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PRESCRIPTIONS FOR ABELIAN VARIETIES
There was a flurry of activity in 2021.

THEOREM (Howe, Kedlaya 2021)

For every n > 1, there is an ordinary abelian variety over F
with #A(F) = n.

THEOREM (Marseglia-S. 2023)

For every finite abelian group G, there is an ordinary abelian
variety over F, with A(FFp) = G.

» Also 2021: further results for prescribing point counts from
Kedlaya and from vBCLPS. We also extended these results
to analogous group-theoretic prescriptions.

» This talk’s focus: General tools for understanding groups
of rational points.
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ONE STRATEGY FOR PROOFS

(Non)-Commutative Algebra

Number Fields, Etale Algebras,
Ideals, Modules

2. Describe structures here

1. Develop bridge
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3. Answered questions

Abelian Varieties over F,

Groups of Rational Points
Dual Varieties, Polarizations
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ELLIPTIC CURVES OVER [F;: CRASH COURSE

» An elliptic curve E over [, is a smooth projective curve
whose group of rational points E(IF,) is an abelian group.

» E has a Frobenius endomorphism Frob induced by x ~ x1.
» We can identify Frob with an algebraic integer m € C of
absolute value /7.
» 7 is aroot of the characteristic polynomial of Frob.
» The (F;-rational) endomorphism ring
End(E) = {¢ : E — E} is isomorphic to either...
(If 7 ¢ Z) An order O satisfying Z[r] C O C Ok for K = Q(n);
(If € Z) A maximal order O in a quaternion algebra
Q + Qi + Qj + Qij with 2, > € Q and ij = —ji.
» Actually, E(FF,) isn’t just a group - it is a module over
End(E).
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DESCRIBING THE MODULE STRUCTURE

THEOREM (Lenstra, 1994)

Let E be an elliptic curve over I, with Frobenius 7.

(a) If End(E) is commutative, then
E(F;) = End(E)/(1 — )

is an isomorphism of End(E)-modules.

(b) If End(E) is noncommutative, then
E(Fy) = (2/(1 - m)Z)*

is an isomorphism of groups whose End(E)-module
structure is given by End(E) /(1 — m) = Maty(Z/(1 — 7)Z).

Remark: Galois theory says E(IF;) = ker(1 — 7).
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ABELIAN VARIETIES OF DIMENSION g> 1

» Abelian varieties provide a higher-dimensional analogue
of elliptic curves: Smooth projective varieties with an
abelian group structure on the rational points.

» In his 1994 paper, Lenstra showed that a naive
generalization of his theorem fails even for abelian
varieties of dimension 2.

» But the story continues nonetheless.
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DESCRIBING THE MODULE STRUCTURE

THEOREM (S., 2021)

Let A be a simple abelian variety over IF; with Frobenius 7.

(a) If End(A) is commutative Gorenstein, then
A(F;) 2 End(A)/(1 — )
is an isomorphism of End(A)-modules.

Remarks:

» The Gorenstein condition was already present, and
automatically satisfied, in the elliptic curve version.
» The “simple” hypothesis can be deleted for part (a), and
Gorenstein is only required locally at primes over (1 — 7).
» Joint work with Marseglia (2022).
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DESCRIBING THE MODULE STRUCTURE
THEOREM (5., 2021) - Weak version for brevity

Let A be a simple abelian variety over I, with Frobenius .

(b) If the center Z of End(A) is a maximal order and
d =2dim(A)/[Q(n) : Q)], then

A(Fg) = (Z/(1 — m)Z)"

is an isomorphism of groups whose End(A)-module
structure is given by End(A)/(1 — 7) = Maty(Z/(1 — 7)Z).

Remarks:
» Like before, the hypothesis that Z is maximal was
automatically satisfied in the elliptic curve version.

» This part is proven via kernel ideals in the sense of
Waterhouse.
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DESCRIBING THE GROUP STRUCTURE

A different piece of machinery is built upon the foundation of
categorical equivalences developed by Deligne, Howe, and
Centeleghe-Stix.

THEOREM (Marseglia., 2021)

Let A be an abelian variety over F; with Frobenius . If End(A)
is commutative and either A is ordinary or g = p is prime, then
there is an equivalence of categories

F : {F; —isogeny class of A} /= — {ideals of Z[r, 7|}/ ~ .
If F(A) =1, then A(F,;) = I/I(1 — 7) are isomorphic groups.

» Remark: The righthand side is a so-called ideal class
monoid, which is similar to a class group except that there
are non-invertible ideals.
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COMBINATION OF TOOLS

When looking towards applications, these tools have
complementary strengths.

S. 2021:

In every simple
isogeny class,
applies to some
of the abelian
varieties.

Marseglia 2021: In certain isogeny
classes, applies to all abelian varieties.
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FIRST CONSEQUENCE
THEOREM (Marseglia-S. 2021)

For every finite abelian group G, there is an ordinary abelian
variety over F, with A(FF,) = G.

Proof Sketch: Let n > 1.
1. Howe and Kedlaya: there is ordinary A/F, with A(F,) =n
and End(A) commutative.
2. The isogeny class of A is defined by Weil polynomial f(x)
with f(1) = n and Q] (x]/(f)-
Algebra: show Z[r, 7|/ (1 - 7r) Z/nZ is a cyclic group.
4. Using either of our tools, this algebraic fact is translated to
the world of abelian varieties: we have B ~ A with

B(Fy) = Z[r,7/(1 — ) = Z/nZ.

5. Every finite abelian group is the product of cyclic groups.
QED.

W
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POINTERS TOWARDS ADDITIONAL CONSEQUENCES

Joint work with Stefano Marseglia (2022).
1. Explicit examples of A/F, with A(F,) % AY(F,).
» Answers a question of Poonen from AMS MRC 2019.

» Examples are easy to find for dimensions 2 < g < 5.
» Context: none of the arrows below are reversible in general.

A = Jac(C) => Ais princ. pol. = A = AY = A(F,) = A (FF,)
On the other hand, we prove that A(F,;) = AY(F,;) whenever

End(A) satisfies certain hypotheses concerning its so-called
Cohen-Macaulay type and complex conjugation.
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POINTERS TOWARDS ADDITIONAL CONSEQUENCES

2. Sufficient conditions for the group structure of A(F;) to be
uniquely determined by End(A) in terms of
Cohen-Macaulay type.

3. Characterization of isogeny classes Z over F; in which
A(Fy) is cyclic for every A € T.

» Theorem: If A/F, has cyclic isogeny class, then
A ~ A1 X Acom Where #A,(F;) = 1 and End(Acom) is
commutative.

» When End(A) is commutative, the characterization is in
terms of conductor ideals.

4. Characterization of isogeny classes 7 over I, in which
every abelian group of order N occurs as A(F;) for some
Ael.
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