Lagrangian scheme for fluids mechanics based on Semi discrete Optimal Transport

Thomas Gallouët

In this talk we will explain how based on Brenier's ideas, it is possible to construct particle methods for a large class of fluids mechanics problems such that Wasserstein gradient flows of an internal Energy or Euler flows/Hamiltonian flows for the same energy. This class contains incompressible Euler equations, compressible (barotropic) fluids, fluid-structure interactions,...

In order to build these scheme the internal energy is replaced by its Moreau-Yosida regularization in the L2 sense, which can be efficiently computed as a semi-discrete optimal transport problem. Using a modulated energy argument which exploits the convexity of the problem in Eulerian variables, one can prove quantitative convergence estimates towards smooth solutions of the considered system of PDE.