Introduction	Elliptic Curves	Higher dimensions	Applications
00	00	00000	000

Abelian varieties over \mathbb{F}_q and their groups of rational points

Caleb Springer

University College London & Heilbronn Institute for Mathematical Research

13 April 2023

Introduction	Elliptic Curves	Higher dimensions	Applications
•0	00	00000	000

PRESCRIPTIONS FOR ABELIAN VARIETIES There was a flurry of activity in 2021.

THEOREM (Howe, Kedlaya 2021)

For every $n \ge 1$, there is an ordinary abelian variety over \mathbb{F}_2 with $\#A(\mathbb{F}_2) = n$.

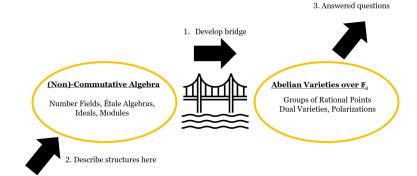
THEOREM (Marseglia-S. 2023)

For every finite abelian group *G*, there is an ordinary abelian variety over \mathbb{F}_2 with $A(\mathbb{F}_2) \cong G$.

- Also 2021: further results for prescribing point counts from Kedlaya and from vBCLPS. We also extended these results to analogous group-theoretic prescriptions.
- This talk's focus: General tools for understanding groups of rational points.

Introduction Elliptic C	urves Higher dimension	s Applications
00 00	00000	000

ONE STRATEGY FOR PROOFS



	ns
00 00 0000 000	

ELLIPTIC CURVES OVER \mathbb{F}_q : CRASH COURSE

- ► An elliptic curve *E* over F_q is a smooth projective curve whose group of rational points *E*(F_q) is an abelian group.
- *E* has a Frobenius endomorphism Frob induced by $x \mapsto x^q$.
- We can identify Frob with an algebraic integer $\pi \in \mathbb{C}$ of absolute value \sqrt{q} .
 - π is a root of the characteristic polynomial of Frob.
- The (\mathbb{F}_q -rational) endomorphism ring End(E) = { $\varphi : E \to E$ } is isomorphic to either...
- (If $\pi \notin \mathbb{Z}$) An order \mathcal{O} satisfying $\mathbb{Z}[\pi] \subseteq \mathcal{O} \subseteq \mathcal{O}_K$ for $K = \mathbb{Q}(\pi)$;
- (If $\pi \in \mathbb{Z}$) A maximal order \mathcal{O} in a quaternion algebra

 $\mathbb{Q} + \mathbb{Q}i + \mathbb{Q}j + \mathbb{Q}ij$ with $i^2, j^2 \in \mathbb{Q}$ and ij = -ji.

• Actually, $E(\mathbb{F}_q)$ isn't just a group - it is a module over End(E).

DESCRIBING THE MODULE STRUCTURE

THEOREM (Lenstra, 1994)

Let *E* be an elliptic curve over \mathbb{F}_q with Frobenius π . (a) If $\operatorname{End}(E)$ is commutative, then

 $E(\mathbb{F}_q) \cong \operatorname{End}(E)/(1-\pi)$

is an isomorphism of End(*E*)-modules.(b) If End(*E*) is noncommutative, then

$$E(\mathbb{F}_q) \cong \left(\mathbb{Z}/(1-\pi)\mathbb{Z}\right)^2$$

is an isomorphism of groups whose $\operatorname{End}(E)$ -module structure is given by $\operatorname{End}(E)/(1-\pi) \cong \operatorname{Mat}_2(\mathbb{Z}/(1-\pi)\mathbb{Z})$.

Remark: Galois theory says $E(\mathbb{F}_q) = \ker(1 - \pi)$.

Introduction	Elliptic Curves	Higher dimensions	Applications
00	00	00000	000

ABELIAN VARIETIES OF DIMENSION g > 1

- Abelian varieties provide a higher-dimensional analogue of elliptic curves: Smooth projective varieties with an abelian group structure on the rational points.
- In his 1994 paper, Lenstra showed that a naive generalization of his theorem fails even for abelian varieties of dimension 2.
- But the story continues nonetheless.

Introduction	Elliptic Curves	Higher dimensions	Applications
00	00	0000	000

Describing the Module Structure

THEOREM (S., 2021)

Let *A* be a simple abelian variety over \mathbb{F}_q with Frobenius π . (a) If $\operatorname{End}(A)$ is commutative **Gorenstein**, then

 $A(\mathbb{F}_q) \cong \operatorname{End}(A)/(1-\pi)$

is an isomorphism of End(A)-modules.

Remarks:

- The Gorenstein condition was already present, and automatically satisfied, in the elliptic curve version.
- The "simple" hypothesis can be deleted for part (a), and Gorenstein is only required locally at primes over (1π) .
 - ► Joint work with Marseglia (2022).

Introduction Elliptic Curves Higher dimensions Applicatio	ns
---	----

DESCRIBING THE MODULE STRUCTURE

THEOREM (S., 2021) - Weak version for brevity

Let *A* be a simple abelian variety over \mathbb{F}_q with Frobenius π .

(b) If the center *Z* of End(A) is a **maximal order** and $d = 2 \dim(A) / [\mathbb{Q}(\pi) : \mathbb{Q}]$, then

$$A(\mathbb{F}_q) \cong (Z/(1-\pi)Z)^d$$

is an isomorphism of groups whose $\operatorname{End}(A)$ -module structure is given by $\operatorname{End}(A)/(1-\pi) \cong \operatorname{Mat}_d(Z/(1-\pi)Z)$.

Remarks:

- Like before, the hypothesis that Z is maximal was automatically satisfied in the elliptic curve version.
- This part is proven via kernel ideals in the sense of Waterhouse.

Introduction	Elliptic Curves	Higher dimensions	Applications
00	00	00000	000

DESCRIBING THE GROUP STRUCTURE

A different piece of machinery is built upon the foundation of categorical equivalences developed by Deligne, Howe, and Centeleghe–Stix.

THEOREM (Marseglia., 2021)

Let *A* be an abelian variety over \mathbb{F}_q with Frobenius π . If End(A) is commutative and either *A* is ordinary or q = p is prime, then there is an equivalence of categories

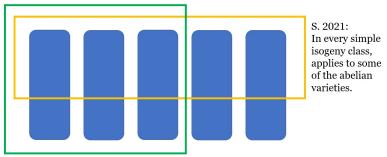
$$\mathcal{F}: \{\mathbb{F}_q - \text{isogeny class of } A\}/\cong \longrightarrow \{ \text{ ideals of } \mathbb{Z}[\pi, \overline{\pi}]\}/\sim$$

If $\mathcal{F}(A) = I$, then $A(\mathbb{F}_q) \cong I/I(1 - \pi)$ are isomorphic groups.

Remark: The righthand side is a so-called *ideal class monoid*, which is similar to a class group except that there are non-invertible ideals. IntroductionElliptic CurvesHigher dimensionsApplications00000000●000

COMBINATION OF TOOLS

When looking towards applications, these tools have complementary strengths.



Marseglia 2021: In certain isogeny classes, applies to all abelian varieties.

Introduction	Elliptic Curves	Higher dimensions	Applications
00	00	00000	000

FIRST CONSEQUENCE

THEOREM (Marseglia-S. 2021)

For every finite abelian group *G*, there is an ordinary abelian variety over \mathbb{F}_2 with $A(\mathbb{F}_2) \cong G$.

Proof Sketch: Let $n \ge 1$.

- 1. Howe and Kedlaya: there is ordinary A/\mathbb{F}_2 with $A(\mathbb{F}_2) = n$ and End(A) commutative.
- 2. The isogeny class of *A* is defined by Weil polynomial f(x) with f(1) = n and $\mathbb{Q}[\pi] = \mathbb{Q}[x]/(f)$.
- 3. Algebra: show $\mathbb{Z}[\pi, \overline{\pi}]/(1-\pi) \cong \mathbb{Z}/n\mathbb{Z}$ is a cyclic group.
- 4. Using either of our tools, this algebraic fact is translated to the world of abelian varieties: we have $B \sim A$ with

$$B(\mathbb{F}_2) \cong \mathbb{Z}[\pi, \overline{\pi}]/(1-\pi) \cong \mathbb{Z}/n\mathbb{Z}.$$

5. Every finite abelian group is the product of cyclic groups. QED.

POINTERS TOWARDS ADDITIONAL CONSEQUENCES

Joint work with Stefano Marseglia (2022).

- 1. Explicit examples of A/\mathbb{F}_q with $A(\mathbb{F}_q) \ncong A^{\vee}(\mathbb{F}_q)$.
 - Answers a question of Poonen from AMS MRC 2019.
 - Examples are easy to find for dimensions $2 \le g \le 5$.
 - Context: none of the arrows below are reversible in general.

 $A \cong \operatorname{Jac}(C) \Longrightarrow A$ is princ. pol. $\Longrightarrow A \cong A^{\vee} \Longrightarrow A(\mathbb{F}_q) \cong A^{\vee}(\mathbb{F}_q)$

On the other hand, we prove that $A(\mathbb{F}_q) \cong A^{\vee}(\mathbb{F}_q)$ whenever End(A) satisfies certain hypotheses concerning its so-called Cohen-Macaulay type and complex conjugation.

Introduction	Elliptic Curves	Higher dimensions	Applications
00	00	00000	000

POINTERS TOWARDS ADDITIONAL CONSEQUENCES

- 2. Sufficient conditions for the group structure of $A(\mathbb{F}_q)$ to be uniquely determined by End(A) in terms of Cohen-Macaulay type.
- 3. Characterization of isogeny classes \mathcal{I} over \mathbb{F}_q in which $A(\mathbb{F}_q)$ is *cyclic* for every $A \in \mathcal{I}$.
 - ► Theorem: If A/𝔽_q has cyclic isogeny class, then A ~ A₁ × A_{com} where #A₁(𝔽_q) = 1 and End(A_{com}) is commutative.
 - ► When End(*A*) is commutative, the characterization is in terms of conductor ideals.
- 4. Characterization of isogeny classes \mathcal{I} over \mathbb{F}_q in which *every* abelian group of order *N* occurs as $A(\mathbb{F}_q)$ for some $A \in \mathcal{I}$.