Finite Gröbner bases for quantum symmetric groups

Leonard Schmitz (TU Berlin) joint w/ **Marcel Wack** (TU Berlin)

https://arxiv.org/abs/2503.15104

ICMS Edinburgh 2025-05-23

Free (associative) algebras

Let $X = \{x, y, ...\}$ be a set of *variables* equipped with a *lexicographical* order x > y > ...

The degree-lexicographic order on all monomials $u, v \in X^* := \{w_1 \dots w_\ell \mid w_i \in X\}$ is defined as

$$u > v :\iff \begin{cases} \deg(u) > \deg(v) \text{ or } \\ \deg(u) = \deg(v) \text{ and } u >_{\text{lex }} v \end{cases}$$

Example. xyx > yxx > xy > yx > x

Let $R := \mathbb{C}\langle X \rangle$ denote the *free algebra*, i.e., all *non-commutative* polynomials f in X with coefficients in \mathbb{C} . The largest monomial $\mathrm{Im}(f)$ with non-zero coefficient $\mathrm{Ic}(f)$ is called *leading monomial*.

Example.
$$\operatorname{Im}(\frac{1}{2}xyx + yxx) = xyx$$
 $\operatorname{lc}(3xy + 2yx) = 3$

Two-sided ideals

Definition. $J \subseteq R$ is a *two-sided ideal*, if

i)
$$f + g \in J$$
 $\forall f, g \in J$

ii)
$$rft \in J$$
 $\forall r, t \in R \ \forall f \in J$

Fact. Every (fin. gen.) algebra \mathcal{A} is isomorphic to a free algebra R modulo a two-sided ideal $J \subseteq R$, i.e.

$$A \cong R/J$$

Word problem. Decide whether $f, g \in R$ are equivalent modulo a given two-sided ideal $J \subset R$, i.e.

$$f = g \mod J \iff f - g \in J$$

Remark. The word problem is generally *not decidable* in *R*.

Gröbner bases

procedure NF(
$$h \in R$$
, $G \subseteq R$) // normal form if $h = 0$ return 0 while $\exists a, b \in X^* \exists f \in G : a \operatorname{Im}(f)b = \operatorname{Im}(h)$ do $h \leftarrow h - \frac{\operatorname{lc}(h)}{\operatorname{lc}(f)}afb$ return $\operatorname{lc}(h)\operatorname{Im}(h) + \operatorname{NF}(h - \operatorname{lc}(h)\operatorname{Im}(h), G)$

Example.
$$f := \underline{x^2} - y^2$$

$$h := \underline{x^2y^2x} - xy^4$$

$$NF(h, \{f\}) \neq 0$$

$$g := fx - xf = \underline{xy^2} - y^2x$$

$$NF(h, \{f, g\}) = 0 \implies h \in \langle f \rangle$$

$$-\frac{xy^4 + y^4x}{y^2}$$

$$-\frac{y^2xy^2 + y^4x}{y^2}$$

$$-\frac{xy^2x^2 - xy^4}{y^2g}$$

$$-\frac{xy^2x^2 - xy^4}{y^2g}$$

Definition.
$$G \subseteq R$$
 is a *Gröbner basis* (GB) if $h \in \langle G \rangle \iff \mathsf{NF}(h,G) = 0$

Bergman's diamond lemma

Theorem [2]. For any subset $G \subseteq R$, the following statements are equivalent.

- i) *G* is GB.
- ii) The output of the reduction algorithm NF(f, G) is unique for every $f \in R$.
- iii) The set of reduced monomials

$$\{NF(w, G) \mid w \text{ monomial }\}$$

is a \mathbb{C} -basis of the factor algebra $^R\!\!/_{\!\!\langle G\rangle}$ when considered as a vector space.

Buchberger's algorithm

Theorem. Let $F \subseteq R$ be finite such that $\langle F \rangle$ has a finite GB. Then Buchberger's algorithm [2] terminates and provides a finite GB G of $\langle F \rangle = \langle G \rangle$.

Corollary. If we have a finite GB G, then the work problem in $\langle G \rangle$ becomes decidable.

Remark. A GB is unique after inter-reduction and normalizing.

Example. i) A GB of
$$\langle x^2 - y^2 \rangle$$
 is $\{x^2 - y^2, xy^2 - y^2x\}$

ii) The inter-reduced and normalized GB of $\langle x^2 + yx \rangle$ is $\{xy^ix + y^{i+1}x \mid i \in \mathbb{N}_0\}$

Application: matrix identities

Lemma.
$$\begin{cases} A \in \mathsf{GL}_m(\mathbb{C}) \\ C, \ C^{-1} + VA^{-1}U \in \mathsf{GL}_\ell(\mathbb{C}) \end{cases} \implies A + UCV \in \mathsf{GL}_m(\mathbb{C}).$$

Proof. The MP-inverse $(A + UCV)^p$ exists, thus the ideal with GB

$$\left\{ (a+ucv)(a+ucv)^p(a+ucv) - (a+ucv), i_\ell c - c, (a+ucv)^p(a+ucv)(a+ucv)^p - (a+ucv)^p, (a+ucv)^p * (a+ucv)^p *$$

$$\implies (A + UCV)^p (A + UCV) = I_m \text{ and } ((A + UCV)(A + UCV)^p)^* = I_m$$

- [3] Hofstadler, Raab, Regensburger "Certifying operator identities via noncommutative Gröbner bases". 2019
- [4] Schmitz, Levandovskyy "Formally Verifying Proofs for Algebraic Identities of Matrices". 2020

Wang's quantum group

Let $R_n := \mathbb{C}\langle u_{ij} \mid 1 \leq i, j \leq n \rangle$. For any $1 \leq i, k \neq j \leq n$ let

$$\begin{split} \operatorname{rs}_i &:= \sum_{1 \leq \alpha \leq n} u_{i\alpha} - 1 & \operatorname{cs}_i &:= \sum_{1 \leq \alpha \leq n} u_{\alpha i} - 1 \\ \operatorname{inj}_{jik} &:= u_{ji} u_{ki} & \operatorname{wel}_{ijk} &:= u_{ik} u_{ij} \\ \operatorname{ip}_{ij} &:= u_{ij}^2 - u_{ij} \end{split}$$

denote row, column, orthogonal, and idempotent relations. The quantum symmetric group

$$\mathfrak{S}_n := \frac{R_n}{I_n}$$

is the free algebra R_n modulo the two-sided ideal

$$J_n := \left\langle \mathsf{rs}_i, \mathsf{cs}_i, \mathsf{ip}_{ij}, \mathsf{inj}_{jik}, \mathsf{wel}_{ijk} \left| egin{array}{l} 1 \leq i, j, k \leq n \\ \mathsf{with} \ j
eq k \end{array}
ight
angle$$

- [5] Wang "Quantum symmetry groups of finite spaces". 1998
- [6] Timmermann "An invitation to quantum groups and duality". 2008

Facts

Theorem i) If n < 4, the quantum symmetric group \mathfrak{S}_n is commutative, that is $u_{ij}u_{kl} = u_{kl}u_{ij}$ for all $1 \le i, j, k, l \le n$. **ii)** If $n \ge 4$, then \mathfrak{S}_n is non-commutative. (e.g. [1])

Definition. Transposition is an homomorphism of algebras,

$$(\cdot)^{\times}: R_n \to R_n, \ u_{ij} \mapsto u_{ji}$$

Example.
$$(u_{23}u_{13})^{\times} = u_{32}u_{31}$$

 $(u_{21} + u_{22} + u_{23} - 1)^{\times} = u_{12} + u_{22} + u_{32} - 1$

Lemma.

i)
$$rs_j^{\times} = cs_j$$

ii) $ip_{ij}^{\times} = ip_{ji}$
iii) $wel_{ijk}^{\times} = inj_{iik}$
iv) $rinj_{ki}^{\times} = rwel_{kj}^{\times}$

[7] Lupini, Mancinska, Roberson "Nonlocal games and quantum permutation groups". 2020

Reduced orthogonal relations

Lemma. The ideal J_n contains the *reduced orthogonal relations* for $2 \le j, k \le n$ with $j \ne k$,

$$\begin{split} & \operatorname{rinj}_{jk} := \sum_{3 \leq \alpha \leq n} u_{j2} u_{k\alpha} - \sum_{3 \leq \alpha \leq n} u_{j\alpha} u_{k1} + u_{k1} - u_{j2} \\ & \operatorname{rwel}_{jk} := \sum_{3 \leq \alpha \leq n} u_{2j} u_{\alpha k} - \sum_{3 \leq \alpha \leq n} u_{\alpha j} u_{1k} + u_{1k} - u_{2j} \end{split}$$

Proof.

$$\begin{split} &\inf_{\mathbf{k}1j} = u_{k1}u_{j1} \xrightarrow{\mathbf{rs}_{k}} - \sum_{\alpha \neq 1} \underline{u_{k\alpha}u_{j1}} + u_{j1} \\ &\xrightarrow{\mathbf{rs}_{j}} \sum_{\alpha \neq 1} \underline{u_{k2}u_{j\alpha}} - \sum_{\alpha \neq 1,2} u_{k\alpha}u_{j1} + u_{j1} - u_{k2} \\ &\xrightarrow{\inf_{\mathbf{k}2j}} \sum_{\alpha \neq 1,2} \underline{u_{k2}u_{j\alpha}} - \sum_{\alpha \neq 1,2} u_{k\alpha}u_{j1} + u_{j1} - u_{k2} = \mathbf{rinj}_{kj} \end{split}$$

Main result

Theorem [S, Wack '25]. For $n \ge 4$ the ideal J_n has a finite GB

$$G_{n} := \{ \operatorname{cs}_{1} \} \cup \left\{ \begin{array}{l} \operatorname{cs}_{i}, \operatorname{rs}_{i}, \operatorname{ip}_{jj}, \operatorname{inj}_{jjk} \\ \operatorname{wel}_{ijk}, \operatorname{rinj}_{kj}, \operatorname{rwel}_{kj} \end{array} \right| i, j, k \neq 1 \right\}$$

$$\cup \left\{ u_{k2} \operatorname{inj}_{j3i} - \operatorname{rinj}_{kj} u_{i3} \middle| \begin{array}{l} i, j, k \neq 1 \text{ and} \\ (k, j) \neq (2, 3) \neq (j, i) \end{array} \right\}$$

$$\cup \left\{ u_{2k} \operatorname{wel}_{3ji} - \operatorname{rwel}_{kj} u_{3i} \middle| \begin{array}{l} i, j, k \neq 1, \\ (k, j) \neq (2, 3) \neq (j, i) \\ \operatorname{and} (k, j, i) \neq (2, 4, 3) \end{array} \right\}$$

with respect to the graded lexicographic order via row-wise ordering in $(u_{ij})_{1 \le i,j \le n}$. Its cardinality is

$$\#G_n = 4n^3 - 15n^2 + 16n - 2$$

Corollary. The word problem in \mathfrak{S}_n is decidable.

Overlap polynomials

Definition. For $f, g \in R_n$ we obtain (fin. many) overlap polynomials

$$\begin{cases} \frac{1}{\operatorname{lc}(f)} f a - \frac{1}{\operatorname{lc}(g)} b g & \text{if } \operatorname{Im}(f) a = b \operatorname{Im}(g) \\ \frac{1}{\operatorname{lc}(f)} a f - \frac{1}{\operatorname{lc}(g)} g b & \text{if } a \operatorname{Im}(f) = \operatorname{Im}(g) b \end{cases}$$

where a, b are monomials with

$$0 < \operatorname{len}(a) \le \operatorname{len}(\operatorname{Im}(g))$$
 and $0 < \operatorname{len}(b) \le \operatorname{len}(\operatorname{Im}(f))$

Example.
$$\operatorname{Im}(\inf_{i2j} u_{k3}) = \underbrace{u_{i2} \cdot u_{j2} \mid u_{k3}}_{u_{i2} \operatorname{rinj}_{jk}} = \underbrace{u_{i2} \cdot u_{j2} \mid u_{k3}}_{u_{i2} \cup u_{j2} \cdot u_{k3}}$$

$$\implies inj_{i2i}u_{k3} - u_{i2}rinj_{jk}$$
 overlap polynomial

Definition. Similarly we obtain (fin. many) division polynomials

$$\frac{1}{\operatorname{lc}(f)} afb - \frac{1}{\operatorname{lc}(g)} g \qquad \text{if } a\operatorname{Im}(f)b = \operatorname{Im}(g)$$

Buchberger's criterion

Theorem. [1]. A subset $G \subset R_n$ is a GB if and only if each overlap and division relation of any $f, g \in G$ reduces to zero modulo G.

Remark. This is computably accessible and the key observation for Buchberger's algorithm [2] to compute a GB for an input set.

Example. i) $\{\inf_{ikj}, \operatorname{wel}_{kij} \mid 1 \leq i, j, k \leq n, i \neq j\}$ is a GB ii) $\{\operatorname{ip}_{ij} \mid 1 \leq i, j \leq n\}$ is a GB since the only overlap is

$$u_{ij}\mathsf{i}\mathsf{p}_{ij}-\mathsf{i}\mathsf{p}_{ij}u_{ij}=0$$

iii) $G:=\{\mathsf{rs}_2,\ldots,\mathsf{rs}_n,\mathsf{cs}_1,\ldots,\mathsf{cs}_n\}$ is a GB of $\langle\mathsf{rs}_1\cup G\rangle$ since

$$\mathsf{rs}_1 \xrightarrow{\mathsf{cs}_1} \mathsf{rs}_1 - \mathsf{cs}_1 \xrightarrow{\mathsf{cs}_2} \dots \xrightarrow{\mathsf{cs}_n} \mathsf{rs}_1 - \sum_{1 \le i \le n} \mathsf{cs}_i \xrightarrow{\mathsf{rs}_2} \dots \xrightarrow{\mathsf{rs}_n} 0.$$

- [1] Bergman "The diamond lemma in ring theory". 1978
- [2] Mora "Gröbner bases in non-commutative algebras". 1988

Only very few relations survive reduction

$$B_{n} := \left\{ bg_{kji}^{(2)} = u_{k2} inj_{j3i} - rinj_{kj} u_{i3} \mid i, j, k \neq 1 \text{ and} \atop (k, j) \neq (2, 3) \neq (j, i) \right\}$$

$$\cup \left\{ bg_{kji}^{(8)} = u_{2k} wel_{3ji} - rwel_{kj} u_{3i} \mid i, j, k \neq 1, \atop (k, j) \neq (2, 3) \neq (j, i) \atop and (k, j, i) \neq (2, 4, 3) \right\}$$

2nd round of overlapping

Here, no overlaps survive. Therefore J_n has the finite GB

$$\left\{\mathsf{rs}_i,\mathsf{cs}_i,\mathsf{ip}_{ij},\mathsf{inj}_{jik},\mathsf{wel}_{ijk}\left|\begin{array}{c} 1\leq i,j,k\leq n\\ \mathsf{with}\ j\neq k \end{array}\right.\right\}\cup \textit{\textbf{B}}_{\textit{\textbf{n}}}$$

Outlook and future work

- [8] Corey, Joswig, Schanz, Wack, Weber "Quantum automorphisms of matroids". 2023
- Levandovskyy, Eder, Schanz, Schmidt, Steenpass, Weber "Existence of quantum symmetries for graphs on up to seven vertices: a computer based approach". 2022
- [10] Preiß "An algebraic geometry of paths via the iterated-integral signature". 2023