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PRESCRIPTIONS FOR ABELIAN VARIETIES
There was a flurry of activity in 2021.

THEOREM (Howe, Kedlaya 2021)

For every n � 1, there is an ordinary abelian variety over F2
with #A(F2) = n.

THEOREM (Marseglia-S. 2023)

For every finite abelian group G, there is an ordinary abelian
variety over F2 with A(F2) ⇠= G.

I Also 2021: further results for prescribing point counts from
Kedlaya and from vBCLPS. We also extended these results
to analogous group-theoretic prescriptions.

I This talk’s focus: General tools for understanding groups
of rational points.
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ONE STRATEGY FOR PROOFS
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ELLIPTIC CURVES OVER Fq: CRASH COURSE

I An elliptic curve E over Fq is a smooth projective curve
whose group of rational points E(Fq) is an abelian group.

I E has a Frobenius endomorphism Frob induced by x 7! xq.
I We can identify Frob with an algebraic integer ⇡ 2 C of

absolute value pq.
I ⇡ is a root of the characteristic polynomial of Frob.

I The (Fq-rational) endomorphism ring
End(E) = {' : E ! E} is isomorphic to either...

(If ⇡ 62 Z) An order O satisfying Z[⇡] ✓ O ✓ OK for K = Q(⇡);
(If ⇡ 2 Z) A maximal order O in a quaternion algebra

Q+Qi +Qj +Qij with i2, j2 2 Q and ij = �ji.
I Actually, E(Fq) isn’t just a group - it is a module over

End(E).
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DESCRIBING THE MODULE STRUCTURE

THEOREM (Lenstra, 1994)

Let E be an elliptic curve over Fq with Frobenius ⇡.
(a) If End(E) is commutative, then

E(Fq) ⇠= End(E)/(1 � ⇡)

is an isomorphism of End(E)-modules.
(b) If End(E) is noncommutative, then

E(Fq) ⇠= (Z/(1 � ⇡)Z)2

is an isomorphism of groups whose End(E)-module
structure is given by End(E)/(1 � ⇡) ⇠= Mat2(Z/(1 � ⇡)Z).

Remark: Galois theory says E(Fq) = ker(1 � ⇡).
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ABELIAN VARIETIES OF DIMENSION g > 1

I Abelian varieties provide a higher-dimensional analogue
of elliptic curves: Smooth projective varieties with an
abelian group structure on the rational points.

I In his 1994 paper, Lenstra showed that a naive
generalization of his theorem fails even for abelian
varieties of dimension 2.

I But the story continues nonetheless.
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DESCRIBING THE MODULE STRUCTURE

THEOREM (S., 2021)

Let A be a simple abelian variety over Fq with Frobenius ⇡.
(a) If End(A) is commutative Gorenstein, then

A(Fq) ⇠= End(A)/(1 � ⇡)

is an isomorphism of End(A)-modules.

Remarks:
I The Gorenstein condition was already present, and

automatically satisfied, in the elliptic curve version.
I The “simple” hypothesis can be deleted for part (a), and

Gorenstein is only required locally at primes over (1 � ⇡).
I Joint work with Marseglia (2022).
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DESCRIBING THE MODULE STRUCTURE

THEOREM (S., 2021) - Weak version for brevity

Let A be a simple abelian variety over Fq with Frobenius ⇡.
(b) If the center Z of End(A) is a maximal order and

d = 2 dim(A)/[Q(⇡) : Q], then

A(Fq) ⇠= (Z/(1 � ⇡)Z)d

is an isomorphism of groups whose End(A)-module
structure is given by End(A)/(1 � ⇡) ⇠= Matd(Z/(1 � ⇡)Z).

Remarks:
I Like before, the hypothesis that Z is maximal was

automatically satisfied in the elliptic curve version.
I This part is proven via kernel ideals in the sense of

Waterhouse.
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DESCRIBING THE GROUP STRUCTURE
A different piece of machinery is built upon the foundation of
categorical equivalences developed by Deligne, Howe, and
Centeleghe–Stix.

THEOREM (Marseglia., 2021)

Let A be an abelian variety over Fq with Frobenius ⇡. If End(A)
is commutative and either A is ordinary or q = p is prime, then
there is an equivalence of categories

F : {Fq � isogeny class of A}/⇠= �! { ideals of Z[⇡,⇡]}/ ⇠ .

If F(A) = I, then A(Fq) ⇠= I/I(1 � ⇡) are isomorphic groups.

I Remark: The righthand side is a so-called ideal class
monoid, which is similar to a class group except that there
are non-invertible ideals.
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COMBINATION OF TOOLS

When looking towards applications, these tools have
complementary strengths.
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FIRST CONSEQUENCE

THEOREM (Marseglia-S. 2021)

For every finite abelian group G, there is an ordinary abelian
variety over F2 with A(F2) ⇠= G.

Proof Sketch: Let n � 1.
1. Howe and Kedlaya: there is ordinary A/F2 with A(F2) = n

and End(A) commutative.
2. The isogeny class of A is defined by Weil polynomial f (x)

with f (1) = n and Q[⇡] = Q[x]/(f ).
3. Algebra: show Z[⇡,⇡]/(1 � ⇡) ⇠= Z/nZ is a cyclic group.
4. Using either of our tools, this algebraic fact is translated to

the world of abelian varieties: we have B ⇠ A with

B(F2) ⇠= Z[⇡,⇡]/(1 � ⇡) ⇠= Z/nZ.

5. Every finite abelian group is the product of cyclic groups.
QED.
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POINTERS TOWARDS ADDITIONAL CONSEQUENCES

Joint work with Stefano Marseglia (2022).
1. Explicit examples of A/Fq with A(Fq) 6⇠= A_(Fq).

I Answers a question of Poonen from AMS MRC 2019.
I Examples are easy to find for dimensions 2  g  5.
I Context: none of the arrows below are reversible in general.

A ⇠= Jac(C) +3 A is princ. pol. +3 A ⇠= A_ +3 A(Fq) ⇠= A_(Fq)

On the other hand, we prove that A(Fq) ⇠= A_(Fq) whenever
End(A) satisfies certain hypotheses concerning its so-called
Cohen-Macaulay type and complex conjugation.
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POINTERS TOWARDS ADDITIONAL CONSEQUENCES

2. Sufficient conditions for the group structure of A(Fq) to be
uniquely determined by End(A) in terms of
Cohen-Macaulay type.

3. Characterization of isogeny classes I over Fq in which
A(Fq) is cyclic for every A 2 I.
I Theorem: If A/Fq has cyclic isogeny class, then

A ⇠ A1 ⇥ Acom where #A1(Fq) = 1 and End(Acom) is
commutative.

I When End(A) is commutative, the characterization is in
terms of conductor ideals.

4. Characterization of isogeny classes I over Fq in which
every abelian group of order N occurs as A(Fq) for some
A 2 I.


	Introduction
	Elliptic Curves
	Higher dimensions
	Applications

