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Linear spatial prediction

DO D
0

Consider a random field {Z(x) : x € X} on a compact metric space X.

Aim: Predict its value Z(x*) at x* e X’ based on a set of observations
{Z(x;)}_; for locations xi,...,x, € X' all distinct from x™.

The kriging predictor is the linear predictor
Zn(x") = a0+ )]0 Z(x)
j=1

based on the observations, where ag,...,a, € R are chosen such that
the variance of the error Z,(x*) — Z(x*) is minimized.
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Model misspecification
If m(-) and o(-, -) are the mean and the covariance function of Z, then
Zo(x*) = m(x*) +¢"EH(Z - m), (%)
where

c:=(o(x"x1), .. 0(x" %)), = 0(x, ),
Z:=(Z(x1),...,Z(xa))", m:= (m(x1),...,m(x,))".

= the kriging predictor depends only on (m, o).

Therefore, from now on we assume that Z ~ = N(m, ).

We are interested in the asymptotic behavior of
E(Zec) - 2602
E[(Zn(x*) = Z(x*))?] ’

where the linear predictor Z,(x*) is computed using (%) with (7, 7).
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What was known?

* M. L. Stein! showed that the best linear predictor based on (, )
is asymptotically optimal, as n — oo, provided that

w=N(m,0) and p=N(m,0) areequivalent.

® This result in fact holds uniformly with respect to x* and,
moreover, uniformly for each linear functional ¢ such that ¢(Z)

has finite variance2

® Less restrictive conditions have been derived for some specific
cases, such as periodic fields® on [0,1]9 and stationary fields*
on RY ie. o(x,y) = o(x—y), observed on a lattice.

IM. L. Stein (1988). “Asymptotically efficient prediction of a random field with a misspecified covariance function”.
2M. L. Stein (1990). “Uniform asymptotic optimality of linear predictions of a random field using an incorrect
second-order structure”.

3M. L. Stein (1997). “Efficiency of linear predictors for periodic processes using an incorrect covariance function”.

4M. L. Stein (1999). “Predicting random fields with increasing dense observations”.
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Goals of our work

For any constant c € (0, 00), the linear predictor based on (m, cp) is
equal to that based on (m, ), whereas

Ve#l: pu=N(m,0) L fi=N(m,cop).

= Equivalence of the measures p and i is a sufficient, but not neces-
sary assumption for asymptotic optimality of linear predictions.

Topics of this talk
@ necessary and sufficient conditions on (1, 9) for uniform asymp-
totic optimality of linear predictions;
@ explicit conditions for a large class of non-stationary models and

® equivalence of Gaussian measures;
® asymptotic optimality of linear predictions.
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Setting

® Z:X xQ — R is a square-integrable Gaussian stochastic process
indexed by a connected, compact metric space (X, dx), with
strictly positive and finite Borel measure vy : B(X) — [0, 00).

Notation : Ly:=Lo(X,B(X),vx).

® Z has mean m € Ly, strictly positive definite and continuous
covariance function o : X x X - R, and covariance operator

C:Ly— Ly, (Cw)(x) := fX o(x, x"Yw(x") dvx(x").

C is self-adjoint, positive definite, and trace-class on L.

* We write = N(m,C) for the Gaussian measure on L induced by
the process Z, i.e., for every Borel set A€ B(L,),

(A =P({weQ:Z(-,w)ecA}).
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Kriging predictor as orthogonal projection
o 79:= Z - mis a centered Gaussian process.

* The vector space Z° c [,(Q,P) contains finite linear combinations

20.= {Zj’il ajZO(xJ-) :KeN, ajeR, x € X}, HO = ﬁ”hnb(ﬂ’m.
* Bvery h=3%,.ka;Z(x;) has a representation
h=c+h°,  with ceR, mez’cH’
We thus define the Hilbert space H := R @ H°,
(g,h)n = E[g]E[h] + (g - E[g], h— E[h])30 = E[gh].

® The kriging predictor h, of h € H based on H,:=R @& 7—[?7 cReH°
is the H-orthogonal projection of h onto H,:

hneHp: (hn_h7gn)7-l: E[(hn_h)gn] =0 VgneHtn,
hneHn:  E[(hn—h)?] =infgen, E[(gn— h)?].
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Problem formulation

hneHn:  (hn—h,gn)y =E[(hn—h)gn] =0 Vg, € Hn,

Main question

What happens if, instead of h,, we use the linear predictor h, which is
the kriging predictor if 77 = N(m,C) was the correct model?

“Computing orthogonal projections with the wrong inner product”
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Consistent kriging prediction

* We require that, for every h € H, the corresponding kriging
predictors {h,}nen are consistent in the sense that

lim E[(h,—h)?] = lim |h, - h[3, = 0. (density)

* Let 8% contain all admissible sequences {H,} ey of subspaces
‘Hn ¢ H which provide p-consistent kriging prediction,
St = {{Hn}nen|YneN:H, =R@H with dim(HJ) = n,
VheH:{hy}nen satisfy (density)}.

Example

Suppose that m, ¢ are continuous and that every H, is generated by
point observations Z(x1),Z(x2),... Then, {Hn}new € St if {xj}jen is
a sequence in (X, dxy) which accumulates at any x* € X.
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Main assumptions

The Assumptions

Let 0,0: X x X > R be two continuous, (strictly) positive definite
covariance functions. Assume that the corresponding covariance
operators C,C : Ly - Ly, and m, m € L, are such that:

|. The vector spaces

CI/Z(L2)7 (C_1/2'7C_1/2')L2 ol 8'1/2(1_2)7 (C~_1/2~,C~_1/2-)L

2
are norm equivalent Hilbert spaces.
Il The difference of the means satisfies m — i € C?(Ly).

[II. There exists a positive constant a € (0, c0) such that the operator
T,:Ly—> Ly,  T,=CCCP-az

is compact on Ly. Here Z denotes the identity on L.
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Theorem (Asymptotic optimality, K. and Bolin, 2020)

Let yu=N(m,C) and 7i = N(7,C). Let hp, by denote the best linear pre-
dictors of h based on H, and i resp. fi. Then, any of the assertions,

lim sup [(h _h)]
n=co heay_, E[(hp — h)2]

!
E[(hn- )]
]

lim sup =—=——==1,

n~o0 peyy_, E[(hn — h)2
E[(hn - h) ] _

E[(ho— 7]~ ‘ )
E[(hy - h)?] 1

E[(h.-h)?] a

holds for all {H} nery € Sﬁdm if and only if the Assumptions I-Ill are
satisfied. The constant a € (0, 00) is the same as that in Assumption Il

i3
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Comparison with the Feldman—H4jek theorem

Equivalence of Gaussian measures

Let 1 and & be two measures on (L, B(L)). Then, i and fi are called
* equivalent if 4(A) =0 < 1(A) =0;
* orthogonal if there exists B € B(L>) with u(B) =0 and fi(B) = 1.

Theorem (Feldman—H4jek)

Two Gaussian measures 1 = N(m,C) and 7i = N(#,C) on a separable
Hilbert space (E,(-,-)g) are either orthogonal or equivalent. They are
equivalent if and only if the following conditions are satisfied:

* The Cameron—Martin spaces C*(E), C'*(E) are norm equivalent.
* The difference of the means satisfies m — iii € C*(E).
e The operator Ty := C¢PCCc? —\dg is Hilbert-Schmidt on E.
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Proposition (Role of Assumption )
Let = N(m,C), 7i = N(/,C), and define H°, H® with respect to the
measures (. and i, respectively. The following are equivalent:
(1) Assumption | is satisfied.
(ii) The linear operator C’C~: Ly — Ly is an isomorphism.
(iii) The Hilbert spaces H°,H° are norm equivalent. In particular,

Jko, k1 >0: koVar[h] < Var[h] < k;Var[h] VYheH.

(iv) There exist 0 < k < K < oo such that, for every {Hn}nen € S,
for all ne N, and every he H_,,

Var[h,—h] Var[h,-h] Var[h,-h] Var[h,- h]

Var[h, — h|" Var[h, - h]" Var[h,-h]" Var[h, - h]

€ [k, K].

hy, hn are the best linear predictors of h based on H,, and 1 resp. Ji.
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Proposition (Role of Assumptions | and I11)

Let yu=N(m,C) and 7i = N(7,C). Let hp, by denote the best linear pre-
dictors of h based on H, and i resp. fi. Then, any of the assertions,

lim sup
n—oo pear Var

lim sup
n—00 pear

Var[F,, - h] 1

l —
=% hert. Var[h,—h] a

n—o0 pea;

holds for all {H} nery € Sﬁdm if and only if Assumptions | and Il are
fulfilled. The constant a € (0, 00) is the same as that in Assumption IlI.
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Examples of valid covariance models and metric spaces

Valid covariance functions are given by the Matérn class,
2

Q(X,xl) = go(d/y(X,X,))’ QO(r) = 2’/+r(1/)

(kr)'K,(kr), r>0,

on the compact metric space (X, dx), where

* X c R is a connected, compact Euclidean domain for v, r,o° > 0.

o X :=S9 is the d-sphere equipped with the great circle distance, for
every v € (0,1/2] and all s, 57 > 0%

* X is a graph with Euclidean edges equipped with the resistance
metric for every for every v ¢ (0,1/2] and all x, o7 > 0°

5T Gneiting (2013). “Strictly and non-strictly positive definite functions on spheres”. [n: Bernoulli 194, pp. 1327-1349

SE. Anderes, J. Mgller, and J. G. Rasmussen (2020). “Isotropic covariance functions on graphs and their edges”. In
Ann. Statist. 48.4, pp. 2478-2503
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Weakly stationary random fields on R¢

Setting: X c R and olxxx, Olxxx are restrictions of continuous,
positive definite, translation invariant functions 0, 7: RY x RY —» R.

J00, 00 :RY > R even: o(x,x") = oo(x-x"), B(x,x")=0o(x—-x").

The spectral density f and gg relate via the inversion formula:

VweRT: F(w) = Gh(Fa)(@), (Foo)w)= [ e an(x)dx.

We define Fy := F o ES, where E is the zero extension, and
Fr(La(X)) ={W:R? > C| 3w e [r(X) : W = Faw} c L,(R%C).

The Hilbert space Hf (over R) is the closure of Fx(L2(X)) with
respect to norm induced by the inner product

(0,0, = [ F@)n@B@ b, He=Fa ()

5
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Proposition (Assumptions | and Il in terms of spectral densities)

Suppose that C,C : Ly(X) — Ly(X) pertain to restrictions (to X x X)
of translation invariant covariance functions 0,5 :RY x RY - R, which
have spectral densities f,f : RY — [0, 00).

Then, Assumptions | and Ill are satisfied if and only if:

I" The spaces Hr and Hz are isomorphic with equivalent norms, i.e.,
there exist constants 0 < k < K < oo such that

Kol < [, F@lo@)Pdo < K9, Vo e Fa(La(X)).
[II" There exists a € (0, 00) such that the linear operator T,=5- aZu,
is compact on Hg, where 1y, denotes the identity on Hf and

S : Hf — Hy is defined by

(501, ) H, = [Rd f(w) 91 (w)Pa(w) dw V01, 0n € H.
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0(x.x') = 0o(|x = X' a).  20(r) = gy (K1) Ko (sr). r20,

Parameters: v, k, 02 > 0.

Example (Matérn covariance family)
Assumptions | and Il are satisfied if and only if v = 7. In this case:

~2~2u
0°R
g = 0‘2H2” € (0,00).

For equivalence of the corresponding Gaussian measures, a=1 is
necessary. Indeed, Zhang7 and Anderes® showed that, for v = 7,

_ 0%k =GR for d <3,
p~fi = . _
k=% and o2 =52 ford>5.

TH. Zhang (2004). “Inconsistent estimation and asymptotically equal interpolations in model-based geostatistics”.

8E. Anderes (2010). “On the consistent separation of scale and variance for Gaussian random fields” .
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Covariance operators with the same eigenbasis

Corollary

Suppose that C,C are self-adjoint, positive definite, trace-class operators
on Ly(X,vx) which diagonalize with respect to the same orthonormal

basis {ej}jen for Lo(X,vx), ie., there are {~;}jen, {7j}jen € (0, 00) s.t.
Cej = e and 5ej=7jej VjeN.

Consider ju:= N(0,C) and 7i := N(0,C).

® The Cameron—Martin spaces for ;1 and ji are isomorphic if and only
if there exist c_, c, € Ry such that 7j/vj € [c_,c,] for all jeN.

* 1 and i are equivalent if and only if ¥y (7j/v; — 1)% < o0.

® Assumptions | and Il are satisfied if and only if there exists a
constant a € (0, 00) such that limj_. 7/ = a.
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Consider the shifted negative Dirichlet Laplacian:
Lvi=(-A+r%)v,  veP(L):=H*(D)nH;(D),

where D ¢ RY is a bounded open Lipschitz domain.

Corollary (“Classical” Whittle-Matérn fields)

LletdeN, 8,5 > dfa, 7,7 >0, and let L, [ have shift parameters 1> > 0
and 7 > 0, respectively. Consider on Ly(D) the Gaussian measures

p=N(0,7 "L*) and fi= N(O,?’T[’ﬂ).

® The Cameron—Martin spaces for p and i are isomorphic, with
equivalent norms, if and only if 3 = (3.

® u and [t are equivalent if and only if

B=B and T=7 ifd <3,
B=B, =7 and K>=F? ifd=4.

® For any d € N, Assumptions | & Il are fulfilled if and only if = B.

i3
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Generalized Whittle-Matérn fields on D ¢ R¢

Next, we consider Gaussian measures on Ly(D), D ¢ RY of the form
wug(m; 5, a, k) = N(m, L_QB),
where me Ly(D), B > d/a and
Lv=-V-(aVv)+rv, ve (L) < Ly(D)n Hy(D).
We suppose that 2 and « and the domain D c RY satisfy the following.
Setting WM
i a:D — 27 is symmetric and uniformly positive definite, i.e.,
Jag>0: VEeR?: essinfoep&lals)E> aonHéd,
and a - (ajk)ﬁkzl is smooth, 4, « C (D) for all j,ke{l,...,d}.

ii. K:D - R is smooth, kK € C*(D).
ii. The domain D c RY has a smooth boundary D of class C*.

i3
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Lemma (Cameron—Martin space for py(m; 3, a, k))

Suppose Setting WM. For every 3 >d[a, the Cameron—Martin space of
the Gaussian measure jg(m; 3, a,r) is

C(Lo(D)) = HP = 2(LP) ¢ L(D), IVi2g,L = ILP V] Lyy-
It is a subspace of the Sobolev space H*?(D) and
(H2% 1 - lag.e) = (H2 (D), [ - lrpopy) = (€D, | - o))
Furthermore, provided that 23 ¢ &, where
& = {2k +1/2: k e Ng},
we have the identification
HY = {v e H*(D) : (+>~v-(aV))'v = 0 in L,(dD) Vj=0,...,|5-1]},

and on Hf’B the Sobolev norm || - | yes(py and | - [25,L are equivalent.
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Theorem (Isomorphic Cameron—Martin spaces)

Suppose Setting WM for each of the parameter tuples (a,k), (3a,R)
and for D ¢ RY. Let 3,5 > d/a be such that 23 ¢ &.

The Cameron—Martin spaces of two Gaussian measures

pa(0; 8,2,5) and  pg(0;3,3,7)

are isomorphic with equivalent norms if and only if 3 = 3 and for every
J € Ng with j < |3 —5/4| the following hold:

VveH?: (K2-v-(@av)Y (0, -V-(0.V))v=0 in Ly(dD),

8 » N ‘ _ _ (BCs)
VVe H": (7> -v-(@V)) (0,2 -V-(0.V))V=0 in L(9D).
Here, 6,2(s) = ®*(s) — k2(s) and 0,(s) :=a(s) — a(s) for all s € D.

= The behavior of §,» and J, on the boundary 0D matters!
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Conditions on the parameters for equivalent measures
Theorem (Characterizing equivalence of the measures 1 and 1)

Suppose Setting WM for each of the parameter tuples (a,r), (4,7)
and for D ¢ RY. Let m, i€ Ly(D) and /3, 3 > d/a be such that 2/3 ¢ &.

* In dimension d < 3, the Gaussian measures pqy(m; 3, a, ) and
wuq(m; 3, a,%) are equivalent if and only if
* B=5
® the boundary conditions (BCs) hold for every j=0,1,...,|3 - 5/4],
® m-me /-'Ifﬁ,
® a=a.
* In dimension d > 4, the Gaussian measures pq(m; 3,2, ) and
wuq(m; 3, a,%) are equivalent if and only if
* B=5,
° KJ2 _ 7{2,
®* m-me Hfﬁ,
® a=a.

i3
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Conditions on the parameters for optimal linear prediction

Theorem (Uniformly asymptotically optimal linear prediction)

Suppose Setting WM for each of the parameter tuples (,r), (3,7)
and for D ¢ RY. Let m, i€ Ly(D) and /3, 3 > d/a be such that 2/3 ¢ &.

Consider the Gaussian measures

:u’d(m;67a7ﬁ) and Nd(m;g7577€)

Then, the Assumptions |-l (for uniformly asymptotically optimal linear
prediction) are satisfied if and only if
* B=5

® the boundary conditions (BCs) hold for every j=0,1,...,|5 - 5/a],
®* m-me I-'Ifﬁ,

® here exists a constant ¢ > 0 such that ca = a.

%
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Summary

Let 0 := pug(0; 3,2, 1), T := pug(0; 5,4, 7%) be Gaussian measures for gen-
eralized Whittle-Matérn fields with parameters (3,4, ) resp. (f,4,%).

Interval for 3, assuming that J ¢ {k + 1/a: k e N}

Conditions for (d/a,9/a) (9/a,13/4) (13/a, 00)
Asymptotically optimal B=p5, ca=a B=0, ca=13, B=8, ca=a
linear prediction for some c € (0, 00) (av6c,,€z)|ap ‘n=0 |+ b.c. on i,
Equivalence of measures ﬁ:E, a=a B:B, a=13, ﬂzﬁ, a=a
in dimension d <3 (3V(51,n2)’0p ‘n=0 | + b.c.ondy,e

Equivalence of measures

3 = 2 _~2
i i i = a=a K=K
in dimension d > 4 B=p8, a=4,

Ocn2(8) = %#2(s) — cx’(s), and n is the outward pointing normal on 9D.

5
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Simulation 1: The difference between k2 and a
(-v-(av) + )’ (r2) =W in D=(0,1).
True model: B=1, a=1, k> =1200, and T = %/4;_3/2.
Two misspecified models: correct values of 3,7, and we set

2 ~[(1200f(s)"%, 1) for model 1, 5
(IQ (S)’a(S)) B {(1200, f(s)) for model 2, seD=[0.1];

where f(s) =1+ %erf(M)_

V2
As a measure of accuracy, we use
E[(h, - h)?
£, (h) = [(—)2] 1
E[(hn - h)?]

We predict Z(xo) as well as the integrals Iy := (Z, e¢),(py and set
Er=max{€f ,in+1<l< N}, & =E(l), Le{n+1,... N}

I,n

z
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Results of Simulation 1

10

£,(2(0.5))

10710

Figure: The results for model 1 (black) and model 2 (red) for the first example
with integral observations (left) and point observations (right).

Solid lines correspond to ¢ = 1, dashed to § = 10, and dotted to ¢ = 100.
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Simulation 2: The effect of the smoothness parameter 3
For 5 € {1,2,3},we consider

(-v-(av)+ 2 (rZ) =W in D=(0,1).
True model: a=1, x? =100(43 -1), and 7 >0
Two misspecified models: correct values of 3, a, 7, and we set

1-1.55°+5s> for model 1,

eD=[0,1].
1+s-15s° for model 2, (0,1]

k%(s) =100(43 - 1) - {

We again predict the integrals I, := (Z, eg)Lz(D) and consider

Er=max{€f,in+1<l< N}, & =E(l), Le{n+1,...,N},

I,n

where E[(F h)2]
En(h) := m -1

z
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Results of Simulation 2

10°. ‘ ‘ ‘ ; 400
350 -
300 ~<=g------------------X----
e
250 -
200 - - Baseline
—Model 1
—Model 2
150
0 0.2 0.4 0.6 0.8 1

n t

Left: The results for model 1 (black) and model 2 (red) in the second
example, with 8 =1 (solid), 5 = 2 (dashed), and 8 = 3 (dotted).

Right: k2 for the two models when 3 = 1.
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Thank you for your attention!
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