Counting low degree number fields by successive minima

Sameera Vemulapalli

April 15, 2023

Let \mathcal{O} be an order of absolute discriminant Δ in a degree n number field. Let $\sigma_{1}, \ldots, \sigma_{n}$ be the nonzero homomorphisms $\mathcal{O} \rightarrow \mathbb{C}$. Endow \mathcal{O} with the norm

$$
|x|:=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left|\sigma_{i}(x)\right|^{2}} .
$$

Question

What lattices arise from orders in number fields and how are they distributed?

Definition

For $0 \leq i<n$, the i-th successive minimum $\lambda_{i}(\mathcal{O})$ is the smallest $r \in \mathbb{R}_{>0}$ s.t. \mathcal{O} contains at least $i+1$ linearly independent elements of length $\leq r$.

Question

How is $\left(\log _{\Delta} \lambda_{1}, \ldots, \log _{\Delta} \lambda_{n-1}\right) \in \mathbb{R}^{n-1}$ distributed as we range across orders in degree n number fields?

Cubic rings: setup

Fix a large $C \in \mathbb{R}_{>0}$ and let $p=\left(p_{1}, p_{2}\right) \in \mathbb{R}^{2}$.

Question

What is

$$
\#\left\{\begin{array}{c}
\text { cubic orders } \mathcal{O} \text { such that } \\
\operatorname{Gal}(\mathcal{O} \otimes \mathbb{Q}) \simeq S_{3}, \Delta \leq X, \\
\text { and } \max _{i=1,2}\left\{\left|\log _{\Delta} \lambda_{i}(\mathcal{O})-p_{i}\right|\right\} \leq \frac{c}{\log X}
\end{array}\right\}
$$

as $X \rightarrow \infty$?
This term is $\asymp X^{d s_{3}}(p)$ for a function $d_{S_{3}}: \mathbb{R}^{2} \rightarrow \mathbb{R}$.

Cubic rings: previous work

Theorem (Chiche-lapierre)

$$
d_{S_{3}}(p)= \begin{cases}1-\left(p_{2}-p_{1}\right) & \text { if } p \in \text { line segment } \\ 0 & \text { else }\end{cases}
$$

Quartic rings: setup

$$
\text { Let } p=\left(p_{1}, p_{2}, p_{3}, q_{1}, q_{2}\right) \in \mathbb{R}^{5} \text {. }
$$

Question

What is

$$
\#\left\{\begin{array}{c}
\text { quartic orders } \mathcal{O} \text { equipped with a cubic resolvent } \\
\text { ring } R \text { such that } \operatorname{Gal}(\mathcal{O} \otimes \mathbb{Q}) \simeq S_{4}, \Delta \leq X, \\
\text { and } \max _{i=1,2,3}\left\{\left|\log _{\Delta} \lambda_{i}(\mathcal{O})-p_{i}\right|\right\} \leq \frac{C}{\log X} \\
\text { and } \max _{i=1,2}\left\{\left|\log _{\Delta} \lambda_{i}(R)-q_{i}\right|\right\} \leq \frac{\mathrm{l}}{\log X}
\end{array}\right\}
$$

as $X \rightarrow \infty$?
This term is $\asymp X^{d_{S_{4}}(p)}$ for a function $d_{S_{4}}: \mathbb{R}^{5} \rightarrow \mathbb{R}$.

Theorem

$$
d_{S_{4}}(p)=\left\{\begin{array}{lll}
1-\left(p_{3}-p_{2}\right)-\left(p_{3}-p_{1}\right)-\left(p_{2}-p_{1}\right) & \text { if } p \in & \text { polytope } \\
-\left(q_{2}-q_{1}\right)+\sum_{i, j, k} \max \left\{0, q_{k}-p_{i}-p_{j}\right\} & & \text { below } \\
0 & \text { else. }
\end{array}\right.
$$

Quintic rings: setup

$$
\text { Let } p=\left(p_{1}, \ldots, p_{4}, q_{1}, \ldots, q_{5}\right) \in \mathbb{R}^{9} \text {. }
$$

Question

What is

as $X \rightarrow \infty$?
This term is $\asymp X^{d_{S_{5}}(p)}$ for a function $d_{S_{5}}: \mathbb{R}^{9} \rightarrow \mathbb{R}$.

Quintic rings: theorems

Theorem

The support of $d_{S_{5}}$ is a polytope; on the support, the function is given by

$$
\begin{aligned}
d_{S_{5}}(p) & =1-\sum_{1 \leq i<j \leq 4}\left(p_{j}-p_{i}\right)-\sum_{1 \leq i<j \leq 5}\left(q_{j}-q_{i}\right) \\
& +\sum_{1 \leq i<j \leq 5,1 \leq k \leq 4} \max \left\{0, q_{i}+q_{j}-p_{k}-1 / 2\right\} .
\end{aligned}
$$

Else, $d_{S_{5}}(p)=0$.

