladimir Novikov

Department of Mathematical Sciences, Loughborough University

Based on: VN, Jing Ping Wang, CMP, 406, 1, 1-36 (2025); A.V. Mikhailov, VN, Jing Ping Wang, CMP, 393, 2, (2022).

Geometry and Integrability ICMS, Edinburgh, 12-16 May 2025

Examples of integrable nonabelian partial differential equations

Nonabelian KdV equation

$$u_t = u_{xxx} - 3uu_x - 3u_xu$$
, $u = u(x, t) \in Mat(N, \mathbb{C})$.

Examples of integrable nonabelian partial differential equations

Nonabelian KdV equation

$$u_t = u_{xxx} - 3uu_x - 3u_xu$$
, $u = u(x, t) \in Mat(N, \mathbb{C})$.

Other examples include

mKdV¹:
$$u_t = u_{xxx} - 3u^2u_x - 3u_xu^2$$
,
mKdV²: $u_t = u_{xxx} + 3[u, u_{xx}] - 6uu_xu$,

Burgers equation : $u_t = u_{xx} + 2uu_x$,

Examples of integrable nonabelian partial differential equations

Nonabelian KdV equation

$$u_t = u_{xxx} - 3uu_x - 3u_xu$$
, $u = u(x, t) \in Mat(N, \mathbb{C})$.

Other examples include

mKdV¹:
$$u_t = u_{xxx} - 3u^2u_x - 3u_xu^2$$
,
mKdV²: $u_t = u_{xxx} + 3[u, u_{xx}] - 6uu_xu$,

Burgers equation : $u_t = u_{xx} + 2uu_x$,

Olver-Wang.

Examples of integrable nonabelian partial differential equations

Nonabelian KdV equation

$$u_t = u_{xxx} - 3uu_x - 3u_xu$$
, $u = u(x, t) \in Mat(N, \mathbb{C})$.

Other examples include

mKdV¹:
$$u_t = u_{xxx} - 3u^2u_x - 3u_xu^2$$
,
mKdV²: $u_t = u_{xxx} + 3[u, u_{xx}] - 6uu_xu$,

Burgers equation : $u_t = u_{xx} + 2uu_x$,

- Classification results of Olver-Sokolov, Mikhailov-Sokolov, Olver-Wang.
- Adler-Sokolov: classification of nonlinear Schrödinger type equations.

Examples of integrable nonabelian partial differential equations

Nonabelian KdV equation

$$u_t = u_{xxx} - 3uu_x - 3u_xu$$
, $u = u(x, t) \in Mat(N, \mathbb{C})$.

Other examples include

$$\begin{array}{rcl} \mathsf{mKdV^1}: & u_t &=& u_{xxx} - 3u^2u_x - 3u_xu^2, \\ \mathsf{mKdV^2}: & u_t &=& u_{xxx} + 3[u,u_{xx}] - 6uu_xu, \\ \mathsf{Burgers \ equation}: & u_t &=& u_{xx} + 2uu_x, \end{array}$$

- Olassification results of Olver-Sokolov, Mikhailov-Sokolov, Olver-Wang.
- Adler-Sokolov: classification of nonlinear Schrödinger type equations.
- Sokolov et al: nonabelian Painlevé equations.

Examples of integrable nonabelian differential-difference equations

Nonabelian Volterra equation

$$u_{n,t} = u_n u_{n+1} - u_{n-1} u_n, \quad u = u(n,t) \in \operatorname{Mat}(N,\mathbb{C}), \quad n \in \mathbb{Z}.$$

Notation: $u := u_n, \ u_1 := u_{n+1}, \ u_{-1} := u_{n-1} \ \dots$

So we write the Volterra equation as

$$u_t = uu_1 - u_{-1}u.$$

Examples of integrable nonabelian differential-difference equations

Nonabelian Volterra equation

$$u_{n,t}=u_nu_{n+1}-u_{n-1}u_n,\quad u=u(n,t)\in \operatorname{Mat}(N,\mathbb{C}),\quad n\in\mathbb{Z}.$$

Notation: $u := u_n, \ u_1 := u_{n+1}, \ u_{-1} := u_{n-1} \ \dots$

So we write the Volterra equation as

$$U_t = UU_1 - U_{-1}U.$$

Other examples:

mVL¹:
$$u_t = (u - \alpha)u_1(u + \alpha) - (u + \alpha)u_{-1}(u - \alpha),$$

mVL²: $u_t = u^2u_1 - u_{-1}u^2,$

 $u_t = u \sum_{i=1}^{n} u_i - \sum_{i=1}^{n} u_{-i} u,$ Bogoyavlensky¹:

Bogoyavlensky²:
$$u_t = uu_1 \cdots u_n - u_{-n} \cdots u_{-1}u$$
,

 $u_t = u_1(1 - vu), \quad v_t = (vu - 1)v_{-1}.$ Ablowitz-Ladik:

Aims:

 Necessary integrability conditions for nonabelian differential-difference equations;

Aims:

- Necessary integrability conditions for nonabelian differential-difference equations;
- Classification of nonabelian differential-difference equations.

Free associative difference algebra

Let

$$\mathfrak{A}=\langle e;\ u_n,\ n\in\mathbb{Z}\rangle$$

be a free associative unital algebra over $\mathbb C$ generated by $u_n,\ n\in\mathbb Z$ and a unit element e.

Notation: $\alpha \cdot \boldsymbol{e} \equiv \alpha, \ \alpha \in \mathbb{C}$.

Free associative difference algebra

Let

$$\mathfrak{A}=\langle e;\ u_n,\ n\in\mathbb{Z}\rangle$$

be a free associative unital algebra over $\mathbb C$ generated by $u_n,\ n\in\mathbb Z$ and a unit element e.

Notation: $\alpha \cdot \boldsymbol{e} \equiv \alpha, \ \alpha \in \mathbb{C}$.

② Shift operator $S: \mathfrak{A} \to \mathfrak{A}$: an automorphism of \mathfrak{A} defined as

$$S(u_n) = u_{n+1}, \quad S(e) = e,$$

so
$$S(f(u_p,...,u_q)) = f(u_{p+1},...,u_{q+1}), \ f(u_p,...,u_q) \in \mathfrak{A}.$$

Natural grading

Natural grading on

Ω:

$$\mathfrak{A}=\bigoplus_{p\geq 0}\mathfrak{A}_p,$$

where \mathfrak{A}_p consists of elements of the form $u_{i_1} \cdots u_{i_p}$.

Natural grading

Natural grading on

Ω:

$$\mathfrak{A}=\bigoplus_{p\geq 0}\mathfrak{A}_p,$$

where \mathfrak{A}_p consists of elements of the form $u_{i_1} \cdots u_{i_p}$.

 $\mathfrak{Q} \quad \pi_k : \mathfrak{A} \to \mathfrak{A}_k.$

A derivation $\mathcal D$ is a $\mathbb C$ -linear map satisfying the Leibnitz's rule

$$\mathcal{D}(fg) = \mathcal{D}(f)g + f\mathcal{D}(g), \quad f, g \in \mathfrak{A}, \quad \alpha, \beta \in \mathbb{C}.$$

A derivation is uniquely defined by its action on generators u_k . For all derivations we have $\mathcal{D}(e) = 0$.

Natural grading

Natural grading on

Ω:

$$\mathfrak{A}=\bigoplus_{\rho\geq 0}\mathfrak{A}_{\rho},$$

where \mathfrak{A}_p consists of elements of the form $u_{i_1} \cdots u_{i_n}$.

- **3** Every $f \in \mathfrak{A}$ can be uniquely written as $f = \sum_{k \geq 0}^{M} f_k, \ f_k = \pi_k(f) \in \mathfrak{A}_k.$

A derivation $\mathcal D$ is a $\mathbb C\text{-linear}$ map satisfying the Leibnitz's rule

$$\mathcal{D}(fg) = \mathcal{D}(f)g + f\mathcal{D}(g), \quad f, g \in \mathfrak{A}, \quad \alpha, \beta \in \mathbb{C}.$$

A derivation is uniquely defined by its action on generators u_k . For all derivations we have $\mathcal{D}(e) = 0$.

Evolutionary derivations

Definition

A derivation is called evolutionary if it commutes with the shift operator S.

An evolutionary derivation is completely defined by its action on the generator *u*:

$$\mathcal{D}(u) = a$$
, $\mathcal{D}(u_n) = S^n(a)$, $a \in \mathfrak{A}$.

The element a is called the characteristic of an evolutionary derivation. We shall denote an evolutionary derivation with characteristic a by \mathcal{D}_a .

Evolutionary derivations

Definition

A derivation is called evolutionary if it commutes with the shift operator S.

An evolutionary derivation is completely defined by its action on the generator *u*:

$$\mathcal{D}(u) = a$$
, $\mathcal{D}(u_n) = S^n(a)$, $a \in \mathfrak{A}$.

- ① The element a is called the characteristic of an evolutionary derivation. We shall denote an evolutionary derivation with characteristic a by \mathcal{D}_a .
- Commutator of two evolutionary derivations is also an evolutionary derivation:

$$\mathcal{D}_c = [\mathcal{D}_a, \mathcal{D}_b], \quad c = \mathcal{D}_a(b) - \mathcal{D}_b(a).$$

1 Denote by \mathcal{L}_a , \mathcal{R}_a left and right multiplication operators:

$$\mathcal{L}_{a}(f) = af$$
, $\mathcal{R}_{a}(f) = fa$, $f \in \mathfrak{A}$.

Relations:

$$[\mathcal{L}_a,\mathcal{R}_b]=0,\quad \mathcal{L}_a\mathcal{L}_b=\mathcal{L}_{ab},\quad \mathcal{R}_a\mathcal{R}_b=\mathcal{R}_{ba}.$$

1 Denote by \mathcal{L}_a , \mathcal{R}_a left and right multiplication operators:

$$\mathcal{L}_{a}(f)=af,\quad \mathcal{R}_{a}(f)=fa,\quad f\in\mathfrak{A}.$$

Relations:

$$[\mathcal{L}_a,\mathcal{R}_b]=0,\quad \mathcal{L}_a\mathcal{L}_b=\mathcal{L}_{ab},\quad \mathcal{R}_a\mathcal{R}_b=\mathcal{R}_{ba}.$$

② Denote by \mathcal{M} : algebra of operators $\mathcal{M} = \{\mathcal{L}_a \mathcal{R}_b \mid a, b \in \mathfrak{A}\}$. Natural grading on \mathcal{M} :

$$\mathcal{M} = igoplus_{p,q \geq 0} \mathcal{M}_{p,q}, \quad \mathcal{M}_{p,q} = \{\mathcal{L}_{a}\mathcal{R}_{b} \, | \, a \in \mathfrak{A}_{p}, \, b \in \mathfrak{A}_{q}\}.$$

1 Denote by \mathcal{L}_a , \mathcal{R}_a left and right multiplication operators:

$$\mathcal{L}_{a}(f)=af,\quad \mathcal{R}_{a}(f)=fa,\quad f\in\mathfrak{A}.$$

Relations:

$$[\mathcal{L}_a, \mathcal{R}_b] = 0, \quad \mathcal{L}_a \mathcal{L}_b = \mathcal{L}_{ab}, \quad \mathcal{R}_a \mathcal{R}_b = \mathcal{R}_{ba}.$$

② Denote by \mathcal{M} : algebra of operators $\mathcal{M} = \{\mathcal{L}_a \mathcal{R}_b \mid a, b \in \mathfrak{A}\}$. Natural grading on \mathcal{M} :

$$\mathcal{M} = igoplus_{p,q \geq 0} \mathcal{M}_{p,q}, \quad \mathcal{M}_{p,q} = \{\mathcal{L}_{a}\mathcal{R}_{b} \, | \, a \in \mathfrak{A}_{p}, \, b \in \mathfrak{A}_{q}\}.$$

3 Local difference operator: $B = \sum_{i=p}^{q} b_i S^i$, $b_i \in \mathcal{M}$, ord(B) := (p, q), total order Ord(B) := q - p.

① Denote by \mathcal{L}_a , \mathcal{R}_a left and right multiplication operators:

$$\mathcal{L}_{a}(f) = af$$
, $\mathcal{R}_{a}(f) = fa$, $f \in \mathfrak{A}$.

Relations:

$$[\mathcal{L}_a, \mathcal{R}_b] = 0, \quad \mathcal{L}_a \mathcal{L}_b = \mathcal{L}_{ab}, \quad \mathcal{R}_a \mathcal{R}_b = \mathcal{R}_{ba}.$$

② Denote by \mathcal{M} : algebra of operators $\mathcal{M} = \{\mathcal{L}_a \mathcal{R}_b \mid a, b \in \mathfrak{A}\}$. Natural grading on \mathcal{M} :

$$\mathcal{M} = \bigoplus_{\rho,q \geq 0} \mathcal{M}_{\rho,q}, \quad \mathcal{M}_{\rho,q} = \{\mathcal{L}_a \mathcal{R}_b \, | \, a \in \mathfrak{A}_\rho, \, b \in \mathfrak{A}_q\}.$$

- **3** Local difference operator: $B = \sum_{i=p}^{q} b_i S^i$, $b_i \in \mathcal{M}$, ord(B) := (p, q), total order Ord(B) := q p.
- **1** Local formal series: $B = \sum_{i \leq N} \sum_{p,q \geq 0} b_{ipq} S^i$, $b_{ipq} \in \mathcal{M}_{p,q}$.

Lie algebra structure on ${\mathfrak A}$

Definition

A Fréchet derivative of an element $f \in \mathfrak{A}$ is defined as a local difference operator f_* :

$$f_*(a) = \frac{d}{d\epsilon} f(u_p + \epsilon S^p(a), \dots, u_q + \epsilon S^q(a)), \quad \forall a \in \mathfrak{A}.$$

Example:

$$f = uu_1 - u_{-1}u, \quad f_* = \mathcal{R}_{u_1} + \mathcal{L}_u S - \mathcal{R}_u S^{-1} - \mathcal{L}_{u_{-1}}.$$

1 Lie bracket: $[a,b] := \mathcal{D}_a(b) - \mathcal{D}_b(a), \quad a,b \in \mathfrak{A}.$

Lie algebra structure on ${\mathfrak A}$

Definition

A Fréchet derivative of an element $f \in \mathfrak{A}$ is defined as a local difference operator f_* :

$$f_*(a) = \frac{d}{d\epsilon} f(u_p + \epsilon S^p(a), \dots, u_q + \epsilon S^q(a)), \quad \forall a \in \mathfrak{A}.$$

Example:

$$f = uu_1 - u_{-1}u, \quad f_* = \mathcal{R}_{u_1} + \mathcal{L}_u S - \mathcal{R}_u S^{-1} - \mathcal{L}_{u_{-1}}.$$

- **1** Lie bracket: $[a,b] := \mathcal{D}_a(b) \mathcal{D}_b(a), \quad a,b \in \mathfrak{A}.$
- 2 Lie bracket through Fréchet derivatives: $[a, b] := \mathcal{D}_a(b) \mathcal{D}_b(a) = b_*(a) a_*(b)$.

Lie algebra structure on 31

Definition

A Fréchet derivative of an element $f \in \mathfrak{A}$ is defined as a local difference operator f_* :

$$f_*(a) = \frac{d}{d\epsilon} f(u_p + \epsilon S^p(a), \dots, u_q + \epsilon S^q(a)), \quad \forall a \in \mathfrak{A}.$$

Example:

$$f = uu_1 - u_{-1}u, \quad f_* = \mathcal{R}_{u_1} + \mathcal{L}_u S - \mathcal{R}_u S^{-1} - \mathcal{L}_{u_{-1}}.$$

- Lie bracket: $[a, b] := \mathcal{D}_a(b) \mathcal{D}_b(a), \quad a, b \in \mathfrak{A}.$
- 2 Lie bracket through Fréchet derivatives: $[a, b] := \mathcal{D}_a(b) \mathcal{D}_b(a) = b_*(a) a_*(b)$.
- **③** Natural grading: $[\mathfrak{A}_n, \mathfrak{A}_m]$ ∈ \mathfrak{A}_{n+m-1} .

Differential-difference equations on free associative algebras

Assume now that the generators u_k depend on $t \in \mathbb{C}$: $u_k = u_k(t)$. With every evolutionary derivation \mathcal{D}_f we can identify a differential-difference equation on \mathfrak{A} :

$$u_t = f$$
.

① Evolution with respect to t of $a \in \mathfrak{A}$ is given by $a_t := \mathcal{D}_f(a) = a_*(f)$.

Differential-difference equations on free associative algebras

Assume now that the generators u_k depend on $t \in \mathbb{C}$: $u_k = u_k(t)$. With every evolutionary derivation \mathcal{D}_f we can identify a differential-difference equation on \mathfrak{A} :

$$u_t = f$$
.

- **①** Evolution with respect to t of $a \in \mathfrak{A}$ is given by $a_t := \mathcal{D}_f(a) = a_*(f)$.
- ② In particular, $u_{n,t} = S^n(t)$.

Definition

We say that $g \in \mathfrak{A}$ is a symmetry of a differential-difference equation $u_t = f$ if [f, g] = 0.

Differential-difference equations on free associative algebras

Assume now that the generators u_k depend on $t \in \mathbb{C}$: $u_k = u_k(t)$. With every evolutionary derivation \mathcal{D}_f we can identify a differential-difference equation on \mathfrak{A} :

$$u_t = f$$
.

- Evolution with respect to t of $a \in \mathfrak{A}$ is given by $a_t := \mathcal{D}_f(a) = a_*(f)$.
- 2 In particular, $u_{n,t} = S^n(f)$.
- **3** Order of the equation is defined as order of f_* .

Definition

We say that $g \in \mathfrak{A}$ is a symmetry of a differential-difference equation $u_t = f$ if [f,g] = 0.

① If g is a symmetry of $u_t = f$ then the evolutionary derivation \mathcal{D}_g commutes with \mathcal{D}_f :

$$[\mathcal{D}_f,\mathcal{D}_g]=0.$$

• If g is a symmetry of $u_t = f$ then the evolutionary derivation \mathcal{D}_g commutes with \mathcal{D}_f :

$$[\mathcal{D}_f,\mathcal{D}_g]=0.$$

② If we assume that the generators u_k depend on $\tau \in \mathbb{C}$ then the common way of representing a symmetry is associating with \mathcal{D}_g another differential-difference equation

$$u_{\tau}=g.$$

Example: Consider the nonabelian Volterra equation

$$u_t = uu_1 - u_{-1}u.$$

The nonabelian Volterra equation has the order (-1, 1). Symmetry of order (-2, 2):

$$u_{\tau} = uu_1u_2 - u_{-2}u_{-1}u + u(u+u_1)u_1 - u_{-1}(u+u_{-1})u$$

Infinitely many symmetries of orders $(-n, n), n \in \mathbb{N}$.

 $\ensuremath{ \bullet}$ A $\ensuremath{\mathbb{C}}\xspace$ -linear combination of symmetries as well as the Lie bracket of symmetries is again a symmetry.

- $\ensuremath{\bullet}$ A $\ensuremath{\mathbb{C}}\xspace$ -linear combination of symmetries as well as the Lie bracket of symmetries is again a symmetry.
- ② The Lie subalgebra of symmetries of $u_t = f$ is the centraliser of f $C_f = \{g \in \mathfrak{A} \mid [g, f] = 0\}.$

Definition

A nonabelian differential-difference equation $u_t = f$ is called integrable if its Lie algebra of symmetries \mathcal{C}_f is infinite dimensional and contains symmetries of arbitrary large order, i.e. for every $N \in \mathbb{N}$ there exists a symmetry g of the total order $Ord(g) \geq N$.

• We consider $u_t = f = \sum_{k=1}^{N} f_k$, $f_k \in \mathfrak{A}_k$.

- We consider $u_t = f = \sum_{k=1}^{N} f_k$, $f_k \in \mathfrak{A}_k$.
- 2 Symmetry: $u_{\tau} = g = \sum_{k=1}^{M} g_k, \ g_k \in \mathfrak{A}_k$.

- We consider $u_t = f = \sum_{k=1}^{N} f_k$, $f_k \in \mathfrak{A}_k$.
- ② Symmetry: $u_{\tau} = g = \sum_{k=1}^{M} g_k, \ g_k \in \mathfrak{A}_k.$
- Due to natural grading

$$[f,g] = 0 \iff \sum_{k=1}^{p} [f_k,g_{p-k}] = 0, \ p=1,\ldots N+M.$$

Symbolic representation

We construct the symbolic representation $\hat{\mathfrak{A}}=\bigoplus_{p\geq 0}\hat{\mathfrak{A}}_p$ of the naturally graded difference algebra $\mathfrak{A}=\bigoplus_{p\geq 0}$.

$$\phi: \alpha \mapsto \alpha, \qquad \phi: \ \mathbf{u}_{i_1} \mathbf{u}_{i_2} \cdots \mathbf{u}_{i_n} \mapsto \hat{\mathbf{u}}^n \xi_1^{i_1} \xi_2^{i_2} \cdots \xi_n^{i_n}.$$

Symbolic representation

We construct the symbolic representation $\hat{\mathfrak{A}}=\bigoplus_{p\geq 0}\hat{\mathfrak{A}}_p$ of the naturally graded difference algebra $\mathfrak{A}=\bigoplus_{p\geq 0}$.

$$\phi: \alpha \mapsto \alpha, \qquad \phi: \ \mathbf{u}_{i_1} \mathbf{u}_{i_2} \cdots \mathbf{u}_{i_n} \mapsto \hat{\mathbf{u}}^n \xi_1^{i_1} \xi_2^{i_2} \cdots \xi_n^{i_n}.$$

② Examples:

$$u_{k} \stackrel{\phi}{\mapsto} \hat{u}\xi_{1}^{k}, \ u^{m} \stackrel{\phi}{\mapsto} \hat{u}^{m}, \ u_{1}u_{-1} \stackrel{\phi}{\mapsto} \hat{u}^{2}\xi_{1}\xi_{2}^{-1},$$
$$\alpha uu_{1}u_{2} + \beta u_{-2}u_{-1}u \stackrel{\phi}{\mapsto} \hat{u}^{3}(\alpha \xi_{2}\xi_{3}^{2} + \beta \xi_{1}^{-2}\xi_{2}^{-1}), \ \alpha, \beta \in \mathbb{C}.$$

Symbolic representation

We construct the symbolic representation $\hat{\mathfrak{A}}=\bigoplus_{p\geq 0}\hat{\mathfrak{A}}_p$ of the naturally graded difference algebra $\mathfrak{A}=\bigoplus_{p\geq 0}$.

$$\phi: \alpha \mapsto \alpha, \qquad \phi: \ \mathbf{u}_{i_1} \mathbf{u}_{i_2} \cdots \mathbf{u}_{i_n} \mapsto \hat{\mathbf{u}}^n \xi_1^{i_1} \xi_2^{i_2} \cdots \xi_n^{i_n}.$$

② Examples:

$$u_{k} \stackrel{\phi}{\mapsto} \hat{u}\xi_{1}^{k}, \ u^{m} \stackrel{\phi}{\mapsto} \hat{u}^{m}, \ u_{1}u_{-1} \stackrel{\phi}{\mapsto} \hat{u}^{2}\xi_{1}\xi_{2}^{-1},$$
$$\alpha uu_{1}u_{2} + \beta u_{-2}u_{-1}u \stackrel{\phi}{\mapsto} \hat{u}^{3}(\alpha \xi_{2}\xi_{3}^{2} + \beta \xi_{1}^{-2}\xi_{2}^{-1}), \ \alpha, \beta \in \mathbb{C}.$$

$$f \in \mathfrak{A}_n \stackrel{\phi}{\mapsto} \hat{f} = \hat{u}^n a(\xi_1, \dots, \xi_n), \quad a(\xi_1, \dots, \xi_n) \in \mathbb{C}[\xi_1^{\pm 1}, \dots, \xi_n^{\pm 1}].$$

Symbolic representation

We construct the symbolic representation $\hat{\mathfrak{A}}=\bigoplus_{p\geq 0}\hat{\mathfrak{A}}_p$ of the naturally graded difference algebra $\mathfrak{A}=\bigoplus_{p\geq 0}$.

$$\phi: \alpha \mapsto \alpha, \qquad \phi: \ \mathbf{u}_{i_1} \mathbf{u}_{i_2} \cdots \mathbf{u}_{i_n} \mapsto \hat{\mathbf{u}}^n \xi_1^{i_1} \xi_2^{i_2} \cdots \xi_n^{i_n}.$$

Examples:

$$u_{k} \stackrel{\phi}{\mapsto} \hat{u}\xi_{1}^{k}, \ u^{m} \stackrel{\phi}{\mapsto} \hat{u}^{m}, \ u_{1}u_{-1} \stackrel{\phi}{\mapsto} \hat{u}^{2}\xi_{1}\xi_{2}^{-1},$$
$$\alpha uu_{1}u_{2} + \beta u_{-2}u_{-1}u \stackrel{\phi}{\mapsto} \hat{u}^{3}(\alpha \xi_{2}\xi_{3}^{2} + \beta \xi_{1}^{-2}\xi_{2}^{-1}), \ \alpha, \beta \in \mathbb{C}.$$

3

$$f \in \mathfrak{A}_n \stackrel{\phi}{\mapsto} \hat{f} = \hat{u}^n a(\xi_1, \dots, \xi_n), \quad a(\xi_1, \dots, \xi_n) \in \mathbb{C}[\xi_1^{\pm 1}, \dots, \xi_n^{\pm 1}].$$

4

$$S(f) \stackrel{\phi}{\mapsto} \hat{u}^n a(\xi_1, \dots, \xi_n) (\xi_1 \cdots \xi_n).$$

Symmetries in the symbolic representation

Equation in the symbolic representation:

$$u_t = f$$
, $f \stackrel{\phi}{\mapsto} \hat{u}\omega(\xi_1) + \hat{u}^2 a_2(\xi_1, \xi_2) + \hat{u}^3 a_3(\xi_1, \xi_2, \xi_3) + \cdots$.

Symmetries in the symbolic representation

Equation in the symbolic representation:

$$u_t = f$$
, $f \stackrel{\phi}{\mapsto} \hat{u}\omega(\xi_1) + \hat{u}^2 a_2(\xi_1, \xi_2) + \hat{u}^3 a_3(\xi_1, \xi_2, \xi_3) + \cdots$

Symmetry in the symbolic representation:

$$u_{\tau} = g, \quad g \stackrel{\phi}{\mapsto} \hat{u}\Omega(\xi_1) + \hat{u}^2 A_2(\xi_1, \xi_2) + \hat{u}^3 A_3(\xi_1, \xi_2, \xi_3) + \cdots.$$

Symbolic representation

Theorem

If [f,g] = 0 then A_k can be found recursively:

$$A_2(\xi_1,\xi_2) = \frac{\Omega(\xi_1\xi_2) - \Omega(\xi_1) - \Omega(\xi_2)}{\omega(\xi_1\xi_2) - \omega(\xi_1) - \omega(\xi_2)} a_2(\xi_1,\xi_2),$$

$$A_s(\xi_1,\ldots,\xi_s) = \frac{\Omega(\xi_1\cdots\xi_s) - \Omega(\xi_1) - \cdots - \Omega(\xi_s)}{\omega(\xi_1\cdots\xi_s) - \omega(\xi_1) - \cdots - \omega(\xi_s)} a_s(\xi_1,\ldots,\xi_s) + H_s(a_2,\ldots,a_{s-1},A_2,\ldots,A_{s-1}), \quad s = 3,\ldots.$$

Symbolic representation

Theorem

If [f,g] = 0 then A_k can be found recursively:

$$A_{2}(\xi_{1}, \xi_{2}) = \frac{\Omega(\xi_{1}\xi_{2}) - \Omega(\xi_{1}) - \Omega(\xi_{2})}{\omega(\xi_{1}\xi_{2}) - \omega(\xi_{1}) - \omega(\xi_{2})} a_{2}(\xi_{1}, \xi_{2}),$$

$$A_{s}(\xi_{1}, \dots, \xi_{s}) = \frac{\Omega(\xi_{1} \dots \xi_{s}) - \Omega(\xi_{1}) - \dots - \Omega(\xi_{s})}{\omega(\xi_{1} \dots \xi_{s}) - \omega(\xi_{1}) - \dots - \omega(\xi_{s})} a_{s}(\xi_{1}, \dots, \xi_{s}) +$$

$$+R_{s}(a_{2}, \dots, a_{s-1}, A_{2}, \dots, A_{s-1}), \quad s = 3, \dots$$

- We call $\Omega(\xi) \in \mathbb{C}[\xi, \xi^{-1}]$ admissible if A_s are Laurent polynomials in ξ_1, \dots, ξ_s .
- The set of admissible $\Omega(\xi)$ is a vector space and if the equation is integrable then this vector space is infinite dimensional.
- The algebra of symmetries is completely parametrised by the set of admissible $\Omega(\xi)$.

Example: Volterra chain

Consider the Volterra equation $u_t = uu_1 - u_{-1}u$. We introduce the linear term by $u \rightarrow u + 1$:

$$U_t = U_1 - U_{-1} + UU_1 - U_{-1}U =: f.$$

Symbolic representation:

$$f \stackrel{\phi}{\mapsto} \hat{u}\omega(\xi_1) + \hat{u}^2 a_2(\xi_1, \xi_2), \quad \omega(\xi_1) = \xi_1 - \xi_1^{-1}, \quad a_2(\xi_1, \xi_2) = \xi_2 - \xi_1^{-1}.$$

Let us seek a symmetry with $\Omega(\xi_1) = \xi_1^2 - \xi_1^{-2}$. Then:

$$A_2(\xi_1,\xi_2)=\frac{(1+\xi_1)(1+\xi_2)(\xi_1\xi_2-1)(\xi_1\xi_2+1)}{\xi_1^2\xi_2},$$

$$A_3(\xi_1,\xi_2,\xi_3) = \frac{(\xi_1\xi_2\xi_3 - 1)(1 + \xi_1 + \xi_1\xi_2 + \xi_1\xi_2\xi_3)}{\xi_1^2\xi_2},$$

and $A_s = 0$, s > 3. This corresponds to a symmetry

$$u_{\tau} = u_2 - u_{-2} + (u + u_1)(u_1 + u_2) - (u_{-2} + u_{-1})(u_{-1} + u) + + uu_1u_2 - u_{-2}u_{-1}u + u(u + u_1)u_1 - u_{-1}(u_{-1} + u)u.$$

Admissible linear terms: $\Omega_k(\xi) = \xi^k - \xi^{-k}$.

• Consider algebra of formal series $\mathfrak{A}((S))$ consisting of formal series of the form

$$\sum_{j \leq n} \sum_{p+q > 0} a_{ipq} S^j, \quad a_{ipq} \in \mathcal{M}_{p,q}, \quad n \in \mathbb{Z}.$$

• Consider algebra of formal series $\mathfrak{A}((S))$ consisting of formal series of the form

$$\sum_{i \leq n} \sum_{p+q \geq 0} a_{ipq} \mathcal{S}^i, \quad a_{ipq} \in \mathcal{M}_{p,q}, \quad n \in \mathbb{Z}.$$

2 Root extraction problem: for a generic formal series

$$A = \mathcal{S}^n + \sum_{i \leq n'} \sum_{p+q \geq 1} a_{ipq} \mathcal{S}^i, \quad a_{ipq} \in \mathcal{M}_{p,q}, n \in \mathbb{N}.$$

there is *no local* formal series $B = S + \sum_{i \le n'} \sum_{p+q \ge 1} b_{ipq} S^i$, such that $B^n = A$.

• Consider algebra of formal series $\mathfrak{A}((S))$ consisting of formal series of the form

$$\sum_{i \leq n} \sum_{p+q \geq 0} a_{ipq} \mathcal{S}^i, \quad a_{ipq} \in \mathcal{M}_{p,q}, \quad n \in \mathbb{Z}.$$

2 Root extraction problem: for a generic formal series

$$A = \mathcal{S}^n + \sum_{i \leq n'} \sum_{p+q \geq 1} a_{ipq} \mathcal{S}^i, \quad a_{ipq} \in \mathcal{M}_{p,q}, n \in \mathbb{N}.$$

there is *no local* formal series $B = S + \sum_{i \le n'} \sum_{p+q \ge 1} b_{ipq} S^i$, such that $B^n = A$.

The root exists in the extended algebra.

1 Define
$$\theta_k = \frac{S-1}{S^{k+1}-1} = (1+S+\cdots+S^k)^{-1}, \ k=1,2,\ldots$$

- **1** Define $\theta_k = \frac{S-1}{S^{k+1}-1} = (1 + S + \cdots + S^k)^{-1}, \ k = 1, 2, \dots$
- 2 Define the operator algebra $\mathcal M$ extension as

$$\mathcal{M}^{(0)} = \mathcal{M},$$

$$\mathcal{M}^{(i+1)} = \mathcal{M}^{(i)} \bigcup_{k=1}^{\infty} \theta_k(\mathcal{M}^{(i)}),$$

$$\mathcal{M}^{(s)} \xrightarrow{s \to \infty} \mathcal{M}(\theta).$$

- **1** Define $\theta_k = \frac{S-1}{S^{k+1}-1} = (1 + S + \cdots + S^k)^{-1}, \ k = 1, 2, \dots$
- 2 Define the operator algebra $\mathcal M$ extension as

$$\mathcal{M}^{(0)} = \underbrace{\mathcal{M},}_{\mathcal{M}^{(i+1)}} = \underbrace{\mathcal{M}^{(i)} \bigcup_{k=1}^{\infty} \theta_k(\mathcal{M}^{(i)}),}_{\mathcal{M}^{(s)}}$$

$$\mathcal{M}^{(s)} \xrightarrow{s \to \infty} \mathcal{M}(\theta).$$

3 We shall call the algebra $\mathfrak{A}((S))$ with coefficients in $\mathcal{M}(\theta)$ the algebra of quasi-local formal series.

Theorem

Let

$$A = \mathcal{S}^n + \sum_{p+q \geq 1} \sum_{i \leq m(p,q)} a_{ipq} \mathcal{S}^i \quad a_{ipq} \in \mathcal{M}_{p,q}, n \in \mathbb{N},$$

be a local formal series. Then there exists a unique quasi-local formal series

$$B = S + \sum_{p+q > 1} \sum_{i < m(p,q)} b_{ipq} S^i, \quad b_{ipq} \in \mathcal{M}(heta),$$

such that $B^n = A$.

Formal recursion operator

Definition

A quasi-local formal series

$$\Lambda = \varphi(\mathcal{S}) + \sum_{p+q>1} \sum_{i < m(p,q)} \varphi_{ipq} \mathcal{S}^i, \quad \varphi(x) \in \mathbb{C}[x,x^{-1}],$$

is called a formal recursion operator for the equation $u_t = f, \ \pi_0(f) = 0, \ \pi_1(f) \neq 0$, if

$$\Lambda_t = f_* \circ \Lambda - \Lambda \circ f_*$$
.

Formal recursion operator

Definition

A quasi-local formal series

$$\Lambda = \varphi(S) + \sum_{p+q \geq 1} \sum_{i \leq m(p,q)} \varphi_{ipq} S^i, \quad \varphi(x) \in \mathbb{C}[x,x^{-1}],$$

is called a formal recursion operator for the equation $u_t=f, \ \pi_0(f)=0, \ \pi_1(f)\neq 0$, if

$$\Lambda_t = f_* \circ \Lambda - \Lambda \circ f_*.$$

Theorem

If the differential-difference equation $u_t = f$, $\pi_1(f) \neq 0$ possesses an infinite dimensional algebra of symmetries, then it possesses a formal recursion operator of the form

$$\Lambda = S + \sum_{p+q>1} \sum_{i \leq m(p,q)} \varphi_{ipq} S^i.$$

 $\mathbf{0} \ \ u_{\tau} = g(u_M, \dots, u_N)$ - a symmetry, such that

$$\pi_1(g) = u_n + \sum_{k=M}^{N-1} c_k u_k, \quad N >> n.$$

 $\mathbf{0} \ \ u_{\tau} = g(u_M, \dots, u_N)$ - a symmetry, such that

$$\pi_1(g) = u_n + \sum_{k=M}^{N-1} c_k u_k, \quad N >> n.$$

[g, f] = 0 implies

$$g_{*,t}+g_*\circ f_*-f_*\circ g_*=f_{*,\tau}.$$

 $\mathbf{0} \ \ u_{\tau} = g(u_M, \dots, u_N)$ - a symmetry, such that

$$\pi_1(g) = u_n + \sum_{k=M}^{N-1} c_k u_k, \quad N >> n.$$

[g, f] = 0 implies

$$g_{*,t} + g_* \circ f_* - f_* \circ g_* = f_{*,\tau}.$$

3 The first N-n terms of g_* can be found from $g_{*,t}=f_*\circ g_*-g_*\circ f_*$.

 $\mathbf{0} \ \ u_{\tau} = g(u_M, \dots, u_N)$ - a symmetry, such that

$$\pi_1(g) = u_n + \sum_{k=M}^{N-1} c_k u_k, \quad N >> n.$$

[g, f] = 0 implies

$$g_{*,t} + g_* \circ f_* - f_* \circ g_* = f_{*,\tau}.$$

- **3** The first N-n terms of g_* can be found from $g_{*,t}=f_*\circ g_*-g_*\circ f_*$.

Integrability test

The above theorems provides the following integrability test for a given nonabelian differential-difference equation $u_t = f$:

- For a given f the equation $\Lambda_t = f_* \circ \Lambda \Lambda \circ f_*$ can be formally resolved for Λ , i.e. its coefficients can be explicitly found in terms of f (in the symbolic representation);
- The requirement of quasi-locality of these coefficients provides the necessary integrability conditions independent on the symmetry structure.

We classify integrable nonabelian differential-difference equations

$$u_t = f(u_{-n}, u_{-n+1}, \dots, u_n), \quad f \in \mathfrak{A}, \quad n = 1, 2, 3,$$

satisfying the following conditions

- Non-zero linear term: $\pi_1(f) \neq 0$ and $\pi_1(f)$ depends of u_n , where π_1 is the projection $\pi_1 : \mathfrak{A} \to \mathfrak{A}_1$;
- Quasi-linearity: $\frac{d^2}{d\epsilon^2} f(\epsilon u_{-n}, u_{-n+1}, \dots, u_{n-1}, \epsilon u_n) = 0;$
- Skew-symmetry: $\mathcal{T}(f) = -f$, where $\mathcal{T}: \mathfrak{A} \to \mathfrak{A}$ is defined as $\mathcal{T}(u_n) = u_{-n}, \ \mathcal{T}(ab) = ba$;
- No lower order symmetries.

Classification of skew-symmetric quasi-linear equations: order $\left(-1,1\right)$

Theorem

Up to re-scaling and shift transformations, every skew-symmetric quasi-linear integrable differential-difference equation of the form

$$u_t = f(u_{-1}, u, u_1)$$

can be obtained from one of the equations in the following list:

$$u_{t} = (\alpha u^{2} + \beta u + \gamma)u_{1} - u_{-1}(\alpha u^{2} + \beta u + \gamma),$$

$$u_{t} = (u - \alpha)u_{1}(u + \alpha) - (u + \alpha)u_{-1}(u - \alpha)$$

Classification of skew-symmetric quasi-linear equations: order $\left(-2,2\right)$

Theorem

Up to re-scaling and shift transformations, every skew-symmetric quasi-linear integrable differential-difference equation of the form

$$u_t = f(u_{-2}, u_{-1}, u, u_1, u_2)$$

can be obtained from one of the equations in the following list:

Classification of skew-symmetric quasi-linear equations: order $\left(-2,2\right)$

Volterra type:

$$\begin{array}{lll} u_t &=& (\alpha u^2 + \beta u + \gamma)u_2 - u_{-2}(\alpha u^2 + \beta u + \gamma), \\ u_t &=& (u - \alpha)u_2(u + \alpha) - (u + \alpha)u_{-2}(u - \alpha), \\ u_t &=& uu_1u_2 - u_{-2}u_{-1}u + u(u_{-1} - u_1)u, \\ u_t &=& (u_{-1} + u)u_2 - u_{-2}(u_1 + u) + uu_1 - u_{-1}u, \\ u_t &=& uu_1u_2 - u_{-2}u_{-1}u + u(u - u_1)u_1 - u_{-1}(u - u_{-1})u, \\ u_t &=& (u + u_{-1})(u_1 + u)u_2 - u_{-2}(u_{-1} + u)(u_1 + u) + u(u + u_{-1})u_1 \\ & & -u_{-1}(u + u_1)u - u(u_1 - u_{-1})u, \\ u_t &=& u(u_1u_2u_1 - u_{-1}u_{-2}u_{-1} - u_1uu_1 + u_{-1}uu_{-1})u, \\ u_t &=& (uu_{-1} + 1)(uu_1 + 1)u_2 - u_{-2}(u_{-1}u + 1)(u_1u + 1), \\ u_t &=& uu_1u_2u_{-1}u - uu_1u_{-2}u_{-1}u + \alpha(uu_1u_2 - u_{-2}u_{-1}u + u(u_{-1} - u_1)u), \\ u_t &=& uu_{-1}uu_1u_2 - u_{-2}u_{-1}uu_1u + \alpha(uu_1u_2 - u_{-2}u_{-1}u + u(u_{-1} - u_1)u), \\ u_t &=& (u^2 - \alpha^2)(u_1^2 - \alpha^2)u_2 - u_{-2}(u_{-1}^2 - \alpha^2)(u^2 - \alpha^2) - (u^2 - \alpha^2)u_1uu_1 \\ & + u_{-1}uu_{-1}(u^2 - \alpha^2) + uu_{-1}(u^2 - \alpha^2)u_1 - u_{-1}(u^2 - \alpha^2)u_1u. \end{array}$$

Classification of skew-symmetric quasi-linear equations: order $\left(-2,2\right)$

Bogoyavlensky type:

$$\begin{array}{rcl} u_t &=& u(u_1+u_2)-(u_{-1}+u_{-2})u,\\ u_t &=& uu_1u_2-u_{-2}u_{-1}u,\\ u_t &=& uu_1u_2-u_{-2}u_{-1}u+u[u_1,u]-[u,u_{-1}]u,\\ u_t &=& (u+u_{-1})(u+u_1)(u_1+u_2)-(u_{-2}+u_{-1})(u+u_{-1})(u+u_1),\\ u_t &=& uu_1u_2(u+\alpha)-(u+\alpha)u_{-2}u_{-1}u,\\ u_t &=& u(u+\alpha)u_1(u_2+\alpha)-(u_{-2}+\alpha)u_{-1}(u+\alpha)u\\ &&+(u+\alpha)u_{-1}u(u_1+\alpha)-(u_{-1}+\alpha)uu_1(u+\alpha),\\ u_t &=& (uu_{-1}+\alpha)(uu_1+\alpha)uu_1u_2-u_{-2}u_{-1}u(u_{-1}u+\alpha)(u_1u+\alpha),\\ u_t &=& (uu_{-1}+\alpha)(u_1u+\alpha)(u_2u_1+\alpha)u\\ &&-u(u_{-1}u_{-2}+\alpha)(uu_{-1}+\alpha)(u_1u+\alpha). \end{array}$$

Classification of skew-symmetric quasi-linear equations: order $\left(-3,3\right)$

Theorem

Up to re-scaling and shift transformations, every skew-symmetric quasi-linear integrable differential-difference equation of the form

$$u_t = f(u_{-3}, u_{-2}, u_{-1}, u, u_1, u_2, u_3)$$

can be obtained from one of the equations in the following list:

Classification of skew-symmetric quasi-linear equations: order (-3,3)

 $u_t = (\alpha u^2 + \beta u + 1)u_3 - u_{-3}(\alpha u^2 + \beta u + 1),$ $u_t = (u - \alpha)u_3(u + \alpha) - (u + \alpha)u_{-3}(u - \alpha),$

Volterra type:

$$\begin{array}{lcl} u_t & = & uu_{-1}u_1u_3 - u_{-3}u_{-1}u_1u, \\ u_t & = & uu_1u_2u_3 - u_{-3}u_{-2}u_{-1}u - u(u_1u_2 - u_{-2}u_{-1})u, \\ u_t & = & (u + u_{-1} + u_{-2})u_3 - u_{-3}(u + u_1 + u_2) + u(u_1 + u_2) - (u_{-1} + u_{-2})u, \\ u_t & = & (uu_{-2}u_{-1} + \alpha)uu_1u_2u_3 - u_{-3}u_{-2}u_{-1}u(u_1u_2u + \alpha) - \alpha u(u_1u_2 - u_{-2}u_{-1}) \\ u_t & = & uu_1u_2u_3(u_{-2}u_{-1}u + \alpha) - (uu_1u_2 + \alpha)u_{-3}u_{-2}u_{-1}u - \alpha u(u_1u_2 - u_{-2}u_{-1}) \end{array}$$

Classification of skew-symmetric quasi-linear equations: order (-3,3)

Bogoyavlensky type:

$$\begin{array}{rcl} u_t &=& u(u_1+u_2+u_3)-(u_{-1}+u_{-2}+u_{-3})u,\\ u_t &=& uu_1u_2u_3-u_{-3}u_{-2}u_{-1}u,\\ u_t &=& uu_1u_3-u_{-3}u_{-1}u+u^2u_2-u_{-2}u^2+[u,u_{-1}u_1],\\ u_t &=& uu_1u_2u_3(u+\alpha)-(u+\alpha)u_{-3}u_{-2}u_{-1}u,\\ u_t &=& uu_{-1}u_1uu_2u_1u_3-u_{-3}u_{-1}u_{-2}uu_{-1}u_1u,\\ u_t &=& uu_{-1}u_1uu_2u_1u_3-u_{-3}u_{-1}u_{-2}uu_{-1}u_1u,\\ u_t &=& uu_1u_2u_3-u_{-3}u_{-2}u_{-1}u+u[u,u_1u_2]-[u_{-2}u_{-1},u]u+[u,u_{-1}uu_1],\\ u_t &=& (u_{-2}+u_{-1}+u)(u_{-1}+u+u_1)(u+u_1+u_2)(u_1+u_2+u_3)\\ &&-(u_{-3}+u_{-2}+u_{-1})(u_{-2}+u_{-1}+u)(u_{-1}+u+u_1)(u+u_1+u_2),\\ u_t &=& (u+\alpha)uu_1u_2u_3-u_{-3}u_{-2}u_{-1}u(u+\alpha)+u(u_{-1}+\alpha)uu_1u_2\\ &&-(u_{-1}+\alpha)uu_1u_2u-u_{-2}u_{-1}u(u_1+\alpha)u+uu_{-2}u_{-1}u(u_1+\alpha)\\ &&+\alpha(uu_{-1}uu_1-u_{-1}uu_1u),\\ u_t &=& (uu_{-2}u_{-1}+\alpha)(uu_1u_{-1}+\alpha)(uu_1u_2+\alpha)uu_1u_2u_3\\ &&-u_{-3}u_{-2}u_{-1}u(u_{-2}u_{-1}u+\alpha)(u_1u_{-1}u+\alpha)(u_1u_2u+\alpha),\\ \end{array}$$

Classification of skew-symmetric quasi-linear equations: order (-3,3)

Bogoyavlensky type:

$$u_t = (uu_{-1}u_{-2} + \alpha)(u_1uu_{-1} + \alpha)(u_2u_1u + \alpha)(u_3u_2u_1 + \alpha)u - u(u_{-1}u_{-2}u_{-3} + \alpha)(uu_{-1}u_{-2} + \alpha)(u_1uu_{-1} + \alpha)(u_2u_1u + \alpha).$$

Olassifiaction of Volterra type equations - Yamilov (1983)

$$u_t = f(u_{-1}, u, u_1);$$

Classifiaction of Volterra type equations - Yamilov (1983)

$$u_t = f(u_{-1}, u, u_1);$$

Classification of Toda type equations - Adler, Shabat, Yamilov (1990s);

Classifiaction of Volterra type equations - Yamilov (1983)

$$u_t = f(u_{-1}, u, u_1);$$

- Classification of Toda type equations Adler, Shabat, Yamilov (1990s);
- 3 Classification of quasi-linear equations of order (-2,2) Garifullin, Levi, Yamilov ('17-'18)

$$u_t = A(u_{-1}, u, u_1)u_2 + B(u_{-1}, u, u_1)u_{-2} + C(u_{-1}, u, u_1).$$

• $\mathcal{A} = \bigoplus_{p>0} \mathcal{A}_p$ - abelian associative algebra of formal series. Each \mathcal{A}_p consists of elements $u_{i_1} \cdots u_{i_p}$.

- $\mathcal{A} = \bigoplus_{p>0} \mathcal{A}_p$ abelian associative algebra of formal series. Each \mathcal{A}_p consists of elements $u_{i_1} \cdots u_{i_p}$.
- ② Differential-difference equation: $u_t = f, f \in A$.

Formal recursion operator

Definition

A quasi-local formal series

$$\Lambda = \varphi(\mathcal{S}) + \sum_{p+q>1} \sum_{i < m(p,q)} \varphi_{ipq} \mathcal{S}^i, \quad \varphi(x) \in \mathbb{C}[x,x^{-1}],$$

is called a formal recursion operator for the equation $u_t = f, \ \pi_0(f) = 0, \ \pi_1(f) \neq 0$, if

$$\Lambda_t = f_* \circ \Lambda - \Lambda \circ f_*$$
.

Formal recursion operator

Definition

A quasi-local formal series

$$\Lambda = \varphi(S) + \sum_{p+q \geq 1} \sum_{i \leq m(p,q)} \varphi_{ipq} S^i, \quad \varphi(x) \in \mathbb{C}[x,x^{-1}],$$

is called a formal recursion operator for the equation $u_t=f, \ \pi_0(f)=0, \ \pi_1(f)\neq 0$, if

$$\Lambda_t = f_* \circ \Lambda - \Lambda \circ f_*.$$

Theorem

If the differential-difference equation $u_t = f$, $\pi_1(f) \neq 0$ possesses an infinite dimensional algebra of symmetries, then it possesses a formal recursion operator of the form

$$\Lambda = S + \sum_{p+q>1} \sum_{i \leq m(p,q)} \varphi_{ipq} S^i.$$

Formal recursion operator - Adler's version

Theorem (V.E. Adler)

If a differential-difference equation $u_t = f$ admits an infinite hierarchy of symmetries $u_\tau = g(u_p, \dots, u_q)$ with q arbitrary large then there exists a **local** formal recursion operator of the form

$$\Lambda = f_* + \sum_{k \geq 0} a_k S^{-k}.$$

We classify integrable nonabelian differential-difference equations

$$u_t = f(u_{-3}, u_{-2}, u_{-1}, u, u_1, u_2, u_3), \quad f \in \mathcal{A},$$

satisfying the following conditions

- Non-zero linear term: $\pi_1(f) \neq 0$ and $\pi_1(f)$ depends of u_3 , where π_1 is the projection $\pi_1 : A \to A_1$;
- Quasi-linearity: $\frac{d^2}{d\epsilon^2} f(\epsilon u_{-3}, u_{-2}, u_{-1}, u, u_1, u_2, \epsilon u_3) = 0;$
- Skew-symmetry: $\mathcal{T}(f) = -f$, where $\mathcal{T}: \mathfrak{A} \to \mathfrak{A}$ is defined as $\mathcal{T}(u_n) = u_{-n}$;
- No lower order symmetries.

Theorem

Up to re-scaling and shift transformations, every skew-symmetric quasi-linear integrable differential-difference equation of the form

$$u_t = f(u_{-3}, u_{-2}, u_{-1}, u, u_1, u_2, u_3)$$

can be obtained from one of the equations in the following list:

Volterra type:

$$\begin{split} u_t &= u(u_3 - u_{-3}), \\ u_t &= u^2(u_3 - u_{-3}), \\ u_t &= (u^2 + u)(u_3 - u_{-3}), \\ u_t &= u_{-1}uu_1(u_3 - u_{-3}), \\ u_t &= u(u_2u_3 - u_1u_2 + uu_1 - uu_{-1} + u_{-1}u_{-2} - u_{-2}u_{-3}), \\ u_t &= u(\frac{u_3u_1}{u_2} - \frac{u_{-3}u_{-1}}{u_{-2}}) + u^2(\frac{u_2}{u_1} - \frac{u_{-2}}{u_{-1}}), \\ u_t &= u(u_1u_2u_3 - uu_1u_2 + uu_{-1}u_{-2} - u_{-1}u_{-2}u_{-3}), \end{split}$$

$$\begin{split} u_t &= u(\frac{u_3}{u_2} - \frac{u_{-3}}{u_{-2}}) + u(\frac{u_2}{u_1} - \frac{u_{-2}}{u_{-1}}) + u_1 - u_{-1}, \\ u_t &= u^2 \left(u_1^2 u_2^2 u_3 - u_{-1}^2 u_{-2}^2 u_{-3} - 2uu_1 u_{-1} (u_1 u_2 - u_{-1} u_{-2}) \right), \\ u_t &= (u + u_{-1} + u_{-2}) u_3 - (u + u_1 + u_2) u_{-3} + u(u_1 + u_2 - u_{-1} - u_{-2}), \\ u_t &= (u u_{-1} u_{-2} + \alpha) u u_1 u_2 u_3 - (u u_1 u_2 + \alpha) u u_{-1} u_{-2} u_{-3} - \alpha u^2 (u_1 u_2 - u_{-1} u_{-2}). \end{split}$$

Bogoyavlensky type:

$$\begin{split} u_t &= u(u_1 + u_2 + u_3 - u_{-1} - u_{-2} + u_{-3}), \\ u_t &= u(u_1u_2u_3 - u_{-1}u_{-2}u_{-3}), \\ u_t &= u^2(u_1u_2u_3 - u_{-1}u_{-2}u_{-3}), \\ u_t &= (u^2 + u)(u_1u_2u_3 - u_{-1}u_{-2}u_{-3}), \\ u_t &= u(u_1u_3 + uu_2 - uu_{-2} - u_{-1}u_{-3}), \\ u_t &= u(u_2u_3 + uu_1 - uu_{-1} - u_{-2}u_{-3}), \\ u_t &= u^2u_1u_{-1}(u_1u_2u_3 - u_{-1}u_{-2}u_{-3}), \\ u_t &= u^2u_1u_{-1}(u_1u_2u_3 - u_{-1}u_{-2}u_{-3}), \\ u_t &= u^4u_1^2u_{-1}^2u_2u_{-2}(u_1u_2u_3 - u_{-1}u_{-2}u_{-3}), \\ u_t &= u^2(u_1^2u_2^2u_3 - u_{-1}uu_1^2u_2 + u_1uu_{-1}^2u_{-2} - u_{-1}^2u_{-2}^2u_{-3}), \\ u_t &= (u + u_{-1} + u_{-2})(u + u_1 + u_2)(u + u_1 + u_{-1}) \\ &\qquad (u_3 + u_2 + u_1 - u_{-1} - u_{-2} - u_{-3}), \\ u_t &= u(u_{-2}u_{-1}u + \alpha)(uu_1u_2 + \alpha)(u_{-1}uu_1 + \alpha)(u_1u_2u_3 - u_{-1}u_{-2}u_{-3}). \end{split}$$

Sawada-Kotera type:

$$\begin{split} u_t &= u(u_1u_3 + uu_2 - uu_{-2} - u_{-1}u_{-3}) - u(u_2 + u_1 - u_{-1} - u_{-2}), \\ u_t &= u(u_2u_3 + uu_1 - uu_{-1} - u_{-2}u_{-3}) - u(u_2 + u_1 - u_{-1} - u_{-2}), \\ u_t &= u^2(u_1u_2u_3 - u_{-1}u_{-2}u_{-3}) - u(u_1u_2 - u_{-1}u_{-2}), \\ u_t &= u^2u_1u_{-1}(u_1u_2u_3 - u_{-1}u_{-2}u_{-3}) - u^2(u_1u_2 - u_{-1}u_{-2}), \\ u_t &= u^4u_1^2u_{-1}^2u_2u_{-2}(u_1u_2u_3 - u_{-1}u_{-2}u_{-3}) - u^3u_1u_{-1}(u_1u_2 - u_{-1}u_{-2}), \\ u_t &= u^2(u_1^2u_2^2u_3 - u_{-1}uu_1^2u_2 + u_1uu_{-1}^2u_{-2} - u_{-1}^2u_{-2}^2u_{-3}) - u^2(u_1u_2 - u_{-1}u_{-2}), \\ u_t &= (u^2 + 1)(u_3\sqrt{u_1^2 + 1}\sqrt{u_2^2 + 1} - u_{-3}\sqrt{u_{-1}^2 + 1}\sqrt{u_{-2}^2 + 1}). \end{split}$$