Parallel transport along paths and surfaces

Francis Bischoff

University of Regina

Signatures and Rough Paths

Table of Contents

Ordinary differential equations

1 Ordinary differential equations

Connections

- 4 Connections on principal bundles
- 6 Surface signature

Linear ODEs

Ordinary differential equations

We're interested in differential equations of the following form

$$\frac{dy}{dt} = f(t)y,$$

and more generally systems of the form

$$\frac{dy_1}{dt} = f_{11}(t)y_1 + f_{12}(t)y_2 + \dots + f_{1n}(t)y_n,
\frac{dy_2}{dt} = f_{21}(t)y_1 + f_{22}(t)y_2 + \dots + f_{2n}(t)y_n,
\dots$$

$$\frac{dy_n}{dt} = f_{n1}(t)y_1 + f_{n2}(t)y_2 + \dots + f_{nn}(t)y_n.$$

We can express these systems compactly as follows

$$\frac{d\mathbf{y}}{dt}=A(t)\mathbf{y},$$

where $\mathbf{y} \in \mathbb{R}^n$ is a column vector consisting of n unknown functions, and $A(t) \in Mat(n)$ is an $n \times n$ matrix of functions.

A **solution** is a function y(t) satisfying the above equation.

Ordinary differential equations

Solutions: Existence and Uniqueness.

Theorem: Given the **choice** of an initial condition $\mathbf{c} \in \mathbb{R}^n$, and an initial time $a \in \mathbb{R}$, there is a unique solution \mathbf{y} of the equation

$$\frac{d\mathbf{y}}{dt}=A(t)\mathbf{y},$$

subject to the initial condition that y(a) = c.

Definition: Define the **parallel transport** to be the function

$$P: \mathbb{R} \times \mathbb{R} \to \mathrm{Mat}(n), \qquad (t, a) \mapsto P(t, a)$$

by letting $y(t) = P(t, a)(\mathbf{c})$ be the unique solution satisfying $y(a) = \mathbf{c}$.

Remark: If A(t) is smooth, then P is smooth.

How to solve: iterated integrals

Connections

Ordinary differential equations

Explicitly, the parallel transport of

$$\frac{d\mathbf{y}}{dt}=A(t)\mathbf{y},$$

is given by an iterated integral

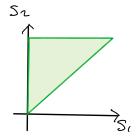
$$P(t,a) = id + \sum_{n\geq 1} \int_{a\leq s_1 \leq ... \leq s_n \leq t} A(s_n) A(s_{n-1}) ... A(s_1) ds_1 ... ds_n.$$

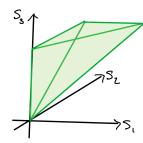
Francis Bischoff

The *n*-symplex

The *n*-symplex is the set of points

$$\Delta^n = \{ \left(s_1, s_2, ..., s_n \right) \in \mathbb{R}^n \ | \ 0 \leq s_1 \leq s_2 \leq ... \leq s_n \leq 1 \}.$$





Parallel transport: algebraic properties

Connections

Using the existence and uniqueness theorem, we can deduce the basic properties of the parallel transport P(x, y) of the differential equation

$$\frac{d\mathbf{y}}{dx} = A(x)\mathbf{y}.$$

1. P(x,x) = id, since P(x,a)(c) solves the DE with initial condition

$$P(a,a)(\mathbf{c}) = \mathbf{c}.$$

- 2. $P(x, y) \circ P(y, z) = P(x, z)$ for $x, y, z \in \mathbb{R}$.
- 3. $P(x, y) \in GL(n)$ is invertible since

$$P(x,y) \circ P(y,x) = P(x,x) = id.$$

Francis Bischoff

Connections

Parallel transport

Ordinary differential equations

Summarizing, we conclude that the parallel transport

$$P: \mathbb{R} \times \mathbb{R} \to \mathrm{GL}(n)$$

is a homomorphism.

But $\mathbb{R} \times \mathbb{R}$ is **not** a group. It is a **groupoid**.

Lie groupoids

Ordinary differential equations

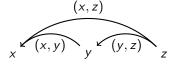
Given the space \mathbb{R} , the pair groupoid $\operatorname{Pair}(\mathbb{R}) \rightrightarrows \mathbb{R}$ is an example of a Lie groupoid: "a Lie group with many identities".

- It has a space \mathbb{R} of 'points', and a space $\mathbb{R} \times \mathbb{R}$ of 'arrows',
- The arrows connect points:

Connections

Therefore, the arrows (x, x) are 'identities'

Arrows with matching endpoints compose: (x, y) * (y, z) = (x, z)

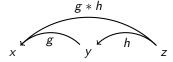


Connections

Ordinary differential equations

- A **Lie groupoid** $\mathcal{G} \rightrightarrows M$ has a manifold M of 'objects/points' and a manifold G of 'arrows'.
- It is equipped with source and target maps $s, t : \mathcal{G} \to M$:

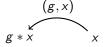
■ There is a partially defined multiplication:



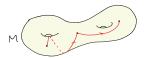
Connections

Ordinary differential equations

- A Lie group G is a Lie groupoid with set of objects $M = \{*\}$ a point.
- A manifold M is a Lie groupoid with only identity arrows $\mathcal{G} = M$.
- Given a group action $G \circlearrowleft M$, there is an action groupoid $G \ltimes M \rightrightarrows M$ with objects M and arrows $G \times M$



 \blacksquare Given a manifold M, the **fundamental groupoid** $\Pi(M)$ consists of homotopy classes of paths in M.



Solving ODEs and Lie's theorem

Connections

So far, we have shown the following

Theorem: There is a one-to-one correspondence between linear ODEs and representations of the pair groupoid of \mathbb{R} :

$$\left\{\begin{array}{l} \mathsf{Linear\ ODEs} \\ \frac{d\mathbf{y}}{dt} = A(t)\mathbf{y} \end{array}\right\} \cong \left\{\begin{array}{l} \mathsf{Representations\ of\ the\ pair\ groupoid} \\ P: \mathrm{Pair}(\mathbb{R}) \to \mathrm{GL}(n) \end{array}\right\}$$

This is a special case of Lie's second theorem for Lie groupoids (Mackenzie, Xu and Moerdijk, Mrčun).

Francis Bischoff

Table of Contents

- 2 Connections
- 4 Connections on principal bundles
- 6 Surface signature

Connections

Connections

We want to generalize the previous story in many directions. First, we increase the dimension of the space.

Definition: A connection on \mathbb{R}^k is a differential operator

$$\nabla = d - \alpha : C^{\infty}(\mathbb{R}^k, \mathbb{R}^n) \to \Omega^1(\mathbb{R}^k) \otimes \mathbb{R}^n$$

where α is a matrix valued differential 1-form

$$\alpha = \sum_{i=1}^k \alpha_i dx_i \in \Omega^1(\mathbb{R}^k) \otimes \operatorname{Mat}(n).$$

This corresponds to the system of partial differential equations

$$\frac{\partial \mathbf{y}}{\partial x_i} = \alpha_i(\mathbf{x})\mathbf{y}.$$

Parallel transport

Ordinary differential equations

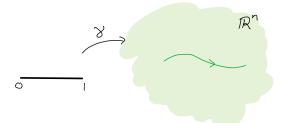
The system of equations

Connections

$$\frac{\partial \mathbf{y}}{\partial x_i} = \alpha_i(\mathbf{x})\mathbf{y}.$$

may not admit any solutions $\mathbf{y}: \mathbb{R}^k \to \mathbb{R}^n$. But, we can define parallel transport along a path

$$\gamma: [0,1] \to \mathbb{R}^k$$
.



Francis Bischoff

Parallel transport

The system of equations

Connections

$$\frac{\partial \mathbf{y}}{\partial x_i} = \alpha_i(\mathbf{x})\mathbf{y}.$$

may not admit any solutions $\mathbf{y}: \mathbb{R}^k \to \mathbb{R}^n$. But, we can define parallel transport along a path

$$\gamma: [0,1] \to \mathbb{R}^k$$
.

lacktriangle Pullback the connection abla along the path to get a connection on the interval: $\gamma^*(\nabla) = d - \gamma^*(\alpha) = d - A(t)dt$, where

$$A(t) = \sum_{i=1}^{k} \alpha_i(\gamma(t)) \frac{d\gamma_i}{dt}.$$

■ Solve the equation to get the parallel transport $P(\gamma) \in GL(n)$ along the path.

Parallel transport: algebraic properties

The algebraic properties we deduced before still hold:

- Given a path γ , $P(\gamma) \in GL(n)$.
- Given two paths γ, η with matching endpoints

we have $P(\gamma * \eta) = P(\gamma)P(\eta)$.

- Given a constant path c, P(c) = id.
- Given a path γ , let γ^{-1} be the path travelled in the opposite direction. Then $P(\gamma^{-1}) = P(\gamma)^{-1}$.

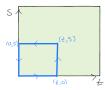
Parallel transport: dependence on paths

How does the parallel transport depend on the particular choice of path?

• Consider a connection ∇ on the square $[0,1]^2$, with

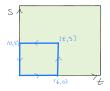
$$\alpha(t,s)=A(t,s)dt+B(t,s)ds.$$

• We consider the parallel transport along the following loop $\lambda_{(t,s)}$:



$$P(\lambda_{(t,s)}) = id + (\partial_t B - \partial_s A - [A, B])|_{(0,0)} ts + \mathcal{O}((t,s)^3)$$

Connections on principal bundles



Therefore, the quantity $\partial_t B - \partial_s A - [A, B]$ measures the failure of the parallel transport being independent of the choice of path connecting two given endpoints.

Francis Bischoff

Curvature

Ordinary differential equations

■ The curvature of a connection $\nabla = d - \alpha$ is the matrix-valued 2-form

$$F(\alpha) = d\alpha - \alpha \wedge \alpha \in \Omega^2(\mathbb{R}^k) \otimes \operatorname{Mat}(n).$$

For $\alpha(t,s) = A(t,s)dt + B(t,s)ds$

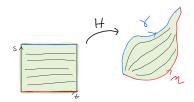
$$F(\alpha) = (\partial_t B - \partial_s A - [A, B])dt \wedge ds.$$

 \blacksquare A connection ∇ is **flat** if its curvature vanishes

$$F(\nabla)=0.$$

Parallel transport

The parallel transport of a flat connection ∇ only depends on the endpoints of a path γ . In other words, it is invariant under homotopy equivalence:



Then

$$P(\gamma) = P(\eta).$$

As a result, the P depends only on the endpoints:

$$P(\gamma) = P(\gamma(1), \gamma(0))$$

Francis Bischoff

Flat connections

Ordinary differential equations

If ∇ is flat, then the system of equations

$$\frac{\partial \mathbf{y}}{\partial x_i} = \alpha_i(x)\mathbf{y}.$$

does admit global solutions $\mathbf{y}: \mathbb{R}^k \to \mathbb{R}^n$.

Lie's second theorem

Ordinary differential equations

If ∇ is a flat connection, then its parallel transport defines a groupoid homomorphism

$$P: \operatorname{Pair}(\mathbb{R}^k) \to \operatorname{GL}(n).$$

Theorem: There is a one-to-one correspondence between flat connections on \mathbb{R}^k and representations of the pair groupoid of \mathbb{R}^k :

$$\left\{\begin{array}{c} \mathsf{Flat}\;\mathsf{connections}\;\nabla\\ F(\nabla) = 0 \end{array}\right\} \cong \left\{\begin{array}{c} \mathsf{Representations}\;\mathsf{of}\;\mathsf{the}\;\mathsf{pair}\;\mathsf{groupoid}\\ P: \mathrm{Pair}(\mathbb{R}^k) \to \mathrm{GL}(n) \end{array}\right.$$

Francis Bischoff

What happens when ∇ is not flat?

We do not get a representation of $\operatorname{Pair}(\mathbb{R}^k)$ when our connection ∇ is not flat.

However, $P(\gamma)$ satisfies a number of properties:

- Invariant under reparametrizations $P(\gamma \circ \phi) = P(\gamma)$,
- Preserves inverses $P(\gamma^{-1}) = P(\gamma)^{-1}$
- Multiplicative $P(\gamma * \eta) = P(\gamma)P(\eta)$.
- Invariant under cancellation of retracings:

$$P(\gamma * \eta * \eta^{-1} * \tau) = P(\gamma * \tau).$$

Invariance under retracings

Ordinary differential equations

The parallel transport satisfies: $P(\gamma * \eta * \eta^{-1} * \tau) = P(\gamma * \tau)$.

These properties of the parallel transport are enough for P to define a representation from a some groupoid of paths into the group GL(n)!

Ordinary differential equations

Definition: Given two paths $\gamma, \eta : [0,1] \to \mathbb{R}^k$, such that

$$\gamma(0) = \eta(0) = x, \qquad \gamma(1) = \eta(1) = y,$$

a **homotopy** from γ to η is a map

Connections

$$H:[0,1]^2\to\mathbb{R}^k$$

such that

- \blacksquare H(0,s)=x and H(1,s)=y for all s,
- $H(t,0) = \gamma$ and $H(t,1) = \eta$ for all t.

The homotopy H is a thin homotopy if

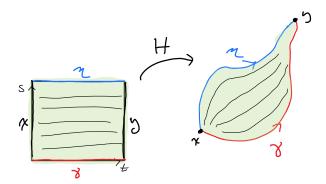
$$\operatorname{rank}(dH_{(t,s)}) \leq 1$$

for all $(t, s) \in [0, 1]^2$.

Remark: Thin homotopy is equivalent to **tree-like equivalence**.

Connections

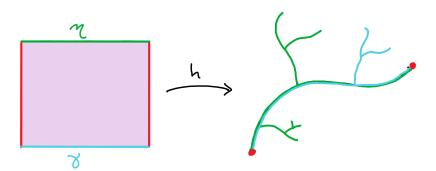
Homotopy



Connections

Thin homotopy

Ordinary differential equations



Francis Bischoff

Thin fundamental groupoid

- Both homotopy and thin homotopy define equivalence relations on the space of paths $C^{\infty}([0,1],\mathbb{R}^n)$.
- Both define groupoids over \mathbb{R}^k : $\Pi(\mathbb{R}^k)$ and $\Pi^{\text{thin}}(\mathbb{R}^k)$:
 - 1. The space of objects is \mathbb{R}^k and the space of arrows is $C^{\infty}([0,1],\mathbb{R}^n)/\sim$.
 - 2. The maps $t, s : \Pi^{(\text{thin})}(\mathbb{R}^k) \to \mathbb{R}^k$ are given by the endpoints:

$$t(\gamma) = \gamma(1), \qquad s(\gamma) = \gamma(0).$$

- 3. The multiplication is given by path concatenation.
- There is a homomorphism $\Pi^{\text{thin}}(\mathbb{R}^k) \to \Pi(\mathbb{R}^k)$.
- Note that $\Pi(\mathbb{R}^k) \cong \operatorname{Pair}(\mathbb{R}^k)$ since any path in \mathbb{R}^k is determined up to homotopy by its endpoints.
- The (thin) fundamental groupoids exist for any manifold M:

$$\Pi(M) \rightrightarrows M, \qquad \Pi^{\text{thin}}(M) \rightrightarrows M.$$

Invariance under thin homotopy

Ordinary differential equations

If γ and η are thin homotopic paths, then

$$P(\gamma) = P(\eta)$$
.

This is because, given a thin homotopy $H:[0,1]^2\to\mathbb{R}^k$, the curvature of $H^*(\nabla)$ vanishes.

This is because the curvature $H^*(F(\nabla))$ is a 2-form and $\operatorname{rank}(dH_{(t,s)}) \leq 1.$

Given a general connection ∇ on \mathbb{R}^k , its parallel transport defines a representation

$$P:\Pi^{ ext{thin}}(\mathbb{R}^k)\to \mathrm{GL}(n).$$

Table of Contents

Ordinary differential equations

1 Ordinary differential equations

Connections

- 2 Connections
- 3 The Path Signature
- 4 Connections on principal bundles
- 5 Piecewise linear paths
- 6 Surface signature

Connections

Let G be a Lie group: a smooth manifold with a compatible group structure.

- It determines a Lie algebra $\mathfrak{g} = \operatorname{Lie}(G) = T_eG$.
- The tangent bundle of G is trivial: $TG \cong G \times \mathfrak{g}$ via right trivialization

$$(dg)g^{-1}:T_gG\to \mathfrak{g}.$$

Alternatively, we can use left trivializations.

• We can replace GL(n) with any Lie group when defining differential equations and connections:

$$\frac{ds}{dt} = A(t)s(t)$$

for $A(t) \in \mathfrak{q}$.

• A solution is a map $s: \mathbb{R} \to G$ such that $(\frac{ds}{dt})s(t)^{-1} = A(t)$.

- All the previous results continue to hold in the setting of g-valued connections.
- We can still solve the equations using iterated integrals:

$$P(t,a) = id + \sum_{n\geq 1} \int_{a\leq s_1 \leq ... \leq s_n \leq t} A(s_n) A(s_{n-1})...A(s_1) ds_1...ds_n.$$

But this should be understood in the (completed) universal enveloping algebra $\hat{U}(\mathfrak{q})$.

Flat g-connections are equivalent to representations

$$P: \operatorname{Pair}(\mathbb{R}^k) \to G$$

General g-connections are equivalent to (smooth) representations

$$P:\Pi^{ ext{thin}}(\mathbb{R}^k)\to G.$$

■ The path signature arises as a very special example of this.

Free algebras

Let $V \cong \mathbb{R}^n$ be a real vector space. We define

■ The *free associative algebra* on *V*:

Connections

$$T(V) = \bigoplus_{k\geq 0} V^{\otimes k} \cong \mathbb{R}\langle z_1, ..., z_n \rangle,$$

which is an algebra of non-commutative polynomials in n variables.

■ The free Lie algebra on V is the Lie subalgebra $\mathcal{L}(V) \subset \mathcal{T}(V)$ generated by V:

$$\mathcal{L}(V) = V \oplus [V, V] \oplus ...$$

It can be formally integrated to a group by taking exponentials

$$K_0(V) = \exp(\mathcal{L}(V)) \subset T((V)).$$

Truncations and Completions

We will also consider truncations

$$T^{(n)}(V) = T(V)/(V^{\otimes n+1}), \qquad \mathcal{L}^{(n)}(V), \qquad K^{(n)}(V).$$

- $\mathcal{L}^{(n)}(V)$ is the free nilpotent Lie algebra of n steps on V. The algebraic Lie group $K^{(n)}(V)$ is its integration.
- Finally, we consider the completion

$$T((V)) = \prod_{k>0} V^{\otimes k} \cong \mathbb{R}\langle\langle z_1, ..., z_n\rangle\rangle,$$

which is the algebra of non-commutative power series.

 $\mathcal{L}((V)) \subset T((V))$ is the completed free Lie algebra and

$$\hat{K}(V) = \exp(\mathcal{L}((V))) \subset T((V))$$

is its formal integration.

The tautological connection

The **tautological connection** on a vector space V is the following translation invariant $\mathcal{L}(V)$ -connection:

$$\nabla = d - \mathrm{id}_{V},$$

where $id_V \in V^* \otimes V \subset \Omega^1(V) \otimes \mathcal{L}(V)$.

More concretely, let $V = \mathbb{R}^n$, with basis $z_1, ..., z_n$. Let $x_1, ..., x_n$ be the corresponding dual basis, viewed as linear functions on \mathbb{R}^n . Then

$$\nabla = d - \sum_{i=1}^n z_i dx_i.$$

It has non-zero curvature

$$F(\nabla) = \sum_{i < j} [z_i, z_j] dx_i \wedge dx_j.$$

The path signature

Ordinary differential equations

The parallel transport of the tautological connection ∇ gives a homomorphism

 $P:\Pi^{\mathrm{thin}}(V)\to \hat{K}(V).$

Because ∇ is translation invariant, it satisfies $P(\gamma + \nu) = P(\gamma)$ for any $v \in V$. Therefore, the parallel transport factors as a homomorphism

$$S: \tau(V) \to \hat{K}(V),$$

where

$$\tau(V) = \Pi^{\text{thin}}(V)/V,$$

which has the structure of a group.

Connections

Definition: Given a path $\gamma \in \tau(V)$, its **signature** is the non-commutative power series

$$S(\gamma) \in \hat{K}(V)$$
.

Computing the signature

Ordinary differential equations

Let $\gamma(t) = (x_1(t), x_2(t), ..., x_n(t)) : [0, 1] \to V$ be a path and let

$$S(\gamma) = \sum_{w} S_{w}(\gamma)w$$

be its signature, where the sum is over all words w in the letters $z_1,...,z_n$. The coefficient $S_w(\gamma)$ of the word $w=z_{i_1}...z_{i_k}$ is computed as an iterated integral as follows:

$$S_w(\gamma) = \int_{0 \le s_k \le ... \le s_1 \le 1} x'_{i_1}(s_1)...x'_{i_k}(s_k) ds_k...ds_1.$$

The signature is one-to-one

Connections

Ordinary differential equations

Theorem (Chen) The signature

$$S_0: \tau_1(V) \to \hat{K}(V)$$

is an injective group homomorphism.

This result was generalized to bounded variation paths by Hambly and Lyons, and to rough paths by Boedihardjo, Geng, Lyons, Yang.

Francis Bischoff University of Regina

Table of Contents

Connections

- 4 Connections on principal bundles
- 6 Surface signature

Principal bundles

Ordinary differential equations

Now we generalize the space on which our connections are defined from \mathbb{R}^k to a general manifold M. This opens the possibility of studying connections on general **principal** G-bundles.

A principal G-bundle over a manifold is a map

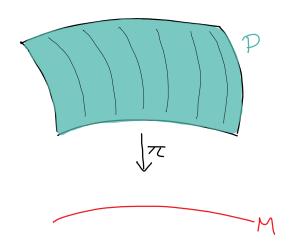
$$\pi: P \to M$$
,

where

- 1 the space P is equipped with a free right G-action.
- 2 the map π is G-invariant: $\pi(p * g) = \pi(p)$.
- 3 P is locally (in M) isomorphic to a product

$$\pi^{-1}(U) \cong U \times G$$
.

Connections



Examples

Ordinary differential equations

Let G be a Lie group with subgroup H, and let M = G/H, the coset space. Then the quotient map

$$\pi: G \rightarrow M$$

defines a principal H-bundle.

Ordinary differential equations

Let $G = SU(2) \cong S^3$ and $H = S^1$. Then $G/H \cong S^2$. This defines the Hopf bundle

$$\pi:S^3\to S^2$$
.

Recall that we defined the truncations

Connections

$$T^{(n)}(V) = T(V)/(V^{\otimes n+1}), \qquad \mathcal{L}^{(n)}(V), \qquad K^{(n)}(V).$$

Then there is a surjective group homomorphism

$$\pi: \hat{K}(V) \to K^{(n)}(V).$$

Let $\hat{H}_n(V) = \ker(\pi)$.

Ordinary differential equations

- Then $\hat{K}(V)$ is a principal $\hat{H}_n(V)$ -bundle over $K^{(n)}(V)$.
- In particular, $\hat{K}(V)$ is a principal $\hat{H}_1(V)$ -bundle over $K^{(1)}(V) = V$.

More about principal bundles

Connections

Let $\pi: P \to M$ be a principal *G*-bundle.

- The fibres $P_x = \pi^{-1}(x)$ of P are **non-canonically** isomorphic to G.
- This means that it is not possible to compare the different fibres without more data. In particular, there is no sense in which a path

$$\gamma: [0,1] \rightarrow M$$

can be lifted to P in a way which is 'constant' in the fibres.

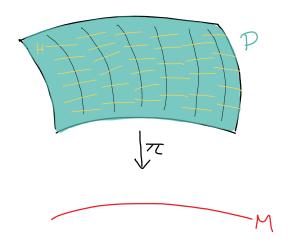
The extra data we must choose is a connection: the choice of a 'horizontal' subspace

$$H_p \subset T_p P$$

at every point $p \in P$, which is complementary to the vertical fibres.

Connections on principal bundles

Connections



Connections on principal bundles

Let $(\pi: P \to M, H)$ be a principal G-bundle equipped with connection H. Given a trivialization $P \cong M \times G$, we have

$$T_{(m,e)}P = T_mM \oplus T_eG = T_mM \oplus \mathfrak{g}.$$

The connection $H_{(m,e)} \subset T_m M \oplus \mathfrak{g}$ is the graph of a 1-form

$$\alpha \in \Omega^1(M) \otimes \mathfrak{g} \qquad H = \operatorname{graph}(\alpha : TM \to \mathfrak{g}).$$

In other words, H is locally the same thing as a connection

$$\nabla = d - \alpha$$
.

Example

Ordinary differential equations

Let $H \subset G$ be a normal subgroup with quotient M = G/H and consider the short exact sequence

$$0\to \mathfrak{h}\to \mathfrak{g}\to \mathfrak{m}\to 0.$$

A splitting $s:\mathfrak{m}\to\mathfrak{g}$ induces a connection on G with curvature

$$F(X,Y)=\pi_{\mathfrak{h}}([s(X),s(Y)]).$$

Example

Ordinary differential equations

We have the decomposition

Connections

$$\mathcal{L}(V) = \mathfrak{h}_n(V) \oplus \mathcal{L}^{(n)}(V),$$

where $\mathfrak{h}_n(V) = Lie(H_n(V))$.

Therefore, the principal bundles

$$\pi:\hat{K}(V)\to K^{(n)}(V)$$

are all naturally equipped with connections ∇_n induced from the splitting $s: \mathcal{L}^{(n)}(V) \to \mathcal{L}(V)$.

Horizontal lift

Ordinary differential equations

Let $(\pi: P \to M, H)$ be a principal G-bundle equipped with connection H. Given a path

$$\gamma: [0,1] \to M$$
,

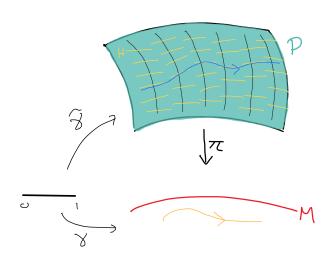
a **horizontal lift** of γ is a path

$$\hat{\gamma}: [0,1] \rightarrow P$$

such that

- $\hat{\gamma}$ is a lift of γ : $\pi \circ \hat{\gamma} = \gamma$.
- $\hat{\gamma}$ is horizontal: $\frac{d\hat{\gamma}}{dt} \in H$.

Connections



Horizontal lift

Ordinary differential equations

Choose a trivialization: $P \cong M \times G$ such that the connection H is represented by $\alpha \in \Omega^1(M) \otimes \mathfrak{g}$. The problem of finding the horizontal lift is equivalent to find

$$s:[0,1]\to G$$
 such that $(ds)s^{-1}=\alpha$.

Therefore

- **Existence** and uniqueness: given $\hat{\gamma}(0) \in P_{\gamma(0)}$, there is a unique horizontal lift.
- \blacksquare The horizontal lift along γ defines a parallel transport isomorphism

$$P(\gamma): P_{\gamma(0)} \to P_{\gamma(1)}.$$

The signature revisited

- Consider the principal bundle $\pi: \hat{K}(V) \to V$ equipped with the connection ∇_1 induced by the splitting $\mathcal{L}(V) = \mathfrak{h}_1(V) \oplus V$.
- lacksquare Given a path $\gamma:[0,1] o V$, the parallel transport defines a lift

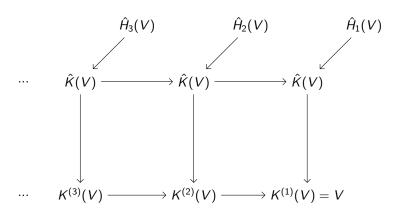
$$\hat{\gamma}: [0,1] o \hat{\mathcal{K}}(V), \qquad P(\gamma) = \hat{\gamma}(1).$$

This recovers the path signature.

■ Bellingeri, Friz, Paycha, Preiß: a smooth rough path is a map $\gamma:[0,1]\to K^{(n)}(V)$. Using the connection ∇_n , this has horizontal lift

$$\hat{\gamma}: [0,1] \to \hat{K}(V), \qquad P(\gamma) = \hat{\gamma}(1).$$

This defines the signature of rough paths.



Representations of the fundamental group

- Fundamental group: let $\pi_1(M,x)$ be the subgroup of $\Pi(M)$ consisting of loops based at x.
- Thin fundamental group: let $\pi^{\text{thin}}(M,x)$ be the subgroup of $\Pi^{\text{thin}}(M)$ consisting of loops based at x.
- The parallel transport of a connection defines a homomorphism

$$P: \pi^{\mathrm{thin}}(M, x) \to G.$$

If the connection is flat, it descends to a homomorphism

$$P:\pi(M,x)\to G.$$

Riemann-Hilbert Correspondence

Connections

Let G be a Lie group and let M be a smooth manifold. The Riemann-Hilbert correspondence is an equivalence of categories:

$$\operatorname{Flat}(M,G) \cong \operatorname{Rep}(\pi_1(M),G),$$

where

- Flat(M, G) is the category of flat connections ∇ on principal *G*-bundles $P \rightarrow M$.
- $Arr \operatorname{Rep}(\pi_1(M), G)$ is the category of G-representations of the fundamental group $\pi_1(M)$.

This equivalence of categories arises by combining two more basic equivalences

$$\operatorname{\mathsf{Rep}}(TM,G) \overset{\operatorname{\mathsf{Lie}}\,2}{\longleftrightarrow} \operatorname{\mathsf{Rep}}(\Pi(M),G) \overset{\operatorname{\mathsf{Morita}}}{\longleftrightarrow} \operatorname{\mathsf{Rep}}(\pi_1(M,x),G)$$

Thin Riemann-Hilbert Correspondence

Theorem (Barrett, Caetano-Picken)

Connections

$$\operatorname{Conn}(M,G) \cong \operatorname{Rep}_{C^{\infty}}(\pi_1^{thin}(M),G)$$

where

- ullet Conn(M,G) denotes the category of all G-connections on M,
- $Arr \operatorname{Rep}_{C^{\infty}}(\pi_1^{thin}(M),G)$ denotes the category of G-representations of $\pi_1^{thin}(M)$ which are smooth in a certain sense.

The signature is universal

- There is a sense in which the path signature $S(\gamma) \in \hat{K}(V)$ is universal.
- Chen: all possible iterated integrals along γ are contained in $S(\gamma)$. Therefore, there should be a way of extracting the parallel transport of any connection from $S(\gamma)$.
- By Chen's theorem, the group of thin paths $\tau(V)$ embeds into $\hat{K}(V)$.
- Chow's theorem: after truncating, the map $\tau(V) \to K^{(n)}(V)$ is surjective.
- Recall that the component of $S(\gamma)$ in V is the translation of a path. Therefore.

$$\pi_1^{thin}(V) \rightarrow \hat{H}_1(V).$$

So we should think of $H_1(V)$ as the group of formal loops in V.

■ Since formally $\operatorname{Lie}(H_1(V)) = [\mathcal{L}(V), \mathcal{L}(V)]$, this is the Lie algebra of 'infinitesimal loops' in V.

Connections

Theorem: "Infinitesimal Riemann-Hilbert correspondence" (Reutenauer, Kapranov)

Connections on principal bundles

$$\operatorname{Conn}(\mathcal{D}_n,G)\cong\operatorname{Rep}([\mathcal{L}(\mathbb{R}^n),\mathcal{L}(\mathbb{R}^n)],\mathfrak{g})$$

where

Ordinary differential equations

- \blacksquare Conn(\mathcal{D}_n , G) denotes the category of all G-connections on the formal n-dimensional disc.
- $\blacksquare \operatorname{Rep}([\mathcal{L}(\mathbb{R}^n),\mathcal{L}(\mathbb{R}^n)],\mathfrak{g})$ denotes the category of \mathfrak{g} -representations of the commutator subalgebra $[\mathcal{L}(\mathbb{R}^n), \mathcal{L}(\mathbb{R}^n)]$.

Connections

Given an (analytic) connection $\alpha \in \Omega^1(\mathbb{R}^n) \otimes \mathfrak{g}$, we use the infinitesimal Riemann-Hilbert correspondence extract a homomorphism

Connections on principal bundles

$$\phi_{\alpha}: [\mathcal{L}(\mathbb{R}^n), \mathcal{L}(\mathbb{R}^n)] \to \mathfrak{g},$$

which we integrate to

Ordinary differential equations

$$\Phi_{\alpha}: H_1(\mathbb{R}^n) \to G.$$

Then the parallel transport of $\nabla = d - \alpha$ along γ is

$$P(\nabla) = \Phi_{\alpha} \circ S(\gamma).$$

Table of Contents

Ordinary differential equations

Connections

- 4 Connections on principal bundles
- 5 Piecewise linear paths
- 6 Surface signature

Thin path group

Recall: $\tau(V)$, the group of paths up to thin homotopy and translation. There is a homomorphism

$$t: \tau(V) \to V, \qquad \gamma \mapsto \gamma(1).$$

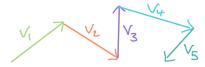
Then

$$\Pi^{ ext{thin}}(V) \cong \tau(V) \ltimes V.$$

Piecewise linear paths

There is an interesting subgroup of the thin group: the group of piecewise linear paths.

$$PL(V) \subset \tau_1(V)$$
.



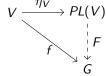
Piecewise linear paths

The group PL(V) is equipped with a map

$$\eta_V:V\to PL(V),$$

which restricts to a homomorphism on each 1-dimensional subspace. This property characterizes the group:

Universal property: Let V be a vector space, let G be a group, and let $f: V \to G$ be a map which restricts to a homomorphism on each line. Then there is a unique group homomorphism $F: PL(V) \to G$ such that $F \circ \eta_V = f$.



Using the universal property we obtain:

■ The identity map $id: V \rightarrow V$ is a homomorphism. Therefore, there is an induced map

$$t: \mathrm{PL}(V) \to V.$$

• Consider $r: V \to \tau(V)$ sending $v \in V$ to the path $\gamma_v(t) = tv$. This induces a realization homomorphism

$$R: \mathrm{PL}(V) \to \tau(V)$$

■ Consider exp: $V \to \hat{K}(V)$ sending $v \in V$ to $\sum_{n \ge 0} \frac{1}{n!} v^{\otimes n}$. This induces the signature

$$S_{PL}: \mathrm{PL}(V) \to \hat{K}(V).$$

Using the homomorphisms

$$t: \mathrm{PL}(V) \to V, \qquad t: \tau(V) \to V, \qquad \pi: \hat{K}(V) \to V,$$

we obtain action groupoids over V

$$\Pi_{PL}(V) = \operatorname{PL}(V) \ltimes V, \qquad \Pi^{\operatorname{thin}}(V) \cong \tau(V) \ltimes V, \qquad \Pi_K(V) = \hat{K}(V) \ltimes V,$$

and these define functors

$$\Pi_{PL}, \Pi^{\mathrm{thin}}, \Pi_{K} : \mathrm{Vect} \to \mathrm{Gpd}.$$

The homormorphisms for all $V \in Vect$

$$S_{PL}: \mathrm{PL}(V) \ltimes V \xrightarrow{R} \tau(V) \ltimes V \xrightarrow{S} \hat{K}(V) \ltimes V$$

assemble together into natural transformations

$$S_{PL}: \Pi_{PL} \stackrel{R}{\Rightarrow} \Pi^{\text{thin}} \stackrel{S}{\Rightarrow} \Pi_K.$$

Uniqueness

Ordinary differential equations

Theorem: The piecewise linear signature is the unique natural transformation:

$$S_{PL}:\Pi_{PL}\Rightarrow\Pi_{K}.$$

Proof If V is 1-dimensional, then $K(V) \cong V$ and so

$$K(V) \ltimes V \cong \operatorname{Pair}(V)$$
.

and therefore there is a unique homomorphism

$$S_{PL}: \mathrm{PL}(V) \ltimes V \to \mathrm{Pair}(V).$$

Since piecewise linear paths can be factored into 1-dimensional path, general uniqueness of S_{PI} follows.

Uniqueness

Ordinary differential equations

Using the fact that piecewise linear paths are dense in smooth paths (with Lipschitz topology), we immediately obtain:

Theorem: The signature is the unique continuous natural transformation:

$$S:\Pi^{ ext{thin}}\Rightarrow\Pi_{K}.$$

Table of Contents

Connections

- 4 Connections on principal bundles
- 6 Surface signature

Categorifying the parallel transport

In order to define the signature of a surface in \mathbb{R}^n , we must 'categorify' all concepts used in the section about paths:

- The thin group $\tau(V)$ and the group of non-commutative power series $\hat{K}(V)$ must be categorified to '2-groups'.
- Connections must be categorified to '2-connections'.
- The parallel transport needs to be categorified to a '2-functor'.

Francis Bischoff University of Regina

Ordinary differential equations

Ordinary differential equations

Our model for '2-dimensional groups' is given by crossed modules, which were introduced by Whitehead. A crossed module

$$H = (\delta: H_1 \rightarrow H_0, \triangleright)$$

consists of the following data:

 \blacksquare A group H_0 of 'paths'

Ordinary differential equations

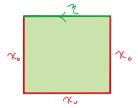
Our model for '2-dimensional groups' is given by crossed modules, which were introduced by Whitehead. A crossed module

$$H = (\delta: H_1 \rightarrow H_0, \triangleright)$$

consists of the following data:

Connections

- \blacksquare A group H_0 of 'paths'
- \blacksquare A group H_1 of 'surfaces'



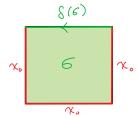
Ordinary differential equations

Our model for '2-dimensional groups' is given by crossed modules, which were introduced by Whitehead. A crossed module

$$H=(\delta:H_1\to H_0,\triangleright)$$

consists of the following data:

- A group H₀ of 'paths'
- \blacksquare A group H_1 of 'surfaces'
- A group homomorphism $\delta: H_1 \to H_0$



Ordinary differential equations

Our model for '2-dimensional groups' is given by crossed modules, which were introduced by Whitehead. A crossed module

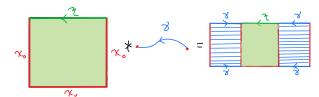
$$H = (\delta: H_1 \rightarrow H_0, \triangleright)$$

consists of the following data:

- A group H₀ of 'paths'
- \blacksquare A group H_1 of 'surfaces'

Connections

- A group homomorphism $\delta: H_1 \to H_0$
- An action by automorphisms $\triangleright: H_0 \to \operatorname{Aut}(H_1)$



Francis Bischoff University of Regina

Ordinary differential equations

Our model for '2-dimensional groups' is given by crossed modules, which were introduced by Whitehead. A crossed module

$$H = (\delta: H_1 \rightarrow H_0, \triangleright)$$

consists of the following data:

- A group H₀ of 'paths'
- \blacksquare A group H_1 of 'surfaces'
- A group homomorphism $\delta: H_1 \to H_0$
- An action by automorphisms $\triangleright: H_0 \to \operatorname{Aut}(H_1)$

such that

- The homomorphism δ is H_0 -equivariant.
- The Peiffer identity holds:

$$\delta(\mathsf{E}) \triangleright \mathsf{F} = \mathsf{E}\mathsf{F}\mathsf{E}^{-1}$$
.

Our first example of a crossed module is the crossed module of surfaces in V

$$\tau(V) = (\delta : \tau_2(V) \to \tau_1(V), \triangleright)$$

- The 'group of paths' $\tau_1(V)$ is the group of paths modulo translation and thin homotopy, considered before.
- The 'group of surfaces' $\tau_2(V)$ is the group of smooth surfaces

$$X:[0,1]^2\to V$$

such that X(t,0) = X(0,s) = X(1,s) = 0, taken module translation and thin homotopy.

- The group structure is given by horizontal concatenation
- \bullet is given by restriction to the top boundary $\delta(X)(t) = X(t,1)$.

Connections

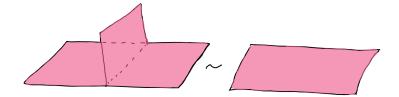
Ordinary differential equations

A thin homotopy between two surfaces $X, Y : [0,1]^2 \to V$ is a homotopy

$$H:[0,1]^3\to V$$

which does not 'sweep out' any volume: $rank(dH) \le 2$.

This includes reparametrization and cancellation of folds...

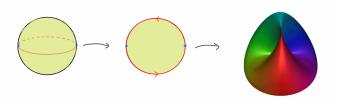


Connections

Ordinary differential equations

...but it also includes certain 'non-local' cancellations:

$$S^2 \to \mathbb{RP}^2 \to \mathbb{R}^n$$
.



This map is thinly null-homotopic, even though there are no folds to cancel. There is no null-homotopy which stays completely within the image of this map: we must introduce new surfaces.

2-dimensional gauge theory

Connections

- Let $(\delta: H \to G, \triangleright)$ be a crossed module of Lie groups.
- Differentiating gives a crossed module of Lie algebras

$$(\delta:\mathfrak{h}\to\mathfrak{g},\triangleright).$$

- A 2-connection on a vector space V valued in $(\delta : \mathfrak{h} \to \mathfrak{g}, \triangleright)$ consists in the data of
 - \blacksquare a \mathfrak{g} -valued 1-form $A \in \Omega^1_X \otimes \mathfrak{g}$.
 - a \mathfrak{h} -valued 2-form $B \in \Omega^2_X \otimes \mathfrak{h}$,

such that $\delta(B) = F_A$.

2-dimensional gauge theory

Ordinary differential equations

Theorem (Schreiber, Waldorf, Martins, Picken, ...) A (translation invariant) 2-connection induces a parallel transport homomorphism between crossed modules

$$P: \tau(V) \rightarrow (\delta: H \rightarrow G, \triangleright).$$

In particular, it associates an element of H to every surface in X in V.

Kapranov's free crossed module

In order to define the surface signature, we need a certain free crossed module generated by a vector space

$$\mathfrak{k}(V) = (\partial : \mathfrak{k}_1(V) \to \mathfrak{k}_0(V), \triangleright)$$

- $\mathfrak{k}_0(V) = \mathcal{L}(V)$, the free Lie algebra generated by V.
- $\mathfrak{k}_1(V) = T(V) \otimes \wedge^2(V)/\text{Peiff}$, where Peiff is the subspace generated by

$$\langle v \otimes a \wedge b, w \otimes c \wedge e \rangle = ad_v([a,b])w \otimes c \wedge e + ad_w([c,e])v \otimes a \wedge b.$$

■ The bracket on $\mathfrak{t}_1(V)$ is given by

$$[v \otimes a \wedge b, w \otimes c \wedge e] = ad_v([a, b])w \otimes c \wedge e$$

Krapranov's free crossed module

We can formally integrate $\mathfrak{k}(V)$ to get the crossed module of formal surfaces

$$\hat{\mathcal{K}}(V) = (\partial:\hat{\mathcal{K}}_1(V) \to \hat{\mathcal{K}}_0(V), \triangleright)$$

Francis Bischoff

Ordinary differential equations

The tautological connection

Connections

The **tautological 2-connection** on a vector space V is the translation invariant $\mathfrak{k}(V)$ -connection with

$$A = \mathrm{id}_V \subset \Omega^1(V) \otimes \mathcal{L}(V), \qquad B = \mathrm{id}_{\wedge^2 V} \subset \Omega^2(V) \otimes \mathfrak{k}_1(V).$$

More concretely, in coordinates

$$A = \sum_{i} z_i dx_i, \qquad B = \sum_{i < j} z_i \wedge z_j dx_i \wedge dx_j.$$

The surface signature

Connections

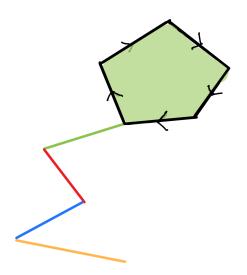
Definition (Kapranov, Lee, Chevyrev, Diehl, Ebrahimi-Fard, Tapia) The surface signature is the surface holonomy of the tautological connection:

$$S = (S_1, S_0) : \tau(V) \rightarrow \hat{K}(V).$$

- Given a path $\gamma \in \tau_1(V)$, the component $S_0(V) \in \hat{K}_0(V)$ is the path signature.
- Given a surface $X \in \tau_2(V)$, the component $S_1(X) \in \hat{K}_1(V)$ is the surface signature.

There is an interesting sub-crossed module of $\tau(V)$: the crossed module of piecewise linear surfaces

$$\mathrm{PL}(V) = (\delta : \mathrm{PL}_1(V) \to \mathrm{PL}_0(V), \triangleright).$$



Connections on principal bundles

There are canonical functions

$$\eta_{V,0}: V \to \mathrm{PL}_0(V), \qquad \eta_{V,1}: V \times V \to \mathrm{PL}_1(V),$$

where $\eta_{V,0}(v)$ is the line segment path tv, and $\eta_{V,1}(v,u)$ is the triangular surface spanned by v and u.

Piecewise linear surfaces

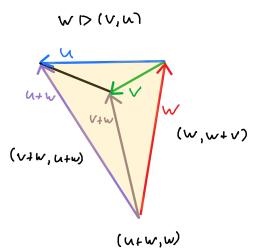
Universal property of PL(V): Let V be a vector space, let $\mathbf{H} = (\delta : H \to G, \triangleright)$ be a crossed module, and let $f_0 : V \to G$ and $f_1: V \times V \to H$ be functions such that

- \bullet $f_0: V \to G$ restricts to a homomorphism on every one-dimensional subspace of V.
- $f_1: V \times V \to H$ is trivial on all linearly dependent pairs (v, u)
- **Triangle identity**: for every $v, u \in V$

$$\delta \circ f_1(v,u) = f_0(v)f_0(u-v)f_0(-u).$$

Tetrahedron identity: For $v, w, u \in V$ which lie in a common two-dimensional subspace

$$f^{0}(w) \triangleright f^{1}(v, u) = f^{1}(w, w + v)f^{1}(w + v, w + u)f^{1}(w + u, w).$$



Connections on principal bundles

Universal property of PL(V): Let V be a vector space, let $\mathbf{H} = (\delta : H \to G, \triangleright)$ be a crossed module, and let $f_0 : V \to G$ and $f_1: V \times V \to H$ be functions such that

- $f_0: V \to G$ restricts to a homomorphism on every one-dimensional subspace of V.
- $f_1: V \times V \to H$ is trivial on all linearly dependent pairs (v, u)
- **Triangle identity**: for every $v, u \in V$

$$\delta \circ f_1(v,u) = f_0(v)f_0(u-v)f_0(-u).$$

Tetrahedron identity: For $v, w, u \in V$ which lie in a common two-dimensional subspace

$$f^{0}(w) \triangleright f^{1}(v, u) = f^{1}(w, w + v)f^{1}(w + v, w + u)f^{1}(w + u, w).$$

Then there is a unique morphism of crossed modules $F: \operatorname{PL}(V) \to \mathbf{H}$ such that $F_0 \circ \eta_{V,0} = f_0$ and $F_1 \circ \eta_{V,1} = f_1$.

The crossed modules

Ordinary differential equations

$$PL, \tau, \hat{K} : Vect \to XMod$$

are functors from the category of vector spaces to the category of crossed modules. The signature $S: \tau \Rightarrow \hat{K}$ is a natural transformation. There is a (uniquely defined) realization natural transformation

$$R: \mathrm{PL} \Rightarrow \tau(V).$$

We can define the piecewise linear signature to be the composition

$$S_{\mathrm{PL}} = S \circ R : \mathrm{PL} \Rightarrow \hat{K}.$$

Francis Rischoff University of Regina

The surface signature is unique

Theorem(B., Lee) The piecewise linear surface signature

$$S_{PL}: PL \Rightarrow \hat{K}$$

is the unique natural transformation extending the piecewise linear path signature.

Furthermore, the smooth surface signature

$$S: \tau \Rightarrow \hat{K}$$

is the unique continuous natural transformation extending the smooth path signature.

Francis Bischoff University of Regina

Computing the signature

Connections

Ordinary differential equations

Theorem(B., Lee) There is a canonical embedding

$$\hat{K}_1(V) \rightarrow \hat{\Gamma}_2(V) \times \hat{T}(V),$$

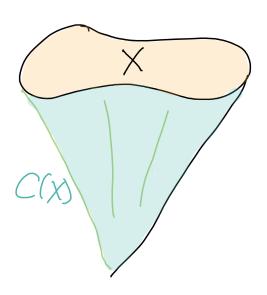
where $\hat{T}(V)$ is the algebra of formal non-commutative power series and $\hat{\Gamma}_2(V) = \hat{S}(V) \otimes \wedge^2 V$ is the vector space of formal 2-currents. The surface signature decomposes as follows:

$$S_1 = (S_1^{\mathsf{\Gamma}}, S_1^{\mathcal{E}}) : \tau_2(V) \to \hat{\mathsf{\Gamma}}_2(V) imes \hat{\mathcal{T}}(V),$$

where, for a surface $X \in \tau_2(V)$,

- $S_1^{\mathcal{E}}(X) = S_0(\partial(X))$, the path signature of the boundary,
- $S_1^{\Gamma}(X) = \sum_{I,i < i} (\int_{\mathcal{C}(X)} x^I dx^i \wedge dx^j) z^I \otimes z_i \wedge z_j$, where $\mathcal{C}(X)$ is the closed surface obtained from conning off the boundary of X.

Francis Bischoff University of Regina



Connections on principal bundles

The surface signature is injective

Theorem(B., Lee) The piecewise linear surface signature

$$S_{\mathrm{PL},1}:\mathrm{PL}_1(V) o \hat{K}(V)$$

is injective.

Ordinary differential equations

In particular, if $X \in \operatorname{PL}_1(V)$ is a surface such that $S_{\operatorname{PL},1}(X) = 0$, then $R_1(X)$ is thinly null-homotopic.

Thank

Ordinary differential equations