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Some classical results
▶ Consider the focusing cubic nonlinear Schrödinger equation on R2

i∂tu −∆u−|u|2u = 0.

This equation has conservation laws

M(u(t)) :=
1

2

�
R2

|u(t, x)|2dx = M(u0);

E (u(t))) :=
1

2

�
R2

|∇u(t, x)|2dx−1

4

�
R2

|u(t, x)|4dx .

▶ Global well-posedness holds for u0 ∈ H1(R2) iff ∥u0∥L2 < ∥Q∥L2 : dispersive

estimates + conservation of energy.

▶ Here Q is the unique positive radial minimal solution to

−∆Q + Q − |Q|2Q = 0.

This is also the optimizer of the Gagliardo-Nirenberg inequality

∥u∥4L4 ≤ CGNS∥∇u∥2L2∥u∥2L2 , with CGNS =
2

∥Q∥2L2

.
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The Anderson NLS
What happens if we add a rough potential?

▶ Consider the cubic Schrödinger equation with spatial white noise potential

i∂tu −∆u + uξ − |u|2u = 0 on T2.

ξ is a Gaussian field with covariance E
[
ξ(x)ξ(y)

]
= δ0(x , y). In particular ξ is

a random distribution: ξ ∈ C−1−(T2) a.s.

▶ Local and global well-posedness? Is there a dichotomy for globalizing any finite

energy solution? Even if u(0) ∈ C∞(T2), uξ ∈ C−1−(T2) so

u(t) ∈ H−1−(T2) and |u|2u is ill-defined.

▶ Take a smooth approximation ξε = χε ⋆ ξ and look at the global smooth

solution uε. Then [Hairer-Labbé ’15, Debussche-Weber ’18, Debussche-Martin

’19, Tzvetkov-Visciglia ’21&’22] define Yε = ∆−1ξε ∈ C 1−(T2) and transform

vε = eYεuε. Then vε solves

i∂tvε −∆vε + 2∇vε · ∇Yε + vε|∇Yε|2 − |vε|2vεe−2Yε = 0.

Renormalization is needed!
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Renormalization and global well-posedness

▶ Define vε(t) = e−icεt+Yεuε with cε = E|∇Yε|2 ∼ | log ε|, then vε solves

i∂tvε −∆vε + 2∇vε · ∇Yε + vε: |∇Yε|2 :− |vε|2vεe−2Yε = 0

with : |∇Yε|2 : = |∇Yε|2 − cε converges a.s. in C 0−(T2).

[Debussche-Weber ’18, Debussche-Martin ’19, Tzvetkov-Visciglia

’21&’22]

Assume v(0) ∈ H2(T2), i.e. eY u0 ∈ H2(T2). Then vε converges a.s. to the unique

global solution v ∈ CtH
2−(T2) to

i∂tv −∆v + 2∇v · ∇Y + v : |∇Y |2 : −|v |2ve−2Y = 0.

▶ Proof relies on Brezis-Gallouet inequality since there is no conservation law at

this level of regularity regularity.

▶ What about lower regularity?
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The Anderson Hamiltonian

▶ Let us go back to the renormalized equation

i∂tuε −∆uε + uεξε − uεcε − |uε|2uε = 0.

▶ Start with the linear equation (eigenvalue problem)

−∆u + u(ξε − cε)− λu = 0, λ ∈ C. We need to impose a structure on u.

The family of operators Hε = −∆+ ξε − cε : H
2(T2) → L2(T2) converges almost

surely in resolvent norm to an unbounded operator H on L2(T2).

There is an enhanced noise Ξ(ξ) ∈ C 1− such that Ξ(ξε) → Ξ(ξ) and the domain of

H is random and consists of functions behaving locally as Ξ modulo smooth (H2)

remainder;

It holds D(H) ⊂ C 1− but C∞ ̸∈ D(H);

The operator H : D(H) → L2(T2) is closed, self-adjoint, and with compact resolvent

and inf σ(H) > −∞ a.s.

There exists a random λ > 0 such that H + λ > 0. Then D
(
(H + λ)

s
2
)
= Hs(T2) for

s ∈ [0; 1) but not s ≥ 1.
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Further remarks

▶ [Allez-Chouk ’15] on T2, [Gubinelli-Ugurcan-Zachhuber ’19] on T3: using

para-controlled calculus.

▶ [Labbé ’19] using regularity structures.

▶ [Mouzard ’21], [Bailleul-Dang-Mouzard ’22] on M. In particular there is the

Weyl law λn ∼ 4π
|M|n. On M = T2, we should have better localization of the

spectrum.

▶ As for the dynamical problem, eY u0 ∈ H2 ⇐⇒ u0 is para-controlled by Y .

Here Ξ = Y+more regular terms to get better cancellations, i.e.

H : D(H) → L2(T2) instead of H : D(H) → H0−(T2).

▶ [Gubinelli-Ugurcan-Zachhuber ’19] Global well-posedness of Anderson-NLS in

D(H).

▶ [Mouzard-Zachhuber ’21] Local well-posedness in D
(
(H + λ)

s
2

)
, s > 1

2 using

dispersive estimates.

▶ Propagation of higher Sobolev regularity is not known, and maybe false.
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The equation
The starting point for optimal mass threshold in globalizing is to consider the

nonlinear stochastic elliptic PDE (Anderson ground state equation)

−∆u + uξ − |u|2u = 0

for u : T2 → R. Existence, uniqueness of solutions?

[Bailleul-Eulry-R. ’22]

The (renormalized) ground state equation has infinitely many solutions.

▶ Again, as ξ has almost surely very low regularity, uξ is ill-defined for general u.

Renormalization is needed.

▶ The result holds for much more general variable coefficients nonlinearities.

▶ In the case without potential, uniqueness modulo symmetries of the equation.

Here: no (path-wise) rotational invariance, sign definiteness, translation

invariance. In particular, extension from T2 to R2 unclear due to lack of

compact embeddings.
7/9 Tristan Robert Variational methods for some singular stochastic elliptic PDEs



Variational approach
▶ Define Φ(u) =

1

2
⟨u, (H + λ)u⟩ − 1

4

�
T2

|u|4dx − λ

2

�
T2

|u|2 for u ∈ D(
√
H).

▶ u ∈ D(
√
H) is a weak solution to the ground state equation ⇔ u is a critical

point of Φ.

Φ satisfies the Palais-Smale condition and has a mountain pass geometry on

D(
√
H)+(T2).

▶ Other elliptic SPDES: [Otto-Weber ’19], [Albeverio-De Vecchi-Gubinelli ’20].

▶ Here, no smallness or coercivity assumption is needed.

▶ Variational approach for singular SPDEs only investigated in

[Ignat-Otto-Ried-Tsatsoulis ’20], [Duan-Zhang ’21].

Symmetry u → −u: infinite number of solutions.

▶ The spectral approach allows to deal with non-variational equations, for

example the singular stochastic defocusing Choquard-Pekar equation on

−∆u + uξ+⟨∇⟩−α(|u|p)|u|q−2u = 0 on T2, for any p, q > 1.
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Thank you for your attention!
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