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The Inverse Problem



The Inverse Problem
Recover coefficients        from 
measurements

where
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PDE-constrained optimisation



PDE-constrained optimisation
Discretise-then-optimise:

§ All-at-once
§ Reduced
§ Penalty method
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min
m,U

nsX

i=1

kPui � dik22 s.t. A(m)ui = qi



All-at-once methods

§ Set up saddle-point problem for
§ Solve using Newton-Krylov method
§ Avoids solving PDE at each step
§ Requires large amount of storage
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(m, U, V )
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V
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kPui � dik22 + vT
i (A(m)ui � qi)



Reduced-space approach

§ Solve PDE explicitly for each source 
term

§ Non-linear optimization in 
§ Requires adjoint-solve to compute 

gradient w.r.t.
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A penalty method

§ Add PDE as quadratic penalty
§ Solve for    explicitly
§ Non-linear optimization in
§ No explicit adjoint-solve required
§ Reduces the non-linearity
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Challenges for solvers
§ Need to solve for many r.h.s.
§ Robust and predictable convergence 

behaviour is desired
§ May not need a very accurate 

solution
§ Solve overdetermined problems 

involving Helmholtz



Challenges for solvers
§ A simple preconditioner
§ Harnessing inexactness
§ Re-ordering the computations
§ Data-augmented systems
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Simple preconditioning
A symmetric Kaczmarz-sweep leads to

with

Now solve using CG.
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u(k+1) = Qu(k) +Rq
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Fourier analysis yields an optimal 
choice for    for each frequency

Simple preconditioning
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Figure 1: (a) Amplitude (cf. eq. 26) as a function of θ and ω for a fixed number
of gridpoints per wavelength ng = 10. (b) Shows the ‘condition number’ as a
function of ω for ng = 10. The optimal ω ≈ 1.5. (c) shows the optimal ω as a
function of ng.
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Figure 2: Number of CG iterations needed to converge to a tolerance of 10−6 for
various ω with either a fixed number of gridpoints per wavelength ng = 10 (a)
or a fixed gridspacing based on the highest wavenumber used (b). The predicted
optimal ω is indicated by a dashed line and coincides with the lowest iteration
count.
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Figure 3: (a) wavenumber profile, (b) incident plane wave, (c) resulting wavefield
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Fig. 1. (a) Overthrust velocity model, (b) wavefield at 4 Hz for point source.

Table 1
Iteration counts for CGMN, BiCGstab, and GMRES for different frequencies (using a constant

number of grid points per wavelength). Here, N denotes the total number of unknowns and *
indicates that the method did not converge to the desired tolerance of ε = 10−6 within 5000 iterations.

f [Hz] N CGMN BiCGs GMRES(5)
0.5 23276.0 308.0 81.0 139.0
1.0 186208.0 564.0 150.0 425.0
2.0 1455808.0 960.0 911.0 1603.0
4.0 11646464.0 2123.0 * *

The iteration counts for various frequencies (using a constant number of grid
points per wavelength) are listed in Table 1. For low frequencies (and hence small
systems), BiCGstab converges much faster than both CGMN and GMRES(5). For
higher frequencies, however, the difference between the three methods becomes less
and for the highest frequency, BiCGstab fails to converge at all. GMRES(5) does
well for the low frequencies, but converges very slowly for the highest frequency. This
could be countered by increasing the history size, but this would not be feasible in
practice due to memory limitations. CGMN, despite being suboptimal for the lower
frequencies, does much better than the other two methods for the highest frequency.

The corresponding convergence histories are shown in Figure 2. These plots
clearly illustrate the convergence behavior of the different methods; BiCGstab con-
verges very irregularly, and both GMRES and CGMN decrease the residual mono-
tonically.

Block-CG. To test the performance of the block-CG approach, we compute
the wavefields for various frequencies for a number of randomly located sources in
the z = 0 plane using various block sizes for a tolerance of ε = 10−6 (in terms of
||(I −Q)u−Rs||F ). The results in terms of the number of iterations and CPU times
are shown in Table 2.1 The convergence histories (again in terms of ||(I−Q)u−Rs||F )
are shown in Figure 3. We observe that the convergence is not sped up uniformly; for
the first 100–200 iterations, all block sizes yield the same result and the largest block
sizes show superlinear convergence after this.

The block iterative approach is only beneficial when enough right-hand sides are
available, where the optimal number of right-hand sides depends on the size of the
system. However, too large block sizes may result in loss of orthogonality of the
residuals before the desired tolerance is reached. In these experiments, we restricted

1These experiments were done on a dual-core SuperMicro system with 2 Intel Xeon E5-2670@2.6
Ghz and 128 GB RAM.
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Comparison to other simple methods



Block-iterative methods

Simple preconditioning
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Fig. 2. Convergence histories for BICGstab (black), GMRES(5) (blue), and CGMN (red) for
various frequencies: (a) .5 Hz, (b) 1 Hz, (c) 2 Hz, and (d) 4 Hz. These plots clearly illustrate
the convergence behavior of the different methods; BiCGstab converges very irregulary, and both
GMRES and CGMN decrease the residual monotonically.

Table 2
Iteration counts (averaged over all the runs needed to compute all the wavefields) and CPU

times for computing the wavefields for a number of point sources (10 for f = 0.5 Hz, 50 for f = 1
Hz, and 200 for f = 4 Hz) distributed randomly on the surface using different block sizes. Using
larger blocks can significantly speed up the convergence, both in terms of the number of iterations
and the CPU time.

f [Hz] N block size iter time [s]
0.5 23276 1 291 35.9

2 278 43.3
5 200 29.7
10 115 15.2

1.0 186208 1 484 2859.9
5 477 2419.8
10 456 2279.7
50 220 1067.7

2.0 1455808 1 828 125358.2
10 811 122732.7
50 716 109424.7
100 559 82938.2

ourselves to using only modest block sizes thereby circumventing the need for deflation
techniques as discussed in section 2.1.

CARP-CG. The domain decomposition is done in the y direction only. Splitting
the domain only in the last direction greatly simplifies the implementation, as the



Parallelization

3D FREQUENCY-DOMAIN SEISMIC INVERSION S205

0 50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

iteration

re
si

du
al

 

 

blocksize = 1
blocksize = 2
blocksize = 5
blocksize = 10

0 100 200 300 400 500
10

−6

10
−4

10
−2

10
0

iteration

re
si

du
al

 

 

blocksize = 1
blocksize = 5
blocksize = 10
blocksize = 50

0 200 400 600 800 1000
10

−6

10
−4

10
−2

10
0

iteration

re
si

du
al

 

 

blocksize = 1
blocksize = 10
blocksize = 50
blocksize = 100

(a) (b) (c)

Fig. 3. Convergence histories for block-CGMN with various block sizes for frequencies (a) .5 Hz,
(b) 1 Hz, and (c) 2 Hz. Interestingly, the convergence is not sped up uniformly; for the first 100–200
iterations, all block sizes yield the same result. Especially the largest block sizes show superlinear
convergence after a certain number of iterations.
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Fig. 4. (a) Number of iterations as a function of the number of processors for CARP-CG.
Ideally, the number of iterations should be independent of the number of domains (processors), but
the method becomes slightly less effective when the domains become very small. (b) CPU time per
iteration as a function of the number of processors for CARP-CG for various frequencies. The
dashed line indicates the theoretical CPU time in the case of linear speedup.

matrix can be split into contiguous parts that have the same band structure as the
original matrix. This allows us to use an efficient data structure that only stores the
bands of the matrix and the offsets of the bands. As the splitting seems to have
little influence on the number of iterations needed to converge, we do not expect that
splitting in other or multiple directions will make a big difference.

Figure 4 shows the (a) iteration counts and (b) CPU times2 for various numbers
of processors for a range of frequencies and a tolerance of ε = 10−6 (in terms of
||(I −Q)u−Rs||2).

The number of iterations required to converge does not critically increase when
using a larger number of subdomains, as can be seen from Figure 4(a) The algorithm
achieves nearly linear speedup as can be seen by comparing the actual CPU times
with the theoretical times in Figure 4(b).

As the memory imprint of the method is very low, there is no need to scale
to thousands of CPUs. Moreover, a higher level of parallelism can be exploited by
parallelizing the computation of the misfit and gradient over the sources.

2These experiments were done on a cluster with 36 IBM x3550 nodes, each with 2 quad-core 2.6
GHz. Intel CPUs, and 16 GB memory, connected through a Voltaire Infiniband network. Whenever
possible we used a maximum of 2 cores per node to avoid cache conflicts. Timings for more than 64
CPUs may therefore be suboptimal.

Simple preconditioning
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Figure 3 On the left is the largest part of the SEG/EAGE Overthrust acoustic velocity model (Aminzadeh
et al. (1997)) used in the experiment. The axes are labelled with the number of grid points along that
axis. The right plot shows the real part of the Fourier transfrom of the pressure waveield u that results
from a time-harmonic point source. The solution shown took 2703 CGMN iterations (9826 s) to converge
to a relative residual norm of 10�6.

Conclusions

We have demonstrated a time-harmonic iterative wave equation solver that off-loads its computational
kernel onto a reconfigurable hardware accelerator. Work on this project is ongoing, and while further
development is needed in order to better realize the potential for acceleration inherent in the platform,
our preliminary results give us reason to be optimistic.
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Figure 2 Comparison of CGMN execution time on one accelerator (DFE) and one Intel Xeon core.

Results

In Figure 2, computational times for 100 CGMN iterations running on the CPU + accelerator platform
(Vectis model at 100 MHz) are compared with times on one Intel Xeon E5-2670 core. A speed-up of
over 2⇥ is seen when CGMN is run on the accelerator. Figure 3 shows the velocity model used in the
experiment, as well as the solution wavefield u that results from a time-harmonic source at one point in
the domain.

At the current stage of development there are several factors that limit the performance of the accelera-
tor. Chief among these is the inefficient use of the FPGA’s memory controller. To estimate the speed-up
we can expect from a more optimized implementation we slow down the sweeps by having computation
progress only once every 90 FPGA clock ticks. At this speed even inefficient use of the memory con-
troller is sufficient to keep the FPGA supplied with data. We measure performance for a range of small
systems (from 0.5 to 3⇥ 105 gridpoints) and then calculate theoretical performance of the full-speed
sweeps, taking into account several planned improvements. These include: two passes over the data
per CGMN iteration instead of three, getting rid of zero elements currently used to pad the rows of the
matrix H to boundaries of addressable memory chunks, and increasing the FPGA operating frequency
to 120 MHz. With a 100% efficient memory controller these improvements will translate to a speed-up
of 13⇥ over the single Intel core times.

Speed-up of the pipelined accelerated Kaczmarz sweeps will further be limited by the fact that the
sweeps (when implemented on an Intel core) take up only about 95% of the total time used by CGMN.
Recall that offloading parts of an algorithm from the CPU onto the FPGA accelerator decreases the CPU
execution time, but does not increase the execution time on the FPGA, since the amount of data to pro-
cess (problem size) remains the same. Hence we will implement all of CGMN on the accelerator, from
which we expect a speed-up of 36⇥ over a single Intel core. At that point the link between the FPGA
and its dedicated memory that is used to stream the matrix H will become the bottleneck preventing
further increases in FPGA operating frequency. To avoid this bandwidth limitation, the elements of the
Helmholtz matrix will be generated on the FPGA from the earth model m as they are needed, rather than
being read in from memory.
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Harnessing inexactness
§ Use stochastic approximation to 

compute gradient
§ PDE-solves need not be more 

accurate than induced error
§ Use an adaptive tolerance based on 

current data-fit
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Fig. 5. Convergence in terms of the (a) misfit and (b) relative model error for the Edam model.
The average (over all sources and frequencies) tolerance used by CGMN for each outer iteration is
shown in (c) while (d) shows the corresponding number of CGMN iterations required. Using more
accurate PDE solves (smaller η) yields results closer to the baseline result η = 0 as can be seen from
(a) and (b). The tolerance used for the PDE solves (c) automatically decreases but stays well above
the baseline tolerance of 10−6. Consequently, the number of CGMN iterations required is much
lower as can be seen in (d).

4.2. Edam model. We show inversion results on a toy example consisting of
a spherical anomaly (resembling an Edam cheese) with a constant velocity of 2500
m/s embedded in a constant background of 2000 m/s. The model is 1 km in each
direction and is discretized with 20 m grid spacing and 10 points are added on each
side for the PML, leading to a total grid size of 71 × 71 × 71. The “observed” data
are generated by solving the Helmholtz equation up to an accuracy of ε = 10−6 for
9 sources (located in the y = 0-m plane), 2601 receivers (located in the y = 1000-m
plane) and 3 frequencies of 5, 10, and 15 Hz.

For the inversion we use all sources and frequencies simultaneously and conduct
three experiments using η = {0.1, 0.05, 0.01} and compare these to a baseline result
obtained using very accurate PDE solves (η = 0). The data misfit at each iteration is
shown in Figure 5(a), the relative model error is shown in Figure 5(b), the tolerance
used for the PDE solves is shown in Figure 5(c), and the number of CGMN iterations
required to reach that tolerance is shown in Figure 5(d). The tolerance gradually
decreases (automatically), confirming that very accurate PDE solves are not needed
in the early stages of the inversion. Moreover, the results for η = 0.01 are nearly
identical to those for η = 0, while the former was roughly twice as cheap, as can be
seen by computing the total number of CGMN iterations needed from Figure 5(d).
The true and reconstructed models are shown in Figure 6. All the reconstructions
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Fig. 6. The true velocity model used for the Edam experiment is shown in (a). The reconstructed
models using (b) η = 0.1, (c) η = 0.05, (d) η = 0.01, and (e) η = 0 are also shown on the same color
scale. All the reconstructions are very reasonable when compared to the baseline result (e). Using
more accurate solves η = 0.01 (d) yields fewer artifacts and is almost identical to the baseline result,
however, the computational cost of the baseline was roughly twice as high.

are very reasonable when compared to the baseline result (Figure 6(e)). Using more
accurate solves η = 0.01 (Figure 6(d)) yields fewer artifacts and is almost identical to
the baseline result, however, the computational cost of the baseline result was roughly
twice as high.
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Fig. 12. Convergence in terms of the (a) misfit and (b) relative model error for the second
Overthrust experiment. The jumps in the misfit are caused by switching to a higher frequency. The
average (over all sources) tolerance used by CGMN for each outer iteration is shown in (c) while (d)
shows the corresponding number of CGMN iterations required. All results are shown as a function
of the effective number of complete passes through the data, and hence have the same computational
cost. The sample size is shown in (e).

struction between using all the sources and only a few is very clear; both Figures
13(a) and (c) show much more detail than Figure 13(b).

To obtain a comparable result using all the sources (i.e., b = 121) we needed 10
passes through the data for each frequency band. In this case, the stochastic method
is five times faster than a conventional approach.

5. Conclusions and discussion. In this paper, we outlined the challenges faced
by industry to come up with a versatile and practical 3D inversion scheme that scales
to large problem sizes with many right-hand sides. We made it clear that coming
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Fig. 13. Reconstructed models using a fixed sample size of (a) b0 = 1 and (b) b0 = 121, and
(c) an increasing sample size, starting from b0 = 1. The difference in reconstruction between using
all the sources and only a few is very clear. Both (a) and (c) show much more detail than (b).

up with scalable inversion schemes is extremely challenging because of (i) the need
to propagate tens to hundreds of wavelenghts, leading to large computational grids
(∼ 109 grid points), and (ii) the large amount of source experiments (typically thou-
sands), requiring thousands of PDE solves at each iteration of a conventional nonlin-
ear data-fitting algorithm. While industry is slowly incorporating FWI based on the
scalar wave equation into their workflows, major challenges remain given the recent
push towards multiparameter inversions with vector Helmholtz equations.

We address a number of these challenges by developing a new stochastic inversion
algorithm designed to work with small subsets of right-hand sides and inexact PDE
solves. Our method derives from the observation that we can allow for large errors in
the gradient calculations (as compared to the full gradient computed with exact PDE
solves and all the right-hand sides) in the course of a gradient-based optimization
algorithm, as long as these errors are gradually decreased as the algorithm converges.
The errors are controlled via heuristics that automatically adapt the sample size and
accuracy of the PDE solves.

To solve the Helmholtz equation we used the CGMN method and its parallel
extension, CARP-CG. While this preconditioner may not be optimal in the sense of
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Fig. 11. Reconstructed models using (a) b0 = 1 (a) and (b) b0 = 121. Although the reconstruc-
tions look similar at a first glance, closer inspection reveals that the results for b = 1 have slightly
more detail.

number of CGMN iterations in Figure 10(d), we see that they all require roughly the
same number of iterations. Finally, the used sample size is depicted in Figure 10(e),
showing that even when increasing the sample size, we never use all the sources in a
given iteration. The resulting reconstructions using b = 1 and b = 121 are shown in
Figure 11. Although the reconstructions look similar at a first glance, closer inspection
reveals that the result for b = 1 has slightly more detail. For this experiment, we do
not expect to see large differences between the different approaches because we run
a large number of outer iterations, even using all the sources (b = 121). We would
expect more dramatic differences when doing only a few passes though the data, which
is what we do in the next experiment.

Experiment 2. To illustrate the multiscale inversion approach, we invert fre-
quencies f = 4, 6, 8 Hz consecutively using a grid spacing of 100 m, 66.67 m, and
50 m, respectively, all with five points for the PML. This leads to total grid sizes of
36× 61× 61, 48× 86× 86, and 61× 111× 111. We use either a fixed number of b = 1
and b = 121 sources or an increasing number of sources, starting from b = 1. For all
cases we perform two passes through the data for each frequency. The convergence
histories in terms of both the misfit and the model error are shown in Figures 12(a)
and (b). The sudden jumps in the misfit are caused by switching from one frequency
to the next. The stochastic method outperforms the regular approach that uses all
the sources. Moreover, gradually increasing the sources yields a better result than
using only one source at each iteration. The tolerances and corresponding number of
CGMN iterations are shown in Figures 12(c) and (d). Again, the tolerance decreases
gradually as the iterations proceed. The corresponding number of CGMN iterations
increases mildly, partly because the tolerance decreases but also because the grid is
refined when going to a higher frequency. Figure 12(d) shows the sample size. The in-
creasing strategy never uses more than a small fraction of the total number of sources.
Finally, the reconstructed models are shown in Figure 13. The difference in recon-
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Re-ordering the computations
We need to solve forward and adjoint 
system(s)

Which can be parallelized when 
considering

<latexit sha1_base64="RYOonpQRewwqXdaFL9AlDcyJ7q0=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh4UKl48tuC2hXYp2TTbxmaTJckKZel/8OJBEa/+H2/+G9N2D1p9MPB4b4aZeWHCmTau++UUVlbX1jeKm6Wt7Z3dvfL+QUvLVBHqE8ml6oRYU84E9Q0znHYSRXEcctoOx7czv/1IlWZS3JtJQoMYDwWLGMHGSq0bH12jZr9ccavuHOgv8XJSgRyNfvmzN5AkjakwhGOtu56bmCDDyjDC6bTUSzVNMBnjIe1aKnBMdZDNr52iE6sMUCSVLWHQXP05keFY60kc2s4Ym5Fe9mbif143NdFlkDGRpIYKslgUpRwZiWavowFTlBg+sQQTxeytiIywwsTYgEo2BG/55b+kdVb1zqu1Zq1Sv8rjKMIRHMMpeHABdbiDBvhA4AGe4AVeHek8O2/O+6K14OQzh/ALzsc3CVGOHQ==</latexit>

AU = Q
<latexit sha1_base64="+RM4AUNhHcE2k6NjZaACrP3efSs=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16WS1CFSyJFPWgUNGDxwhNW2jTstlu26WbTdjdiCX0r3jxoIhX/4g3/43bNgdtfTDweG+GmXl+xKhUlvVtZJaWV1bXsuu5jc2t7R1zN1+TYSwwcXHIQtHwkSSMcuIqqhhpRIKgwGek7g9vJ379kQhJQ15Vo4h4Aepz2qMYKS11zPxN+6QGr6HTrrYOio57enfcMQtWyZoCLhI7JQWQwumYX61uiOOAcIUZkrJpW5HyEiQUxYyMc61YkgjhIeqTpqYcBUR6yfT2MTzSShf2QqGLKzhVf08kKJByFPi6M0BqIOe9ifif14xV79JLKI9iRTieLerFDKoQToKAXSoIVmykCcKC6lshHiCBsNJx5XQI9vzLi6R2VrLPS+WHcqFylcaRBfvgEBSBDS5ABdwDB7gAgyfwDF7BmzE2Xox342PWmjHSmT3wB8bnDxqRkeQ=</latexit>

A⇤V = PT(PU �D)

<latexit sha1_base64="/SeLd78OyRqp4E6HANvZJPo8YGI=">AAAB8XicbVBNS8NAEJ3Ur1q/oh69LBZBPJREinpQqHjxWKFf2KZls920SzebsLsRSui/8OJBEa/+G2/+G7dtDtr6YODx3gwz8/yYM6Ud59vKrayurW/kNwtb2zu7e/b+QUNFiSS0TiIeyZaPFeVM0LpmmtNWLCkOfU6b/uhu6jefqFQsEjU9jqkX4oFgASNYG+nxtnvWRDeo2q317KJTcmZAy8TNSBEyVHv2V6cfkSSkQhOOlWq7Tqy9FEvNCKeTQidRNMZkhAe0bajAIVVeOrt4gk6M0kdBJE0JjWbq74kUh0qNQ990hlgP1aI3Ff/z2okOrryUiTjRVJD5oiDhSEdo+j7qM0mJ5mNDMJHM3IrIEEtMtAmpYEJwF19eJo3zkntRKj+Ui5XrLI48HMExnIILl1CBe6hCHQgIeIZXeLOU9WK9Wx/z1pyVzRzCH1ifP4Jnj4A=</latexit>

A⇤W = PT



Computational cost can be further 
reduced by stochastic subsampling

Re-ordering the computations

Parallel adjoint-state

NUMERICAL EXAMPLE

This frequency domain seismic waveform inversion example
is based on algorithm 3 and uses only gradient and objective
information. The true model is the 2D Marmousi model with
a water layer of 200m on top. The sources are 50m apart and
located near the water surface. The receivers are located on
the ocean floor and there is also 50m distance between the
receivers. A Ricker wavelet with 10Hz peak frequency was
used. We employ a frequency continuation strategy, starting
with 3Hz data, ending with 10Hz data. The true, initial and final
models are shown in Figure 1 . The result using 8 sources and
8 receivers is a bit noisy, but the larger scale characteristics are
at the correct locations. There is little difference between the
result with all sources and all receivers active at every iteration,
and the one where 16 sources and receivers are used. The
results using 8 and 16 sources/receivers take the same time
to compute, but the number of compute nodes is 8+8 versus
16+16. The result using all sources and receivers takes twice
as long to compute, because it is based on the sequential adjoint
state algorithm. Algorithm 2 cannot be used in this case, as it
would require an excessive number of compute nodes.

CONCLUSIONS

In this work we presented a parallel reformulation of the sequen-
tial adjoint-state method to compute the gradient of a nonlinear
least-squares objective function. The reformulation enables
parallel solution of the forward and adjoint PDE. The proposed
algorithm requires one PDE solve per source and one per re-
ceiver. This results in a 2⇥ speedup if the number of sources
plus the number of receivers is equal to the number of PDEs
that can be solved in parallel on the available computational
resources. The computations are the same as the adjoint-state
method requires: solutions of linear systems involving the PDE,
A(m), and its adjoint A(m)⇤. A byproduct of the parallelized
adjoint-state algorithm is the availability of fields which can
be used to apply the Gauss-Newton Hessian without the need
to recompute wavefields. A practical stochastic optimization
strategy with source/receiver randomization and subsampling
is used to show good waveform inversion results can be ob-
tained with only a few active sources and receivers at every
full-waveform inversion iteration. Future work will focus on
large scale 3D waveform inversion problems. In 3D, the main
question is how many sources and receivers are required at each
FWI iteration.
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Figure 1: True, inital and estimated models for various subsam-
pling ratios.
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to compute, but the number of compute nodes is 8+8 versus
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as long to compute, because it is based on the sequential adjoint
state algorithm. Algorithm 2 cannot be used in this case, as it
would require an excessive number of compute nodes.
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Challenges for solvers
§ A simple preconditioner
§ Harnessing inexactness
§ Re-oredering the computations
§ Data-augmented systems



Data-augmented systems
In the penalty approach we need to 
solve

§ How are direct solvers affected?
§ Can we re-use existing 

preconditioners?
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Start from normal equations

and re-write

so

Data-augmented systems
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§ is tall and skinny
§ Replace       by  
§ Use randomized subsampled to 

reduce size of 

Data-augmented systems
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Wrap-up
§ Inverse problems pose interesting 

challenges and opportunities for 
PDE-solvers

§ Robustness may be more important 
than accuracy

§ Need all the tools in the shed to 
make it work
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