Signature Reconstruction from Randomized Signatures Signatures and Rough Paths @ICMS

Mie Glückstad

Nicola Muça Cirone Imperial College London

Josef Teichmann

Signatures

Let $X : [0, T] \to \mathbb{R}^d$ be a Lipschitz continuous path. Set for each $n \in \mathbb{N}$:

$$\begin{aligned} \Delta^n_{[s,t]} &:= \{ s \le r_1 \le \dots \le r_n \le t \} \quad \text{for } 0 \le s < t \le T \,, \\ \mathcal{W}_n &:= \{ w = (w_1, \dots, w_n) \mid w_1, \dots, w_n \in \{1, \dots, d\} \}. \end{aligned}$$

For any word $w \in W_n$ its associated iterated integral is denoted by:

$$\int_{\Delta_{[s,t]}^n} dX_r^w := \int_s^t \int_s^{r_n} \cdots \int_s^{r_3} \int_s^{r_2} dX_{r_1}^{w_1} \dots dX_{r_n}^{w_n}$$

Let e_1, \ldots, e_d denote the canonical basis vectors on \mathbb{R}^d , and set $e_w := e_{w_1} \otimes \cdots \otimes e_{w_n}$ for each $w = (w_1, \ldots, w_n) \in \mathcal{W}_n$. Then the collection of *n*'th order iterated integrals can be written as

$$\int_{\Delta_{[s,t]}^n} dX_{r_1} \otimes \cdots \otimes dX_{r_n} := \sum_{w \in \mathcal{W}_n} \int_{\Delta_{[s,t]}^n} dX_r^w e_w \in (\mathbb{R}^d)^{\otimes n}.$$

Signatures

Definition (Signature)

The signature at time T of the path $X : [0, T] \to \mathbb{R}^d$ is the map $S(X) : \Delta^2_{[0,T]} \to T((\mathbb{R}^d))$, defined by

$$\begin{split} S(X)_{s,t} &= \left(1, \int_s^t dX_{r_1}, \int_{\Delta_{[s,t]}^2} dX_{r_1} \otimes dX_{r_2}, \int_{\Delta_{[s,t]}^3} dX_{r_1} \otimes dX_{r_2} \otimes dX_{r_3}, \dots\right) \\ &= 1 + \sum_{n=1}^\infty \int_{\Delta_{[s,t]}^n} dX_{r_1} \otimes \dots \otimes dX_{r_n}, \end{split}$$

which takes value in the extended tensor algebra

$$T((\mathbb{R}^d)) := \left\{ (x_0, x_1, x_2, \dots) = \sum_{n=0}^{\infty} x_n \mid \forall n \in \mathbb{N}_0 : x_n \in (\mathbb{R}^d)^{\otimes n} \right\}.$$

CDE: Let $V_1, \ldots, V_d : \mathbb{R}^N \to \mathbb{R}^N$ be smooth vector fields. Consider for any initial value $y \in \mathbb{R}^N$, the controlled differential equation (CDE):

$$Y_t = y + \sum_{i=1}^d \int_0^t V_i(Y_s) dX_s^i \quad \text{for } t \in [0, T].$$

Denote by $Y^{y} : [0, T] \to \mathbb{R}^{N}$ the solution associated to this initial value.

Randomized signature: Let $\sigma : \mathbb{R} \to \mathbb{R}$ be a (real analytic) activation function, let A_1, \ldots, A_d be random $N \times N$ -matrices, let D_1, \ldots, D_d be random diagonal $N \times N$ -matrices.

- No-depth case: $V_i(y) = \sigma(A_i y + b_i)$ for $y \in \mathbb{R}^N$
- Depth case: $V_i(y) = \sigma(A_i \sigma(D_i y))$ for $y \in \mathbb{R}^N$

Why randomized signatures?

- Foundations of reservoir computing;
- Mixing of higher order signature terms in each coordinate;
- Extending randomized signatures to Lie groups allows us to have solutions on compact manifolds;
- Numerical stability, etc.

Let $C^{\infty}(\mathbb{R}^N) := \{g : \mathbb{R}^N \to \mathbb{R} \mid g \text{ is smooth}\}.$

Let $V : \mathbb{R}^N \to \mathbb{R}^N$ be a smooth vector field. Then for any $g \in C^\infty(\mathbb{R}^N)$, we write

$$Vg(x) = \underbrace{(\nabla g(x))^T}_{1 \times N} \underbrace{V(x)}_{N \times 1} \quad \text{for all } x \in \mathbb{R}^N, \quad \text{such that } Vg \in C^\infty(\mathbb{R}^N).$$

This gives a **derivation** $\mathcal{D}_V : C^{\infty}(\mathbb{R}^N) \to C^{\infty}(\mathbb{R}^N)$, defined by $g \mapsto Vg$.

Recall: The map $V \mapsto \mathcal{D}_V$, provides a bijective correspondence between the space of vector fields on \mathbb{R}^N and the space of derivations on \mathbb{R}^N .

Let $V_1, \ldots, V_d : \mathbb{R}^N \to \mathbb{R}^N$ be d vector fields. For any $g \in C^{\infty}(\mathbb{R}^N)$, write $V_1g, \ldots, V_dg \in C^{\infty}(\mathbb{R}^N)$, as usual.

Definition (Iterated vector field)

For any word $w = (w_1, ..., w_n)$, we can iteratively apply the vector fields to one another, by setting:

$$V_wg := V_{w_1} \cdots V_{w_n}g \in C^\infty(\mathbb{R}^N).$$

In this case, $V_w : C^{\infty}(\mathbb{R}^N) \to C^{\infty}(\mathbb{R}^N)$ is precisely the composition of derivations $\mathcal{D}_{V_{w_1}} \circ \cdots \circ \mathcal{D}_{V_{w_n}}$, and it is a linear differential operator on $C^{\infty}(\mathbb{R}^N)$ of order n.

Iterated vector fields

Let $V_1, \ldots, V_d : \mathbb{R}^N \to \mathbb{R}^N$ be smooth vector fields. Consider for any initial value $y \in \mathbb{R}^N$, the controlled differential equation

$$Y_t = y + \sum_{i=1}^d \int_0^t V_i(Y_s) dX_s^i \quad \text{for } t \in [0, T].$$

Denote by $Y^{y} : [0, T] \to \mathbb{R}^{N}$ the solution associated to this initial value.

Theorem (Taylor expansion)

For every $g \in C^{\infty}(\mathbb{R}^N)$, we have the Taylor expansion:

$$g(Y_t) = g(y) + \sum_{m=1}^{\infty} \sum_{w \in \mathcal{W}_m} V_w g(y) \int_{\Delta_{[0,t]}^m} dX_r^w \quad \textit{for every } t \in [0,T].$$

Question:

Given randomized signatures across different initial values, $(Y^y)_{y \in \mathbb{R}^N}$, can we reconstruct the components of the signature S(X) utilising the Taylor expansion from before?

Answer:

Yes, up to a certain order depending on the dimension of the hidden space \mathbb{R}^N , for randomized signatures with depth (under an appropriate choice of activation function).

 $\rightarrow\,$ Also works for any other CDEs whose iterated vector fields satisfy certain linear independence properties.

Signature reconstruction on \mathbb{R}^N

The following result is inspired by a conjecture from [E. Akyildirim, M. Gambara, J. Teichmann & S. Zhou, 2022].

Theorem (Signature reconstruction on \mathbb{R}^N)

Fix some $N, L \in \mathbb{N}$, let $V_1, \ldots, V_d : \mathbb{R}^N \to \mathbb{R}^N$ be smooth vector fields, and suppose that for all fixed $m \leq L$, the associated tree-like vector fields $\{V_{\tau} \mid \tau \in \mathbb{T}_w, w \in W_m\}$ are linearly independent. Consider for each $y \in \mathbb{R}^N$, the CDE:

$$Y_t^y = y + \sum_{i=1}^d \int_0^t V_i(Y_s) dX_s^i \quad \text{for every } t \in [0, T], \tag{1}$$

with solution $Y^{y} : [0, T] \to \mathbb{R}^{N}$. Then the signature components of S(X)up to order L can be uniquely reconstructed from the collection of solutions $(Y^{y})_{y \in \mathbb{R}^{N}}$.

Signature reconstruction on \mathbb{R}^N

Proof overview: Fix $N, L \in \mathbb{N}$. Consider for $\eta \in \mathbb{R}^N$, $r \in \mathbb{R}$, the modified differential equation

$$Y_t^{\eta,r} = \eta + \sum_{i=1}^d \int_0^t r V_i(Y_s^{\eta,r}) dX_s^i,$$

such that $Y^{\eta,r} = rY^{\frac{\eta}{r}}$ when $r \neq 0$ and $Y^{\eta,0} \equiv \eta$. Then for the vector fields $\tilde{V}_i(x) = rV_i(x)$, Taylor expansion yields for any $g \in C^{\infty}(\mathbb{R}^N)$:

$$g(Y_t^{\eta,r}) = g(\eta) + \sum_{k=1}^{\infty} r^k \sum_{w \in \mathcal{W}_k} V_w g(\eta) \int_{\Delta_{[0,t]}^k} dX_r^w.$$

Taking the *m*'th derivative w.r.t. *r* and evaluating in r = 0 then gives

$$\frac{d^m}{dr^m}g(Y_t^{\eta,r})|_{r=0}=\sum_{w\in \mathcal{W}_m}V_wg(\eta)\int_{\Delta^m_{[0,t]}}dX_r^w.$$

Proof overview (continued): The equation:

$$\frac{d^m}{dr^m}g(Y_t^{\eta,r})|_{r=0} = \sum_{w \in \mathcal{W}_m} V_w g(\eta) \int_{\Delta_{[0,t]}^m} dX_r^w,$$

can be considered as a linear equation system if we consider it across different initial values $\eta \in \mathbb{R}^N$.

- If the iterated vector fields {V_w | w ∈ W_m} are linearly independent, then the equation system can be uniquely solved w.r.t. the m'th order iterated integrals of X.
- Linear independence of tree-like vector fields for all m ≤ L, is a way of ensuring this holds up to order L.

Challenge: The iterated vector fields $\{V_w \mid w \in W_m\}$ quickly spiral out of control:

$$V_{w_1}g(x) = (\nabla g(x))^T V_{w_1}(x) = \sum_{j_0=1}^N \frac{\partial}{\partial x_{j_0}} g(x) \pi_{j_0}(V_{w_1}(x));$$

$$V_{w_1w_2}g(x) = (\nabla V_{w_1}g(x))^T V_{w_2}(x)$$

$$= \sum_{j_0,j_1=1}^N \frac{\partial^2}{\partial x_{j_1}\partial x_{j_0}} g(x) \pi_{j_0}(V_{w_1}(x)) \pi_{j_1}(V_{w_2}(x))$$

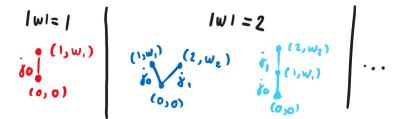
$$+ \frac{\partial}{\partial x_{j_0}} g(x) \frac{\partial}{\partial x_{j_1}} \pi_{j_0}(V_{w_1}(x)) \pi_{j_1}(V_{w_2}(x));$$

$$V_{w_1w_2w_3}g(x) = \dots$$

Tree-like vector fields

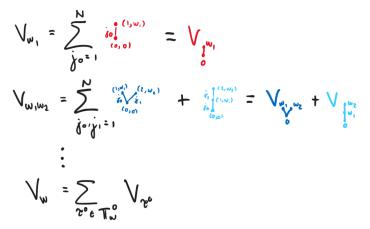
We can represent terms of V_w as labelled recursive trees with:

- Vertex 0 keeping track of the derivative operator (applied to g);
- Vertex 1,..., *m* keeping track of the vector fields V_{w_1}, \ldots, V_{w_m} ;
- Edges (v_1, v_2) with $v_1 < v_2$ are associated a direction j, such that:
 - The derivative in direction *j* is taken w.r.t. vertex *v*₁;
 - The projection in direction *j* is taken w.r.t. vertex *v*₂.



Tree-like vector fields

So now we can write:



→ Showing $\{V_{\tau} \mid \tau \in \mathbb{T}_{w}, w \in \mathcal{W}_{m}\}$ are linearly independent is then enough to get $\{V_{w} \mid w \in \mathcal{W}_{m}\}$ linearly independent.

Result

Let $L-1 \leq N$, and let $V_1, \ldots, V_d : \mathbb{R}^N \to \mathbb{R}^N$ be given by

$$V_i(x) = \sigma(A_i\sigma(D_ix)) \quad \text{for } x \in \mathbb{R}^N.$$

If $\sigma = \exp$ (or σ is a more generic real analytic function), then $\{V_{\tau} \mid \tau \in \mathbb{T}_{w}, w \in \mathcal{W}_{m}\}$ is linearly independent for all $1 \leq m \leq L$.

- \rightarrow We can reconstruct signature components up to order N+1 from randomized signature with depth.
- \rightarrow As *N* increases linearly, number of iterated integrals reconstructed increases exponentially!

Randomized signature with depth

Idea: Showing tree-like linear independence, boils down to being able to 'uniquely identify which (labelled) tree a term V_{τ} came from' (*ignoring scalars*).

Depth vs. no-depth:

- No-depth: ∂_jπ_k(σ(A_ix)) = a_{kj}(i)σ'(π_k(A_ix)), i.e., only the incoming edge has 'structural importance'.
- Depth: $\partial_j \pi_k(\sigma(A_i\sigma(D_ix))) = a_{kj}(i)\sigma'(d_j(i)x)\sigma'(\pi_k(A_i\sigma(D_ix)))$, i.e., both in- and outgoing edges have 'structural importance'.

Dimensional dependence

Q: Is dimensional dependence always required?

Example: N = 1, L = 3, d = 3. Let $V_1, V_2, V_3 : \mathbb{R} \to \mathbb{R}$. Then the 3rd order iterated vector fields have the form:

$$egin{aligned} &V_{w_1w_2w_3} = ig(V_{w_1}\cdot V_{w_2}\cdot d^2V_{w_3} + V_{w_1}\cdot dV_{w_2}\cdot dV_{w_3}ig)\cdot\partial_x \ &+ ig(V_{w_1}\cdot V_{w_2}\cdot 2dV_{w_3} + V_{w_1}\cdot dV_{w_2}\cdot V_{w_3}ig)\cdot\partial_x^2 \ &+ V_{w_1}\cdot V_{w_2}\cdot V_{w_3}\cdot\partial_x^3. \end{aligned}$$

A solution to the equation $\sum_{w \in \mathcal{W}_3} c_w V_w = 0$ is e.g., obtained by setting:

$$c_{123}=c_{312}=c_{231}=+1$$
 and $c_{132}=c_{213}=c_{321}=-1,$
 $c_w=0$ otherwise

 \rightarrow Verify that this solution solves the equations in ∂_x , ∂_x^2 and ∂_x^3 , simultaneously.

Dimensional dependence

Example (continued): Set

 $c_{123} = c_{312} = c_{231} = +1$ and $c_{132} = c_{213} = c_{321} = -1$.

The equation in ∂_x becomes:

 $V_{1} \cdot V_{2} \cdot d^{2}V_{3} + V_{1} \cdot dV_{2} \cdot dV_{3} \qquad (c_{123} = +1)$ $+ V_{3} \cdot V_{1} \cdot d^{2}V_{2} + V_{3} \cdot dV_{1} \cdot dV_{2} \qquad (c_{312} = +1)$ $+ V_{2} \cdot V_{3} \cdot d^{2}V_{1} + V_{2} \cdot dV_{3} \cdot dV_{1} \qquad (c_{231} = +1)$ $- (V_{1} \cdot V_{3} \cdot d^{2}V_{2} + V_{1} \cdot dV_{3} \cdot dV_{2}) \qquad (c_{132} = -1)$ $- (V_{2} \cdot V_{1} \cdot d^{2}V_{3} + V_{2} \cdot dV_{1} \cdot dV_{3}) \qquad (c_{213} = -1)$ $- (V_{3} \cdot V_{2} \cdot d^{2}V_{1} + V_{3} \cdot dV_{2} \cdot dV_{1}) \qquad (c_{321} = -1)$ = 0

The equations in ∂_x^2 and ∂_x^3 are similarly solved.

< ロト < 同ト < ヨト < ヨト

What did we show?

• Given randomized signature with **depth** on \mathbb{R}^N considered across different initial values, the associated signature components of S(X) can be reconstructed for all $L \leq N + 1$.

 \rightarrow Not sharp: depends on *d*.

- 2 The proof relies on an important claim of linear independence between iterated vector fields, which is required to uniquely solve the linear equation systems induced by the Taylor expansion.
- 3 Linear independence between iterated vector fields, is easier studied by decomposing into tree-like vector fields and checking linear independence of those.

Thank you for listening!

< 口 > < 同

Main references

- Akyildirim, Gambara, Teichmann, Zhou (2022). Applications of Signature Methods to Market Anomaly Detection.
- Baudoin, Zhang (2012). Taylor expansion for the solution of a stochastic differential equation driven by fractional brownian motions.
- Cuchiero, Gonon, Grigoryeva, Ortega, Teichmann (2021).
 Discrete-time signatures and randomness in reservoir computing.
- Q Cuchiero, Gonon, Grigoryeva, Ortega, Teichmann (2021). Expressive power of randomized signature.
- G., Muca Cirone, Teichmann (2025). Signature Reconstruction from Randomized Signatures.
- 6 Gubinelli (2019). Ramification of rough paths.
- McLachlan, Modin, Munthe-Kaas, Verdier (2017). Butcher series: A story of rooted trees and numerical methods for evolution equations.