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Linear spatial prediction

Consider a random field {Z(x) ∶ x ∈ X} on a compact metric space X .

Aim: Predict its value Z(x∗) at x∗ ∈ X based on a set of observations
{Z(xj)}

n
j=1 for locations x1, . . . , xn ∈ X all distinct from x∗.

The kriging predictor is the linear predictor

Zn(x
∗
) = α0 +

n

∑
j=1

αjZ(xj)

based on the observations, where α0, . . . , αn ∈ R are chosen such that
the variance of the error Zn(x

∗) − Z(x∗) is minimized.
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Model misspecification

If m( ⋅ ) and %( ⋅ , ⋅ ) are the mean and the covariance function of Z , then

Zn(x
∗
) = m(x∗) + c⊺Σ−1

(Z −m), (∗)

where

c ∶= (%(x∗, x1), . . . , %(x
∗, xn))

⊺, Σij ∶= %(xi , xj),

Z ∶= (Z(x1), . . . ,Z(xn))
⊺, m ∶= (m(x1), . . . ,m(xn))

⊺.

⇒ the kriging predictor depends only on (m, %).

Therefore, from now on we assume that Z ∼ µ = N(m, %).

We are interested in the asymptotic behavior of

E[(Z̃n(x
∗) − Z(x∗))2]

E[(Zn(x∗) − Z(x∗))2]
as n →∞,

where the linear predictor Z̃n(x
∗) is computed using (∗) with (m̃, %̃).
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What was known?

● M. L. Stein1 showed that the best linear predictor based on (m̃, %̃)
is asymptotically optimal, as n →∞, provided that

µ = N(m, %) and µ̃ = N(m̃, %̃) are equivalent.

● This result in fact holds uniformly with respect to x∗ and,
moreover, uniformly for each linear functional ϕ such that ϕ(Z)

has finite variance2.

● Less restrictive conditions have been derived for some specific
cases, such as periodic fields3 on [0,1]d and stationary fields4

on Rd , i.e. %(x , y) = %(x − y), observed on a lattice.

1M. L. Stein (1988). “Asymptotically efficient prediction of a random field with a misspecified covariance function”. In:
Ann. Stat. 16.1, pp. 55–63

2M. L. Stein (1990). “Uniform asymptotic optimality of linear predictions of a random field using an incorrect
second-order structure”. In: Ann. Stat. 18.2, pp. 850–872

3M. L. Stein (1997). “Efficiency of linear predictors for periodic processes using an incorrect covariance function”. In: J.
Statist. Plann. Inference 58.2, pp. 321–331

4M. L. Stein (1999). “Predicting random fields with increasing dense observations”. In: Ann. Appl. Probab. 9.1,
pp. 242–273
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Goals of our work

For any constant c ∈ (0,∞), the linear predictor based on (m, c%) is
equal to that based on (m, %), whereas

∀c ≠ 1 ∶ µ = N(m, %) ⊥ µ̃ = N(m, c%).

⇒ Equivalence of the measures µ and µ̃ is a sufficient, but not neces-
sary assumption for asymptotic optimality of linear predictions.

Topics of this talk

1 necessary and sufficient conditions on (m̃, %̃) for uniform asymp-
totic optimality of linear predictions;

2 explicit conditions for a large class of non-stationary models and
● equivalence of Gaussian measures;
● asymptotic optimality of linear predictions.
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Setting

● Z ∶ X ×Ω→ R is a square-integrable Gaussian stochastic process
indexed by a connected, compact metric space (X ,dX ), with
strictly positive and finite Borel measure νX ∶ B(X )→ [0,∞).

Notation ∶ L2 ∶= L2(X ,B(X ), νX ).

● Z has mean m ∈ L2, strictly positive definite and continuous
covariance function % ∶ X ×X → R, and covariance operator

C ∶ L2 → L2, (Cw)(x) ∶= ∫
X
%(x , x ′)w(x ′)dνX (x

′
).

C is self-adjoint, positive definite, and trace-class on L2.

● We write µ = N(m,C) for the Gaussian measure on L2 induced by
the process Z , i.e., for every Borel set A ∈ B(L2),

µ(A) = P({ω ∈ Ω ∶ Z( ⋅ , ω) ∈ A}).
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Kriging predictor as orthogonal projection

● Z 0 ∶= Z −m is a centered Gaussian process.

● The vector space Z0 ⊂ L2(Ω,P) contains finite linear combinations

Z0 ∶= {∑
K
j=1 αjZ

0(xj) ∶ K ∈ N, αj ∈ R, xj ∈ X}, H0 ∶= Z0
∥ ⋅ ∥L2(Ω,P).

● Every h = ∑j≤K αjZ(xj) has a representation

h = c + h0, with c ∈ R, h0
∈ Z

0
⊂H

0.

We thus define the Hilbert space H ∶= R⊕H0,

(g ,h)H = E[g]E[h] + (g − E[g],h − E[h])H0 = E[gh].

● The kriging predictor hn of h ∈H based on Hn ∶= R⊕H0
n ⊂ R⊕H0

is the H-orthogonal projection of h onto Hn:

hn ∈Hn ∶ (hn − h,gn)H = E [(hn − h)gn] = 0 ∀gn ∈Hn,

hn ∈Hn ∶ E[(hn − h)2] = infgn∈Hn E[(gn − h)2].
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Problem formulation

hn ∈Hn ∶ (hn − h,gn)H = E [(hn − h)gn] = 0 ∀gn ∈Hn,

Main question

What happens if, instead of hn, we use the linear predictor h̃n which is
the kriging predictor if µ̃ = N(m̃, C̃) was the correct model?

“Computing orthogonal projections with the wrong inner product”
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Consistent kriging prediction

● We require that, for every h ∈H, the corresponding kriging
predictors {hn}n∈N are consistent in the sense that

lim
n→∞

E[(hn − h)2] = lim
n→∞

∥hn − h∥2
H = 0. (density)

● Let Sµadm contain all admissible sequences {Hn}n∈N of subspaces
Hn ⊂H which provide µ-consistent kriging prediction,

S
µ
adm ∶= {{Hn}n∈N ∣∀n ∈ N ∶Hn = R⊕H

0
n with dim(H

0
n) = n,

∀h ∈H ∶ {hn}n∈N satisfy (density)}.

Example

Suppose that m, % are continuous and that every Hn is generated by
point observations Z(x1),Z(x2), . . . Then, {Hn}n∈N ∈ S

µ
adm if {xj}j∈N is

a sequence in (X ,dX ) which accumulates at any x∗ ∈ X .

8 / 29



Outline

1 Necessary and sufficient conditions for asymptotic optimality
Linear prediction on compact metric spaces
The assumptions and main result

2 Applications
Weakly stationary random fields on Rd

Common eigenbasis
Generalized Whittle–Matérn fields

Isomorphic Cameron–Martin spaces
Equivalence of measures and asymptotically optimal linear prediction
Summary and simulations



Main assumptions

The Assumptions

Let %, %̃ ∶ X ×X → R be two continuous, (strictly) positive definite
covariance functions. Assume that the corresponding covariance
operators C, C̃ ∶ L2 → L2, and m, m̃ ∈ L2 are such that:

I. The vector spaces

C
1/2
(L2), (C

−1/2
⋅ ,C−

1/2
⋅ )

L2
and C̃

1/2
(L2), (C̃

−1/2
⋅ , C̃−

1/2
⋅ )

L2

are norm equivalent Hilbert spaces.

II. The difference of the means satisfies m − m̃ ∈ C
1/2(L2).

III. There exists a positive constant a ∈ (0,∞) such that the operator

Ta ∶ L2 → L2, Ta ∶= C
−1/2
C̃C

−1/2
− aI

is compact on L2. Here I denotes the identity on L2.
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Theorem (Asymptotic optimality, K. and Bolin, 2020)

Let µ = N(m,C) and µ̃ = N(m̃, C̃). Let hn, h̃n denote the best linear pre-
dictors of h based on Hn and µ resp. µ̃. Then, any of the assertions,

lim
n→∞

sup
h∈H−n

E[(h̃n − h)2]

E[(hn − h)2]
= 1,

lim
n→∞

sup
h∈H−n

Ẽ[(hn − h)2]

Ẽ[(h̃n − h)2]
= 1,

lim
n→∞

sup
h∈H−n

RRRRRRRRRRR

Ẽ[(hn − h)2]

E[(hn − h)2]
− a

RRRRRRRRRRR

= 0,

lim
n→∞

sup
h∈H−n

RRRRRRRRRRR

E[(h̃n − h)2]

Ẽ[(h̃n − h)2]
−

1

a

RRRRRRRRRRR

= 0,

holds for all {Hn}n∈N ∈ S
µ
adm if and only if the Assumptions I–III are

satisfied. The constant a ∈ (0,∞) is the same as that in Assumption III.
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Comparison with the Feldman–Hájek theorem

Equivalence of Gaussian measures

Let µ and µ̃ be two measures on (L2,B(L2)). Then, µ and µ̃ are called

● equivalent if µ(A) = 0⇔ µ̃(A) = 0;

● orthogonal if there exists B ∈ B(L2) with µ(B) = 0 and µ̃(B) = 1.

Theorem (Feldman–Hájek)

Two Gaussian measures µ = N(m,C) and µ̃ = N(m̃, C̃) on a separable
Hilbert space (E , ( ⋅ , ⋅ )E) are either orthogonal or equivalent. They are
equivalent if and only if the following conditions are satisfied:

● The Cameron–Martin spaces C
1/2(E), C̃

1/2(E) are norm equivalent.

● The difference of the means satisfies m − m̃ ∈ C
1/2(E).

● The operator T1 ∶= C
−1/2C̃C−

1/2 − IdE is Hilbert–Schmidt on E .
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Proposition (Role of Assumption I)

Let µ = N(m,C), µ̃ = N(m̃, C̃), and define H0, H̃0 with respect to the
measures µ and µ̃, respectively. The following are equivalent:

(i) Assumption I is satisfied.

(ii) The linear operator C̃
1/2C−

1/2 ∶ L2 → L2 is an isomorphism.

(iii) The Hilbert spaces H0, H̃0 are norm equivalent. In particular,

∃k0, k1 > 0 ∶ k0Var[h] ≤ Ṽar[h] ≤ k1Var[h] ∀h ∈H.

(iv) There exist 0 < k ≤ K <∞ such that, for every {Hn}n∈N ∈ S
µ
adm,

for all n ∈ N, and every h ∈H−n,

Ṽar[hn − h]

Var[hn − h]
,

Var[h̃n − h]

Ṽar[h̃n − h]
,

Var[h̃n − h]

Var[hn − h]
,

Ṽar[hn − h]

Ṽar[h̃n − h]
∈ [k ,K ].

hn, h̃n are the best linear predictors of h based on Hn and µ resp. µ̃.
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Proposition (Role of Assumptions I and III)

Let µ = N(m,C) and µ̃ = N(m̃, C̃). Let hn, h̃n denote the best linear pre-
dictors of h based on Hn and µ resp. µ̃. Then, any of the assertions,

lim
n→∞

sup
h∈H−n

Var[h̃n − h]

Var[hn − h]
= 1,

lim
n→∞

sup
h∈H−n

Ṽar[hn − h]

Ṽar[h̃n − h]
= 1,

lim
n→∞

sup
h∈H−n

RRRRRRRRRRR

Ṽar[hn − h]

Var[hn − h]
− a

RRRRRRRRRRR

= 0,

lim
n→∞

sup
h∈H−n

RRRRRRRRRRR

Var[h̃n − h]

Ṽar[h̃n − h]
−

1

a

RRRRRRRRRRR

= 0,

holds for all {Hn}n∈N ∈ S
µ
adm if and only if Assumptions I and III are

fulfilled. The constant a ∈ (0,∞) is the same as that in Assumption III.
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Examples of valid covariance models and metric spaces

Valid covariance functions are given by the Matérn class,

%(x , x ′) ∶= %0(dX (x , x
′
)), %0(r) =

σ2

2ν−1Γ(ν)
(κr)νKν(κr), r ≥ 0,

on the compact metric space (X ,dX ), where

● X ⊂ Rd is a connected, compact Euclidean domain for ν, κ, σ2 > 0.

● X ∶= Sd is the d-sphere equipped with the great circle distance, for
every ν ∈ (0, 1/2] and all κ,σ2 > 05.

● X is a graph with Euclidean edges equipped with the resistance
metric for every for every ν ∈ (0, 1/2] and all κ,σ2 > 06.

5T. Gneiting (2013). “Strictly and non-strictly positive definite functions on spheres”. In: Bernoulli 19.4, pp. 1327–1349
6E. Anderes, J. Møller, and J. G. Rasmussen (2020). “Isotropic covariance functions on graphs and their edges”. In:

Ann. Statist. 48.4, pp. 2478–2503
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Weakly stationary random fields on Rd

Setting: X ⊂ Rd and %∣X×X , %̃∣X×X are restrictions of continuous,
positive definite, translation invariant functions %, %̃ ∶ Rd ×Rd → R.

∃%0, %̃0 ∶ Rd
→ R even ∶ %(x , x ′) = %0(x − x ′), %̃(x , x ′) = %̃0(x − x ′).

The spectral density f and %0 relate via the inversion formula:

∀ω ∈ Rd
∶ f (ω) = 1

(2π)d
(F%0)(ω), (F%0)(ω) ∶= ∫

Rd
e−iω⋅x%0(x)dx .

We define FX ∶= F ○ E 0
X , where E 0

X is the zero extension, and

FX (L2(X )) = {ŵ ∶ Rd
→ C ∣ ∃w ∈ L2(X ) ∶ ŵ = FXw} ⊂ L2(Rd ;C).

The Hilbert space Hf (over R) is the closure of FX (L2(X )) with
respect to norm induced by the inner product

(v̂1, v̂2)Hf
∶= ∫

Rd
f (ω)v̂1(ω)v̂2(ω)dω, Hf ∶= FX (L2(X ))

∥ ⋅ ∥Hf .
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Proposition (Assumptions I and III in terms of spectral densities)

Suppose that C, C̃ ∶ L2(X )→ L2(X ) pertain to restrictions (to X ×X )
of translation invariant covariance functions %, %̃ ∶ Rd ×Rd → R, which
have spectral densities f , f̃ ∶ Rd → [0,∞).

Then, Assumptions I and III are satisfied if and only if:

I’ The spaces Hf and Hf̃ are isomorphic with equivalent norms, i.e.,
there exist constants 0 < k ≤ K <∞ such that

k∥v̂∥2
Hf

≤ ∫
Rd

f̃ (ω)∣v̂(ω)∣2 dω ≤ K∥v̂∥2
Hf

∀v̂ ∈ FX (L2(X )).

III’ There exists a ∈ (0,∞) such that the linear operator T̂a ∶= S − aIHf

is compact on Hf , where IHf
denotes the identity on Hf and

S ∶ Hf → Hf is defined by

(Sv̂1, v̂2)Hf
= ∫

Rd
f̃ (ω)v̂1(ω)v̂2(ω)dω ∀v̂1, v̂2 ∈ Hf .

16 / 29



%(x , x ′) ∶= %0(∥x − x ′∥Rd ), %0(r) =
σ2

2ν−1Γ(ν)
(κr)νKν(κr), r ≥ 0,

Parameters: ν, κ, σ2 > 0.

Example (Matérn covariance family)

Assumptions I and III are satisfied if and only if ν = ν̃. In this case:

a =
σ̃2κ̃2ν

σ2κ2ν
∈ (0,∞).

For equivalence of the corresponding Gaussian measures, a = 1 is
necessary. Indeed, Zhang7 and Anderes8 showed that, for ν = ν̃,

µ ∼ µ̃ ⇐⇒

⎧⎪⎪
⎨
⎪⎪⎩

σ2κ2ν = σ̃2κ̃2ν for d ≤ 3,

κ = κ̃ and σ2 = σ̃2 for d ≥ 5.

7H. Zhang (2004). “Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics”. In: J.
Amer. Statist. Assoc. 99.465, pp. 250–261

8E. Anderes (2010). “On the consistent separation of scale and variance for Gaussian random fields”. In: Ann. Statist.
38.2, pp. 870–893
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Covariance operators with the same eigenbasis

Corollary

Suppose that C, C̃ are self-adjoint, positive definite, trace-class operators
on L2(X , νX ) which diagonalize with respect to the same orthonormal
basis {ej}j∈N for L2(X , νX ), i.e., there are {γj}j∈N,{γ̃j}j∈N ⊂ (0,∞) s.t.

Cej = γjej and C̃ej = γ̃jej ∀j ∈ N.

Consider µ ∶= N(0,C) and µ̃ ∶= N(0, C̃).

● The Cameron–Martin spaces for µ and µ̃ are isomorphic if and only
if there exist c−, c+ ∈ R+ such that γ̃j/γj ∈ [c−, c+] for all j ∈ N.

● µ and µ̃ are equivalent if and only if ∑j∈N(γ̃j/γj − 1)2 <∞.

● Assumptions I and III are satisfied if and only if there exists a
constant a ∈ (0,∞) such that limj→∞ γ̃j/γj = a.
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Consider the shifted negative Dirichlet Laplacian:

Lv ∶= (−∆ + κ2)v , v ∈ D(L) ∶= H2
(D) ∩H1

0(D),

where D ⊊ Rd is a bounded open Lipschitz domain.

Corollary (“Classical” Whittle–Matérn fields)

Let d ∈ N, β, β̃ > d/4, τ, τ̃ > 0, and let L, L̃ have shift parameters κ2 ≥ 0
and κ̃2 ≥ 0, respectively. Consider on L2(D) the Gaussian measures

µ = N(0, τ−2L−2β) and µ̃ = N(0, τ̃ −2L̃−2β̃).

● The Cameron–Martin spaces for µ and µ̃ are isomorphic, with
equivalent norms, if and only if β = β̃.

● µ and µ̃ are equivalent if and only if

⎧⎪⎪
⎨
⎪⎪⎩

β = β̃ and τ = τ̃ if d ≤ 3,

β = β̃, τ = τ̃ and κ2 = κ̃2 if d ≥ 4.

● For any d ∈ N, Assumptions I & III are fulfilled if and only if β = β̃.
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Generalized Whittle–Matérn fields on D ⊊ Rd

Next, we consider Gaussian measures on L2(D), D ⊊ Rd, of the form

µd(m;β,a, κ) ∶= N(m,L−2β),

where m ∈ L2(D), β > d/4 and

Lv = −∇ ⋅ (a∇v) + κ2v , v ∈ D(L) ⊆ L2(D) ∩H1
0(D).

We suppose that a and κ and the domain D ⊂ Rd satisfy the following.

Setting WM

i. a ∶ D → Rd×d is symmetric and uniformly positive definite, i.e.,

∃a0 > 0 ∶ ∀ξ ∈ Rd
∶ ess infs∈D ξ

⊺a(s)ξ ≥ a0∥ξ∥
2
Rd ,

and a = (ajk)
d
j ,k=1 is smooth, ajk ∈ C

∞(D) for all j , k ∈ {1, . . . ,d}.

ii. κ ∶ D → R is smooth, κ ∈ C∞(D).

iii. The domain D ⊂ Rd has a smooth boundary ∂D of class C∞.
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Lemma (Cameron–Martin space for µd(m;β,a, κ))
Suppose Setting WM. For every β > d/4, the Cameron–Martin space of
the Gaussian measure µd(m;β,a, κ) is

C
1/2
(L2(D)) = Ḣ2β

L ∶= D(Lβ) ⊆ L2(D), ∥v∥2β,L ∶= ∥Lβv∥L2(D)
.

It is a subspace of the Sobolev space H2β(D) and

(Ḣ2β
L , ∥ ⋅ ∥2β,L)↪ (H2β

(D), ∥ ⋅ ∥H2β(D))↪ (C 0
(D), ∥ ⋅ ∥C0(D)

)

Furthermore, provided that 2β ∉ E , where

E ∶= {2k + 1/2 ∶ k ∈ N0},

we have the identification

Ḣ2β
L = {v ∈ H2β

(D) ∶ (κ2
−∇⋅(a∇))

j
v = 0 in L2(∂D) ∀j = 0, . . . , ⌊β−1

4
⌋},

and on Ḣ2β
L the Sobolev norm ∥ ⋅ ∥H2β(D) and ∥ ⋅ ∥2β,L are equivalent.
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Theorem (Isomorphic Cameron–Martin spaces)

Suppose Setting WM for each of the parameter tuples (a, κ), (ã, κ̃)
and for D ⊊ Rd. Let β, β̃ > d/4 be such that 2β ∉ E .

The Cameron–Martin spaces of two Gaussian measures

µd(0;β,a, κ) and µd(0; β̃, ã, κ̃)

are isomorphic with equivalent norms if and only if β = β̃ and for every
j ∈ N0 with j ≤ ⌊β − 5/4⌋ the following hold:

∀v ∈ Ḣ2β
L ∶ (κ2

−∇ ⋅ (a∇))
j
(δκ2 −∇ ⋅ (δa∇))v = 0 in L2(∂D),

∀ṽ ∈ Ḣ2β

L̃
∶ (κ̃2

−∇ ⋅ (ã∇))
j
(δκ2 −∇ ⋅ (δa∇))ṽ = 0 in L2(∂D).

(BCs)

Here, δκ2(s) ∶= κ̃2(s) − κ2(s) and δa(s) ∶= ã(s) − a(s) for all s ∈ D.

⇒ The behavior of δκ2 and δa on the boundary ∂D matters!
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Conditions on the parameters for equivalent measures

Theorem (Characterizing equivalence of the measures µ and µ̃)

Suppose Setting WM for each of the parameter tuples (a, κ), (ã, κ̃)
and for D ⊊ Rd. Let m, m̃ ∈ L2(D) and β, β̃ > d/4 be such that 2β ∉ E .

● In dimension d ≤ 3, the Gaussian measures µd(m;β,a, κ) and
µd(m̃; β̃, ã, κ̃) are equivalent if and only if

● β = β̃,
● the boundary conditions (BCs) hold for every j = 0,1, . . . , ⌊β − 5/4⌋,

● m − m̃ ∈ Ḣ2β
L ,

● a = ã.

● In dimension d ≥ 4, the Gaussian measures µd(m;β,a, κ) and
µd(m̃; β̃, ã, κ̃) are equivalent if and only if

● β = β̃,
● κ2 = κ̃2,
● m − m̃ ∈ Ḣ2β

L ,
● a = ã.
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Conditions on the parameters for optimal linear prediction

Theorem (Uniformly asymptotically optimal linear prediction)

Suppose Setting WM for each of the parameter tuples (a, κ), (ã, κ̃)
and for D ⊊ Rd. Let m, m̃ ∈ L2(D) and β, β̃ > d/4 be such that 2β ∉ E .

Consider the Gaussian measures

µd(m;β,a, κ) and µd(m̃; β̃, ã, κ̃)

Then, the Assumptions I–III (for uniformly asymptotically optimal linear
prediction) are satisfied if and only if

● β = β̃,

● the boundary conditions (BCs) hold for every j = 0,1, . . . , ⌊β − 5/4⌋,

● m − m̃ ∈ Ḣ2β
L ,

● here exists a constant c > 0 such that ca = ã.
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Summary

Let µ ∶= µd(0;β, a, κ), µ̃ ∶= µd(0; β̃, ã, κ̃) be Gaussian measures for gen-
eralized Whittle–Matérn fields with parameters (β, a, κ) resp. (β̃, ã, κ̃).

Interval for β, assuming that β ∉ {k + 1/4 ∶ k ∈ N}

Conditions for (d/4, 9/4) (9/4, 13/4) (13/4,∞)

Asymptotically optimal β = β̃, ca = ã β = β̃, ca = ã, β = β̃, ca = ã

linear prediction for some c ∈ (0,∞) (a∇δc,κ2)∣
∂D

⋅ n = 0 + b.c. on δc,κ2

Equivalence of measures β = β̃, a = ã β = β̃, a = ã, β = β̃, a = ã

in dimension d ≤ 3 (a∇δ1,κ2)∣
∂D

⋅ n = 0 + b.c. on δ1,κ2

Equivalence of measures
β = β̃, a = ã, κ2 = κ̃2

in dimension d ≥ 4

δc,κ2(s) ∶= κ̃2(s)− cκ2(s), and n is the outward pointing normal on ∂D.
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Simulation 1: The difference between κ2 and a
(−∇ ⋅ (a∇) + κ2)

β
(τZ) =W in D = (0,1).

True model: β = 1, a ≡ 1, κ2 ≡ 1200, and τ = 1
2κ

−3/2.

Two misspecified models: correct values of β, τ , and we set

(κ2
(s),a(s)) =

⎧⎪⎪
⎨
⎪⎪⎩

(1200f (s)−1, 1) for model 1,

(1200, f (s)) for model 2,
s ∈ D = [0,1],

where f (s) ∶= 1 + 1
2 erf( δ(s−0.5)

√
2

).

As a measure of accuracy, we use

En(h) ∶=
E[(h̃n − h)2]

E[(hn − h)2]
− 1.

We predict Z(x0) as well as the integrals I` ∶= (Z , e`)L2(D)
and set

E
max
I ,n ∶= max{E`I ,n ∶ n + 1 ≤ ` ≤ N}, E

`
I ,n ∶= En(I`), ` ∈ {n + 1, . . . ,N}.
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Results of Simulation 1

Figure: The results for model 1 (black) and model 2 (red) for the first example
with integral observations (left) and point observations (right).

Solid lines correspond to δ = 1, dashed to δ = 10, and dotted to δ = 100.

27 / 29



Simulation 2: The effect of the smoothness parameter β
For β ∈ {1,2,3},we consider

(−∇ ⋅ (a∇) + κ2)
β
(τZ) =W in D = (0,1).

True model: a ≡ 1, κ2 ≡ 100(4β − 1), and τ > 0.

Two misspecified models: correct values of β,a, τ , and we set

κ2
(s) = 100(4β − 1) ⋅

⎧⎪⎪
⎨
⎪⎪⎩

1 − 1.5s2 + s3 for model 1,

1 + s − 1.5s3 for model 2,
s ∈ D = [0,1].

We again predict the integrals I` ∶= (Z , e`)L2(D)
and consider

E
max
I ,n ∶= max{E`I ,n ∶ n + 1 ≤ ` ≤ N}, E

`
I ,n ∶= En(I`), ` ∈ {n + 1, . . . ,N},

where

En(h) ∶=
E[(h̃n − h)2]

E[(hn − h)2]
− 1.
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Results of Simulation 2

Left: The results for model 1 (black) and model 2 (red) in the second
example, with β = 1 (solid), β = 2 (dashed), and β = 3 (dotted).

Right: κ2 for the two models when β = 1.
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Thank you for your attention!
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