

Large-scale inverse problems with time-harmonic waves

Tristan van Leeuwen

Medical imaging
ultrasound (sound)
MRI (EM)
Optical tomography (light)

Outline

- The inverse problem
- PDE-constrained optimisation
- Challenges for solvers
- Wrap-up

The Inverse Problem

The Inverse Problem

Recover coefficients $m(\mathbf{x})$ from measurements

$$d_{ijk} = u_i(\omega_j, \mathbf{x}_k)$$

where

$$(\omega^2 m(\mathbf{x}) + \nabla^2) u_i(\omega, \mathbf{x}) = q_i(\omega, \mathbf{x})$$

PDE-constrained optimisation

 $\min_m \boldsymbol{J}(m)$

PDE-constrained optimisation

Discretise-then-optimise:

$$\min_{\mathbf{m},U} \sum_{i=1}^{n_s} \|P\mathbf{u}_i - \mathbf{d}_i\|_2^2 \quad \text{s.t.} \quad A(\mathbf{m})\mathbf{u}_i = \mathbf{q}_i$$

- All-at-once
- Reduced
- Penalty method

All-at-once methods

$$\min_{\mathbf{m},U} \max_{V} \sum_{i=1}^{n_s} \|P\mathbf{u}_i - \mathbf{d}_i\|_2^2 + \mathbf{v}_i^T (A(\mathbf{m})\mathbf{u}_i - \mathbf{q}_i)$$

- Set up saddle-point problem for (\mathbf{m}, U, V)
- Solve using Newton-Krylov method
- Avoids solving PDE at each step
- Requires large amount of storage

Reduced-space approach

$$\min_{\mathbf{m}} \sum_{i=1}^{n_s} \|PA(\mathbf{m})^{-1} \mathbf{q}_i - \mathbf{d}_i\|_2^2$$

- Solve PDE explicitly for each source term
- Non-linear optimization in m
- Requires adjoint-solve to compute gradient w.r.t. m

A penalty method

$$\min_{\mathbf{m},U} \sum_{i=1}^{n_s} \|P\mathbf{u}_i - \mathbf{d}_i\|_2^2 + \lambda \|A(\mathbf{m})\mathbf{u}_i - \mathbf{q}_i\|_2^2$$

- Add PDE as quadratic penalty
- Solve for U explicitly
- Non-linear optimization in m
- No explicit adjoint-solve required
- Reduces the non-linearity

- Need to solve for many r.h.s.
- Robust and predictable convergence behaviour is desired
- May not need a very accurate solution
- Solve overdetermined problems involving Helmholtz

- A simple preconditioner
- Harnessing inexactness
- Re-ordering the computations
- Data-augmented systems

- A simple preconditioner
- Harnessing inexactness
- Re-ordering the computations
- Data-augmented systems

A symmetric Kaczmarz-sweep leads to

$$\mathbf{u}^{(k+1)} = Q\mathbf{u}^{(k)} + R\mathbf{q}$$

with

 $Q = I - A^* H A, \quad H = \alpha (2 - \alpha) (D + \alpha U)^{-1} D (D + \alpha L)^{-1}$

Now solve using CG.

Fourier analysis yields an optimal choice for α for each frequency

e p¹⁵econdition ^{y [km]} Comparison^{x [km]} other simple methods^{x [km]}

υ

f [Hz]	Ν	CGMN	BiCGs	GMRES(5)
0.5	23276.0	308.0	81.0	139.0
1.0	186208.0	564.0	150.0	425.0
2.0	1455808.0	960.0	911.0	1603.0
4.0	11646464.0	2123.0	*	*

Block-iterative methods

f [Hz]	Ν	block size	iter	time [s]
0.5	23276	1	291	35.9
		2	278	43.3
		5	200	29.7
		10	115	15.2
1.0	186208	1	484	2859.9
		5	477	2419.8
		10	456	2279.7
		50	220	1067.7
2.0	1455808	1	828	125358.2
		10	811	122732.7
		50	716	109424.7
		100	559	82938.2

Simple preconditioning Parallelization

The method is amenable to FPGA accelaration

Amsterdam '14

Amsterdam

- A simple preconditioner
- Harnessing inexactness
- Re-ordering the computations
- Data-augmented systems

Harnessing inexactness

- Use stochastic approximation to compute gradient
- PDE-solves need not be more accurate than induced error
- Use an adaptive tolerance based on current data-fit

Harnessing inexactness

z [km]

[[] [] z

(c)

- A simple preconditioner
- Harnessing inexactness
- Re-ordering the computations
- Data-augmented systems

Re-ordering the computations

We need to solve forward and adjoint system(s)

$$AU = Q$$
$$A^*V = P^T(PU - D)$$

Which can be parallelized when considering

$$A^*W = P^T$$

Computational cost can be further, sources, 8 receivers

final velocity model, 8 sources, 8 receivers <u></u> 1500 지 x [m]

final velocity model, all sources and receivers

final velocity model, all sources and receivers E 1500

x [m]

- A simple preconditioner
- Harnessing inexactness
- Re-oredering the computations
- Data-augmented systems

Data-augmented systems

In the penalty approach we need to solve

$$\begin{pmatrix} \lambda A \\ P \end{pmatrix} \mathbf{u} = \begin{pmatrix} \lambda \mathbf{q} \\ \mathbf{d} \end{pmatrix}$$

- How are direct solvers affected?
- Can we re-use existing preconditioners?

 $\begin{pmatrix} \lambda H(\mathbf{m}) \\ P \end{pmatrix}$ $\mathbf{u} - \begin{pmatrix} \lambda \mathbf{q} \\ \mathbf{d} \end{pmatrix}$ **CWI** $\overline{\mathbf{u}} = \arg \min$ u

Data-augmented systems

Data-augmented systems Start from normal equations

$$(A^*A + P^TP)\mathbf{u} = A^*\mathbf{q} + P^T\mathbf{d}$$

and re-write

$$(I + WW^*) A\mathbf{u} = \mathbf{q} + W\mathbf{d}, \quad W = A^{-*}P^T$$

SO

$$\mathbf{u} = A^{-1} \left(I + WW^* \right)^{-1} \left(\mathbf{q} + W\mathbf{d} \right)$$

Data-augmented systems

$$\mathbf{u} = A^{-1} \left(I + WW^* \right)^{-1} \left(\mathbf{q} + W\mathbf{d} \right)$$

- W is tall and skinny
- **Replace** A^{-1} by M
- Use randomized subsampled to reduce size of W

Wrap-up

- Inverse problems pose interesting challenges and opportunities for PDE-solvers
- Robustness may be more important than accuracy
- Need all the tools in the shed to make it work

References

- Peters, B., Herrmann, F., & Van Leeuwen, T. (2016). Parallel reformulation of the sequential adjoint-state method. In SEG Technical Program Expanded Abstracts 2016 (pp. 1411–1415). Society of Exploration Geophysicists. van Leeuwen, T., Gordon, D., Gordon, R., Herrmann, F. J., & Hermann, F. J. (2012). Preconditioning the Helmholtz equation via row-projections. 74th EAGE Conference and Exhibition Incorporating EUROPEC 2012.
- Petrenko, A., van Leeuwen, T., Oriato, D., Tilbury, S., & Herrmann, F. J. F. J. (2014). Accelerating an Iterative Helmholtz Solver with FPGAs. *76th EAGE Conference and Exhibition 2014*, *June 2014*, 16–19. van Leeuwen, T., & Herrmann, F. J. (2014). 3D Frequency-Domain Seismic Inversion with Controlled Sloppiness. *SIAM Journal on Scientific Computing*, *36*(5), S192–S217.
- Peters, B., Herrmann, F. J. F. J., & van Leeuwen, T. (2014). Wave-equation Based Inversion with the Penalty Method-Adjoint-state Versus Wavefield-reconstruction Inversion. *76th EAGE Conference and Exhibition 2014*.
- Leeuwen, T. van, & Herrmann, F. J. (2016). A penalty method for PDE-constrained optimization in inverse problems. *Inverse Problems*, *32*(1), 015007.
- Esser, E., Guasch, L., van Leeuwen, T., Aravkin, A. Y., & Herrmann, F. J. (2018). Total variation regularization strategies in full-waveform inversion. *SIAM Journal on Imaging Sciences*, *11*(1), 376–406.
- Leeuwen, T. Van, & van Leeuwen, T. (2019). A note on extended full waveform inversion. ArXiv Preprint ArXiv:1904.00363, 1–10.
- Peters, B., Herrmann, F., & van Leeuwen, T. (2014). Wave-equation Based Inversion with the Penalty Method -Adjoint-state Versus Wavefield-reconstruction Inversion. *76th EAGE Conference and ..., June 2014*, 16–19. van Leeuwen, T., & Herrmann, F. J. (2013). Mitigating local minima in full-waveform inversion by expanding the search space. *Geophysical Journal International*, *195*(1), 661–667.
- Herrmann, F. J., Hanlon, I., Kumar, R., Leeuwen, T. van, Li, X., Smithyman, B., Wason, H., Calvert, A. J., Javanmehri, M., & Takougang, E. T. (2013, September 3). Frugal full-waveform inversion: From theory to a practical algorithm. *The Leading Edge*, *32*(9), 1082–1092.