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Linear ODEs

We’re interested in differential equations of the following form

dy

dt
= f (t)y ,

and more generally systems of the form

dy1

dt
= f11(t)y1 + f12(t)y2 + ...+ f1n(t)yn,

dy2

dt
= f21(t)y1 + f22(t)y2 + ...+ f2n(t)yn,

...

dyn
dt

= fn1(t)y1 + fn2(t)y2 + ...+ fnn(t)yn.
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We can express these systems compactly as follows

dy

dt
= A(t)y,

where y ∈ Rn is a column vector consisting of n unknown functions, and
A(t) ∈ Mat(n) is an n × n matrix of functions.

A solution is a function y(t) satisfying the above equation.
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Solutions: Existence and Uniqueness.

Theorem: Given the choice of an initial condition c ∈ Rn, and an initial
time a ∈ R, there is a unique solution y of the equation

dy

dt
= A(t)y,

subject to the initial condition that y(a) = c.

Definition: Define the parallel transport to be the function

P : R× R→ Mat(n), (t, a) 7→ P(t, a)

by letting y(t) = P(t, a)(c) be the unique solution satisfying y(a) = c.

Remark: If A(t) is smooth, then P is smooth.
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How to solve: iterated integrals

Explicitly, the parallel transport of

dy

dt
= A(t)y,

is given by an iterated integral

P(t, a) = id +
∑
n≥1

∫
a≤s1≤...≤sn≤t

A(sn)A(sn−1)...A(s1)ds1...dsn.

Francis Bischoff University of Regina

Parallel transport along paths and surfaces



Ordinary differential equations Connections The Path Signature Connections on principal bundles Piecewise linear paths Surface signature

The n-symplex

The n-symplex is the set of points

∆n = {(s1, s2, ..., sn) ∈ Rn | 0 ≤ s1 ≤ s2 ≤ ... ≤ sn ≤ 1}.
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Parallel transport: algebraic properties

Using the existence and uniqueness theorem, we can deduce the basic
properties of the parallel transport P(x , y) of the differential equation

dy

dx
= A(x)y.

1. P(x , x) = id , since P(x , a)(c) solves the DE with initial condition

P(a, a)(c) = c.

2. P(x , y) ◦ P(y , z) = P(x , z) for x , y , z ∈ R.

3. P(x , y) ∈ GL(n) is invertible since

P(x , y) ◦ P(y , x) = P(x , x) = id .
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Parallel transport

Summarizing, we conclude that the parallel transport

P : R× R→ GL(n)

is a homomorphism.

But R× R is not a group. It is a groupoid.
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Lie groupoids

Given the space R, the pair groupoid Pair(R) ⇒ R is an example of a Lie
groupoid: “a Lie group with many identities”.

It has a space R of ‘points’, and a space R× R of ‘arrows’,

The arrows connect points:

x y

(x , y)

Therefore, the arrows (x , x) are ‘identities’

Arrows with matching endpoints compose: (x , y) ∗ (y , z) = (x , z)

x y z
(x , y) (y , z)

(x , z)
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Lie groupoids

A Lie groupoid G ⇒ M has a manifold M of ‘objects/points’ and a
manifold G of ‘arrows’.

It is equipped with source and target maps s, t : G → M:

t(g) s(g)

g

There is a partially defined multiplication:

x y z
g h

g ∗ h
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Lie groupoids: examples

A Lie group G is a Lie groupoid with set of objects M = {∗} a point.

A manifold M is a Lie groupoid with only identity arrows G = M.

Given a group action G 	 M, there is an action groupoid
G nM ⇒ M with objects M and arrows G ×M

g ∗ x x

(g , x)

Given a manifold M, the fundamental groupoid Π(M) consists of
homotopy classes of paths in M.
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Solving ODEs and Lie’s theorem

So far, we have shown the following
Theorem: There is a one-to-one correspondence between linear ODEs
and representations of the pair groupoid of R:{

Linear ODEs
dy
dt = A(t)y

}
∼=
{

Representations of the pair groupoid
P : Pair(R)→ GL(n)

}
This is a special case of Lie’s second theorem for Lie groupoids
(Mackenzie, Xu and Moerdijk, Mrčun).
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Connections

We want to generalize the previous story in many directions. First, we
increase the dimension of the space.

Definition: A connection on Rk is a differential operator

∇ = d − α : C∞(Rk ,Rn)→ Ω1(Rk)⊗ Rn

where α is a matrix valued differential 1-form

α =
k∑

i=1

αidxi ∈ Ω1(Rk)⊗Mat(n).

This corresponds to the system of partial differential equations

∂y

∂xi
= αi (x)y.
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Parallel transport

The system of equations
∂y

∂xi
= αi (x)y.

may not admit any solutions y : Rk → Rn. But, we can define parallel
transport along a path

γ : [0, 1]→ Rk .
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Parallel transport

The system of equations
∂y

∂xi
= αi (x)y.

may not admit any solutions y : Rk → Rn. But, we can define parallel
transport along a path

γ : [0, 1]→ Rk .

Pullback the connection ∇ along the path to get a connection on
the interval: γ∗(∇) = d − γ∗(α) = d − A(t)dt, where

A(t) =
k∑

i=1

αi (γ(t))
dγi
dt

.

Solve the equation to get the parallel transport P(γ) ∈ GL(n) along
the path.
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Parallel transport: algebraic properties

The algebraic properties we deduced before still hold:

Given a path γ, P(γ) ∈ GL(n).

Given two paths γ, η with matching endpoints

we have P(γ ∗ η) = P(γ)P(η).

Given a constant path c , P(c) = id .

Given a path γ, let γ−1 be the path travelled in the opposite
direction. Then P(γ−1) = P(γ)−1.
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Parallel transport: dependence on paths

How does the parallel transport depend on the particular choice of path?

Consider a connection ∇ on the square [0, 1]2, with

α(t, s) = A(t, s)dt + B(t, s)ds.

We consider the parallel transport along the following loop λ(t,s):
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The parallel transport around the closed loop λ(t,s) has the form

P(λ(t,s)) = id + (∂tB − ∂sA− [A,B])|(0,0)ts +O((t, s)3)

Therefore, the quantity ∂tB − ∂sA− [A,B] measures the failure of the
parallel transport being independent of the choice of path connecting two
given endpoints.

Francis Bischoff University of Regina

Parallel transport along paths and surfaces



Ordinary differential equations Connections The Path Signature Connections on principal bundles Piecewise linear paths Surface signature

Curvature

The curvature of a connection ∇ = d − α is the matrix-valued
2-form

F (α) = dα− α ∧ α ∈ Ω2(Rk)⊗Mat(n).

For α(t, s) = A(t, s)dt + B(t, s)ds

F (α) = (∂tB − ∂sA− [A,B])dt ∧ ds.

A connection ∇ is flat if its curvature vanishes

F (∇) = 0.
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Parallel transport

The parallel transport of a flat connection ∇ only depends on the
endpoints of a path γ. In other words, it is invariant under homotopy
equivalence:

Then
P(γ) = P(η).

As a result, the P depends only on the endpoints:

P(γ) = P(γ(1), γ(0))
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Flat connections

If ∇ is flat, then the system of equations

∂y

∂xi
= αi (x)y.

does admit global solutions y : Rk → Rn.
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Lie’s second theorem

If ∇ is a flat connection, then its parallel transport defines a groupoid
homomorphism

P : Pair(Rk)→ GL(n).

Theorem: There is a one-to-one correspondence between flat
connections on Rk and representations of the pair groupoid of Rk :{

Flat connections ∇
F (∇) = 0

}
∼=
{

Representations of the pair groupoid
P : Pair(Rk)→ GL(n)

}
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What happens when ∇ is not flat?

We do not get a representation of Pair(Rk) when our connection ∇ is
not flat.

However, P(γ) satisfies a number of properties:

Invariant under reparametrizations P(γ ◦ φ) = P(γ),

Preserves inverses P(γ−1) = P(γ)−1

Multiplicative P(γ ∗ η) = P(γ)P(η).

=⇒ Invariant under cancellation of retracings:

P(γ ∗ η ∗ η−1 ∗ τ) = P(γ ∗ τ).
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Invariance under retracings

The parallel transport satisfies: P(γ ∗ η ∗ η−1 ∗ τ) = P(γ ∗ τ).

These properties of the parallel transport are enough for P to define a
representation from a some groupoid of paths into the group GL(n)!
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Thin homotopy

Definition: Given two paths γ, η : [0, 1]→ Rk , such that

γ(0) = η(0) = x , γ(1) = η(1) = y ,

a homotopy from γ to η is a map

H : [0, 1]2 → Rk

such that

H(0, s) = x and H(1, s) = y for all s,

H(t, 0) = γ and H(t, 1) = η for all t.

The homotopy H is a thin homotopy if

rank(dH(t,s)) ≤ 1

for all (t, s) ∈ [0, 1]2.
Remark: Thin homotopy is equivalent to tree-like equivalence.
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Homotopy
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Thin homotopy
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Thin fundamental groupoid

Both homotopy and thin homotopy define equivalence relations on
the space of paths C∞([0, 1],Rn).

Both define groupoids over Rk : Π(Rk) and Πthin(Rk):
1. The space of objects is Rk and the space of arrows is

C∞([0, 1],Rn)/ ∼.
2. The maps t, s : Π(thin)(Rk)→ Rk are given by the endpoints:

t(γ) = γ(1), s(γ) = γ(0).

3. The multiplication is given by path concatenation.

There is a homomorphism Πthin(Rk)→ Π(Rk).

Note that Π(Rk) ∼= Pair(Rk) since any path in Rk is determined up
to homotopy by its endpoints.

The (thin) fundamental groupoids exist for any manifold M:

Π(M) ⇒ M, Πthin(M) ⇒ M.
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Invariance under thin homotopy

If γ and η are thin homotopic paths, then

P(γ) = P(η).

This is because, given a thin homotopy H : [0, 1]2 → Rk , the curvature of
H∗(∇) vanishes.

This is because the curvature H∗(F (∇)) is a 2-form and
rank(dH(t,s)) ≤ 1.
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Given a general connection ∇ on Rk , its parallel transport defines a
representation

P : Πthin(Rk)→ GL(n).
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Let G be a Lie group: a smooth manifold with a compatible group
structure.

It determines a Lie algebra g = Lie(G ) = TeG .

The tangent bundle of G is trivial: TG ∼= G × g via right
trivialization

(dg)g−1 : TgG → g.

Alternatively, we can use left trivializations.

We can replace GL(n) with any Lie group when defining differential
equations and connections:

ds

dt
= A(t)s(t)

for A(t) ∈ g.

A solution is a map s : R→ G such that ( ds
dt )s(t)−1 = A(t).
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All the previous results continue to hold in the setting of g-valued
connections.

We can still solve the equations using iterated integrals:

P(t, a) = id +
∑
n≥1

∫
a≤s1≤...≤sn≤t

A(sn)A(sn−1)...A(s1)ds1...dsn.

But this should be understood in the (completed) universal
enveloping algebra Û(g).

Flat g-connections are equivalent to representations

P : Pair(Rk)→ G ,

General g-connections are equivalent to (smooth) representations

P : Πthin(Rk)→ G .

The path signature arises as a very special example of this.
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Free algebras

Let V ∼= Rn be a real vector space. We define

The free associative algebra on V :

T (V ) =
⊕
k≥0

V⊗k ∼= R〈z1, ..., zn〉,

which is an algebra of non-commutative polynomials in n variables.

The free Lie algebra on V is the Lie subalgebra L(V ) ⊂ T (V )
generated by V :

L(V ) = V ⊕ [V ,V ]⊕ ...

It can be formally integrated to a group by taking exponentials

K0(V ) = exp(L(V )) ⊂ T ((V )).
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Truncations and Completions

We will also consider truncations

T (n)(V ) = T (V )/(V⊗n+1), L(n)(V ), K (n)(V ).

L(n)(V ) is the free nilpotent Lie algebra of n steps on V . The
algebraic Lie group K (n)(V ) is its integration.

Finally, we consider the completion

T ((V )) =
∏
k≥0

V⊗k ∼= R〈〈z1, ..., zn〉〉,

which is the algebra of non-commutative power series.

L((V )) ⊂ T ((V )) is the completed free Lie algebra and

K̂ (V ) = exp(L((V ))) ⊂ T ((V ))

is its formal integration.
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The tautological connection

The tautological connection on a vector space V is the following
translation invariant L(V )-connection:

∇ = d − idV ,

where idV ∈ V ∗ ⊗ V ⊂ Ω1(V )⊗ L(V ).

More concretely, let V = Rn, with basis z1, ..., zn. Let x1, ..., xn be the
corresponding dual basis, viewed as linear functions on Rn. Then

∇ = d −
n∑

i=1

zidxi .

It has non-zero curvature

F (∇) =
∑
i<j

[zi , zj ]dxi ∧ dxj .
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The path signature

The parallel transport of the tautological connection ∇ gives a
homomorphism

P : Πthin(V )→ K̂ (V ).

Because ∇ is translation invariant, it satisfies P(γ + v) = P(γ) for any
v ∈ V . Therefore, the parallel transport factors as a homomorphism

S : τ(V )→ K̂ (V ),

where
τ(V ) = Πthin(V )/V ,

which has the structure of a group.

Definition: Given a path γ ∈ τ(V ), its signature is the
non-commutative power series

S(γ) ∈ K̂ (V ).
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Computing the signature

Let γ(t) = (x1(t), x2(t), ..., xn(t)) : [0, 1]→ V be a path and let

S(γ) =
∑
w

Sw (γ)w

be its signature, where the sum is over all words w in the letters
z1, ..., zn. The coefficient Sw (γ) of the word w = zi1 ...zik is computed as
an iterated integral as follows:

Sw (γ) =

∫
0≤sk≤...≤s1≤1

x ′i1 (s1)...x ′ik (sk)dsk ...ds1.
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The signature is one-to-one

Theorem (Chen) The signature

S0 : τ1(V )→ K̂ (V )

is an injective group homomorphism.

This result was generalized to bounded variation paths by Hambly and
Lyons, and to rough paths by Boedihardjo, Geng, Lyons, Yang.
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Principal bundles

Now we generalize the space on which our connections are defined from
Rk to a general manifold M. This opens the possibility of studying
connections on general principal G -bundles.

A principal G -bundle over a manifold is a map

π : P → M,

where

1 the space P is equipped with a free right G -action.
2 the map π is G -invariant: π(p ∗ g) = π(p).
3 P is locally (in M) isomorphic to a product

π−1(U) ∼= U × G .

Francis Bischoff University of Regina

Parallel transport along paths and surfaces



Ordinary differential equations Connections The Path Signature Connections on principal bundles Piecewise linear paths Surface signature

Francis Bischoff University of Regina

Parallel transport along paths and surfaces



Ordinary differential equations Connections The Path Signature Connections on principal bundles Piecewise linear paths Surface signature

Examples

Let G be a Lie group with subgroup H, and let M = G/H, the coset
space. Then the quotient map

π : G → M

defines a principal H-bundle.
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Example: Hopf bundle

Let G = SU(2) ∼= S3 and H = S1. Then G/H ∼= S2. This defines the
Hopf bundle

π : S3 → S2.
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Example: non-commutative power series

Recall that we defined the truncations

T (n)(V ) = T (V )/(V⊗n+1), L(n)(V ), K (n)(V ).

Then there is a surjective group homomorphism

π : K̂ (V )→ K (n)(V ).

Let Ĥn(V ) = ker(π).

Then K̂ (V ) is a principal Ĥn(V )-bundle over K (n)(V ).

In particular, K̂ (V ) is a principal Ĥ1(V )-bundle over K (1)(V ) = V .
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More about principal bundles

Let π : P → M be a principal G -bundle.

The fibres Px = π−1(x) of P are non-canonically isomorphic to G .

This means that it is not possible to compare the different fibres
without more data. In particular, there is no sense in which a path

γ : [0, 1]→ M

can be lifted to P in a way which is ‘constant’ in the fibres.

The extra data we must choose is a connection: the choice of a
‘horizontal’ subspace

Hp ⊂ TpP

at every point p ∈ P, which is complementary to the vertical fibres.
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Connections on principal bundles
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Connections on principal bundles

Let (π : P → M,H) be a principal G -bundle equipped with connection H.
Given a trivialization P ∼= M × G , we have

T(m,e)P = TmM ⊕ TeG = TmM ⊕ g.

The connection H(m,e) ⊂ TmM ⊕ g is the graph of a 1-form

α ∈ Ω1(M)⊗ g H = graph(α : TM → g).

In other words, H is locally the same thing as a connection

∇ = d − α.
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Example

Let H ⊂ G be a normal subgroup with quotient M = G/H and consider
the short exact sequence

0→ h→ g→ m→ 0.

A splitting s : m→ g induces a connection on G with curvature

F (X ,Y ) = πh([s(X ), s(Y )]).
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Example

We have the decomposition

L(V ) = hn(V )⊕ L(n)(V ),

where hn(V ) = Lie(Hn(V )).
Therefore, the principal bundles

π : K̂ (V )→ K (n)(V )

are all naturally equipped with connections ∇n induced from the splitting
s : L(n)(V )→ L(V ).
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Horizontal lift

Let (π : P → M,H) be a principal G -bundle equipped with connection
H. Given a path

γ : [0, 1]→ M,

a horizontal lift of γ is a path

γ̂ : [0, 1]→ P

such that

γ̂ is a lift of γ: π ◦ γ̂ = γ.

γ̂ is horizontal: d γ̂
dt ∈ H.
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Horizontal lift

Choose a trivialization: P ∼= M × G such that the connection H is
represented by α ∈ Ω1(M)⊗ g. The problem of finding the horizontal lift
is equivalent to find

s : [0, 1]→ G such that (ds)s−1 = α.

Therefore

Existence and uniqueness: given γ̂(0) ∈ Pγ(0), there is a unique
horizontal lift.

The horizontal lift along γ defines a parallel transport isomorphism

P(γ) : Pγ(0) → Pγ(1).
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The signature revisited

Consider the principal bundle π : K̂ (V )→ V equipped with the
connection ∇1 induced by the splitting L(V ) = h1(V )⊕ V .

Given a path γ : [0, 1]→ V , the parallel transport defines a lift

γ̂ : [0, 1]→ K̂ (V ), P(γ) = γ̂(1).

This recovers the path signature.

Bellingeri, Friz, Paycha, Preiß: a smooth rough path is a map
γ : [0, 1]→ K (n)(V ). Using the connection ∇n, this has horizontal
lift

γ̂ : [0, 1]→ K̂ (V ), P(γ) = γ̂(1).

This defines the signature of rough paths.
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... K (3)(V ) K (2)(V ) K (1)(V ) = V

... K̂ (V ) K̂ (V ) K̂ (V )

Ĥ3(V ) Ĥ2(V ) Ĥ1(V )

Francis Bischoff University of Regina

Parallel transport along paths and surfaces



Ordinary differential equations Connections The Path Signature Connections on principal bundles Piecewise linear paths Surface signature

Representations of the fundamental group

Fundamental group: let π1(M, x) be the subgroup of Π(M)
consisting of loops based at x .

Thin fundamental group: let πthin(M, x) be the subgroup of
Πthin(M) consisting of loops based at x .

The parallel transport of a connection defines a homomorphism

P : πthin(M, x)→ G .

If the connection is flat, it descends to a homomorphism

P : π(M, x)→ G .
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Riemann-Hilbert Correspondence

Let G be a Lie group and let M be a smooth manifold. The
Riemann-Hilbert correspondence is an equivalence of categories:

Flat(M,G ) ∼= Rep(π1(M),G ),

where

Flat(M,G ) is the category of flat connections ∇ on principal
G -bundles P → M,

Rep(π1(M),G ) is the category of G -representations of the
fundamental group π1(M).
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Riemann-Hilbert Correspondence

This equivalence of categories arises by combining two more basic
equivalences

Rep(TM,G )
Lie 2←−→ Rep(Π(M),G )

Morita←−−→ Rep(π1(M, x),G )
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Thin Riemann-Hilbert Correspondence

Theorem (Barrett, Caetano-Picken)

Conn(M,G ) ∼= RepC∞(πthin
1 (M),G )

where

Conn(M,G ) denotes the category of all G -connections on M,

RepC∞(πthin
1 (M),G ) denotes the category of G -representations of

πthin
1 (M) which are smooth in a certain sense.
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The signature is universal

There is a sense in which the path signature S(γ) ∈ K̂ (V ) is
universal.

Chen: all possible iterated integrals along γ are contained in S(γ).
Therefore, there should be a way of extracting the parallel transport
of any connection from S(γ).

By Chen’s theorem, the group of thin paths τ(V ) embeds into
K̂ (V ).

Chow’s theorem: after truncating, the map τ(V )→ K (n)(V ) is
surjective.

Recall that the component of S(γ) in V is the translation of a path.
Therefore,

πthin
1 (V )→ Ĥ1(V ).

So we should think of H1(V ) as the group of formal loops in V .

Since formally Lie(H1(V )) = [L(V ),L(V )], this is the Lie algebra of
‘infinitesimal loops’ in V .

Francis Bischoff University of Regina

Parallel transport along paths and surfaces



Ordinary differential equations Connections The Path Signature Connections on principal bundles Piecewise linear paths Surface signature

Theorem: “Infinitesimal Riemann-Hilbert correspondence” (Reutenauer,
Kapranov)

Conn(Dn,G ) ∼= Rep([L(Rn),L(Rn)], g)

where

Conn(Dn,G ) denotes the category of all G -connections on the
formal n-dimensional disc,

Rep([L(Rn),L(Rn)], g) denotes the category of g-representations of
the commutator subalgebra [L(Rn),L(Rn)].
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Given an (analytic) connection α ∈ Ω1(Rn)⊗ g, we use the infinitesimal
Riemann-Hilbert correspondence extract a homomorphism

φα : [L(Rn),L(Rn)]→ g,

which we integrate to
Φα : H1(Rn)→ G .

Then the parallel transport of ∇ = d − α along γ is

P(∇) = Φα ◦ S(γ).

Francis Bischoff University of Regina
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Thin path group

Recall: τ(V ), the group of paths up to thin homotopy and translation.
There is a homomorphism

t : τ(V )→ V , γ 7→ γ(1).

Then
Πthin(V ) ∼= τ(V ) n V .
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Piecewise linear paths

There is an interesting subgroup of the thin group: the group of
piecewise linear paths.

PL(V ) ⊂ τ1(V ).
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Piecewise linear paths

The group PL(V ) is equipped with a map

ηV : V → PL(V ),

which restricts to a homomorphism on each 1-dimensional subspace.
This property characterizes the group:

Universal property: Let V be a vector space, let G be a group, and let
f : V → G be a map which restricts to a homomorphism on each line.
Then there is a unique group homomorphism F : PL(V )→ G such that
F ◦ ηV = f .

V PL(V )

G

ηV

f
F
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Using the universal property we obtain:

The identity map id : V → V is a homomorphism. Therefore, there
is an induced map

t : PL(V )→ V .

Consider r : V → τ(V ) sending v ∈ V to the path γv (t) = tv . This
induces a realization homomorphism

R : PL(V )→ τ(V )

Consider exp : V → K̂ (V ) sending v ∈ V to
∑

n≥0
1
n!v
⊗n. This

induces the signature

SPL : PL(V )→ K̂ (V ).
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Using the homomorphisms

t : PL(V )→ V , t : τ(V )→ V , π : K̂ (V )→ V ,

we obtain action groupoids over V

ΠPL(V ) = PL(V )nV , Πthin(V ) ∼= τ(V )nV , ΠK (V ) = K̂ (V )nV ,

and these define functors

ΠPL,Π
thin,ΠK : Vect→ Gpd.
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The homormorphisms for all V ∈ Vect

SPL : PL(V ) n V
R−→ τ(V ) n V

S−→ K̂ (V ) n V

assemble together into natural transformations

SPL : ΠPL
R
=⇒ Πthin S

=⇒ ΠK .
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Uniqueness

Theorem: The piecewise linear signature is the unique natural
transformation:

SPL : ΠPL =⇒ ΠK .

Proof If V is 1-dimensional, then K (V ) ∼= V and so

K (V ) n V ∼= Pair(V ).

and therefore there is a unique homomorphism

SPL : PL(V ) n V → Pair(V ).

Since piecewise linear paths can be factored into 1-dimensional path,
general uniqueness of SPL follows.
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Uniqueness

Using the fact that piecewise linear paths are dense in smooth paths
(with Lipschitz topology), we immediately obtain:

Theorem: The signature is the unique continuous natural
transformation:

S : Πthin =⇒ ΠK .
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Categorifying the parallel transport

In order to define the signature of a surface in Rn, we must ‘categorify’
all concepts used in the section about paths:

The thin group τ(V ) and the group of non-commutative power
series K̂ (V ) must be categorified to ‘2-groups’.

Connections must be categorified to ‘2-connections’.

The parallel transport needs to be categorified to a ‘2-functor’.
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Crossed modules

Our model for ‘2-dimensional groups’ is given by crossed modules, which
were introduced by Whitehead. A crossed module

H = (δ : H1 → H0, .)

consists of the following data:

A group H0 of ‘paths’
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Crossed modules

Our model for ‘2-dimensional groups’ is given by crossed modules, which
were introduced by Whitehead. A crossed module

H = (δ : H1 → H0, .)

consists of the following data:

A group H0 of ‘paths’

A group H1 of ‘surfaces’
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Crossed modules

Our model for ‘2-dimensional groups’ is given by crossed modules, which
were introduced by Whitehead. A crossed module

H = (δ : H1 → H0, .)

consists of the following data:

A group H0 of ‘paths’

A group H1 of ‘surfaces’

A group homomorphism δ : H1 → H0
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Crossed modules

Our model for ‘2-dimensional groups’ is given by crossed modules, which
were introduced by Whitehead. A crossed module

H = (δ : H1 → H0, .)

consists of the following data:

A group H0 of ‘paths’

A group H1 of ‘surfaces’

A group homomorphism δ : H1 → H0

An action by automorphisms . : H0 → Aut(H1)
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Crossed modules

Our model for ‘2-dimensional groups’ is given by crossed modules, which
were introduced by Whitehead. A crossed module

H = (δ : H1 → H0, .)

consists of the following data:

A group H0 of ‘paths’

A group H1 of ‘surfaces’

A group homomorphism δ : H1 → H0

An action by automorphisms . : H0 → Aut(H1)

such that

The homomorphism δ is H0-equivariant.

The Peiffer identity holds:

δ(E) . F = EFE−1.
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The crossed module of surfaces

Our first example of a crossed module is the crossed module of surfaces
in V

τ(V ) = (δ : τ2(V )→ τ1(V ), .)

The ‘group of paths’ τ1(V ) is the group of paths modulo translation
and thin homotopy, considered before.

The ‘group of surfaces’ τ2(V ) is the group of smooth surfaces

X : [0, 1]2 → V

such that X (t, 0) = X (0, s) = X (1, s) = 0, taken module translation
and thin homotopy.

The group structure is given by horizontal concatenation

δ is given by restriction to the top boundary δ(X )(t) = X (t, 1).
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Thin homotopy

A thin homotopy between two surfaces X ,Y : [0, 1]2 → V is a homotopy

H : [0, 1]3 → V

which does not ‘sweep out’ any volume: rank(dH) ≤ 2.

This includes reparametrization and cancellation of folds...
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Thin homotopy

...but it also includes certain ‘non-local’ cancellations:

S2 → RP2 → Rn.

This map is thinly null-homotopic, even though there are no folds to
cancel. There is no null-homotopy which stays completely within the
image of this map: we must introduce new surfaces.
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2-dimensional gauge theory

Let (δ : H → G , .) be a crossed module of Lie groups.

Differentiating gives a crossed module of Lie algebras

(δ : h→ g, .).

A 2-connection on a vector space V valued in (δ : h→ g, .) consists
in the data of

a g-valued 1-form A ∈ Ω1
X ⊗ g,

a h-valued 2-form B ∈ Ω2
X ⊗ h,

such that δ(B) = FA.

Francis Bischoff University of Regina

Parallel transport along paths and surfaces



Ordinary differential equations Connections The Path Signature Connections on principal bundles Piecewise linear paths Surface signature

2-dimensional gauge theory

Theorem (Schreiber, Waldorf, Martins, Picken, ... ) A (translation
invariant) 2-connection induces a parallel transport homomorphism
between crossed modules

P : τ(V )→ (δ : H → G , .).

In particular, it associates an element of H to every surface in X in V .
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Kapranov’s free crossed module

In order to define the surface signature, we need a certain free crossed
module generated by a vector space

k(V ) = (∂ : k1(V )→ k0(V ), .)

k0(V ) = L(V ), the free Lie algebra generated by V .

k1(V ) = T (V )⊗ ∧2(V )/Peiff, where Peiff is the subspace
generated by

〈v ⊗ a ∧ b,w ⊗ c ∧ e〉 = adv ([a, b])w ⊗ c ∧ e + adw ([c , e])v ⊗ a ∧ b.

The bracket on k1(V ) is given by

[v ⊗ a ∧ b,w ⊗ c ∧ e] = adv ([a, b])w ⊗ c ∧ e
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Krapranov’s free crossed module

We can formally integrate k(V ) to get the crossed module of formal
surfaces

K̂ (V ) = (∂ : K̂1(V )→ K̂0(V ), .)
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The tautological connection

The tautological 2-connection on a vector space V is the translation
invariant k(V )-connection with

A = idV ⊂ Ω1(V )⊗ L(V ), B = id∧2V ⊂ Ω2(V )⊗ k1(V ).

More concretely, in coordinates

A =
∑
i

zidxi , B =
∑
i<j

zi ∧ zjdxi ∧ dxj .
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The surface signature

Definition (Kapranov, Lee, Chevyrev, Diehl, Ebrahimi-Fard, Tapia) The
surface signature is the surface holonomy of the tautological connection:

S = (S1,S0) : τ(V )→ K̂ (V ).

Given a path γ ∈ τ1(V ), the component S0(V ) ∈ K̂0(V ) is the path
signature.

Given a surface X ∈ τ2(V ), the component S1(X ) ∈ K̂1(V ) is the
surface signature.
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Piecewise linear surfaces

There is an interesting sub-crossed module of τ(V ): the crossed module
of piecewise linear surfaces

PL(V ) = (δ : PL1(V )→ PL0(V ), .).
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Piecewise linear surfaces

There are canonical functions

ηV ,0 : V → PL0(V ), ηV ,1 : V × V → PL1(V ),

where ηV ,0(v) is the line segment path tv , and ηV ,1(v , u) is the
triangular surface spanned by v and u.
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Piecewise linear surfaces

Universal property of PL(V ): Let V be a vector space, let
H = (δ : H → G , .) be a crossed module, and let f0 : V → G and
f1 : V × V → H be functions such that

f0 : V → G restricts to a homomorphism on every one-dimensional
subspace of V ,

f1 : V × V → H is trivial on all linearly dependent pairs (v , u)

Triangle identity: for every v , u ∈ V

δ ◦ f1(v , u) = f0(v)f0(u − v)f0(−u).

Tetrahedron identity: For v ,w , u ∈ V which lie in a common
two-dimensional subspace

f 0(w) . f 1(v , u) = f 1(w ,w + v)f 1(w + v ,w + u)f 1(w + u,w).
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Piecewise linear surfaces

Universal property of PL(V ): Let V be a vector space, let
H = (δ : H → G , .) be a crossed module, and let f0 : V → G and
f1 : V × V → H be functions such that

f0 : V → G restricts to a homomorphism on every one-dimensional
subspace of V ,

f1 : V × V → H is trivial on all linearly dependent pairs (v , u)

Triangle identity: for every v , u ∈ V

δ ◦ f1(v , u) = f0(v)f0(u − v)f0(−u).

Tetrahedron identity: For v ,w , u ∈ V which lie in a common
two-dimensional subspace

f 0(w) . f 1(v , u) = f 1(w ,w + v)f 1(w + v ,w + u)f 1(w + u,w).

Then there is a unique morphism of crossed modules F : PL(V )→ H
such that F0 ◦ ηV ,0 = f0 and F1 ◦ ηV ,1 = f1.
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Signature as a natural transformation

The crossed modules

PL, τ, K̂ : Vect→ XMod

are functors from the category of vector spaces to the category of crossed
modules. The signature S : τ ⇒ K̂ is a natural transformation. There is
a (uniquely defined) realization natural transformation

R : PL⇒ τ(V ).

We can define the piecewise linear signature to be the composition

SPL = S ◦ R : PL⇒ K̂ .
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The surface signature is unique

Theorem( B., Lee) The piecewise linear surface signature

SPL : PL⇒ K̂

is the unique natural transformation extending the piecewise linear path
signature.

Furthermore, the smooth surface signature

S : τ ⇒ K̂

is the unique continuous natural transformation extending the smooth
path signature.
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Computing the signature

Theorem(B., Lee) There is a canonical embedding

K̂1(V )→ Γ̂2(V )× T̂ (V ),

where T̂ (V ) is the algebra of formal non-commutative power series and
Γ̂2(V ) = Ŝ(V )⊗ ∧2V is the vector space of formal 2-currents. The
surface signature decomposes as follows:

S1 = (SΓ
1 ,S

E
1 ) : τ2(V )→ Γ̂2(V )× T̂ (V ),

where, for a surface X ∈ τ2(V ),

SE1 (X ) = S0(∂(X )), the path signature of the boundary,

SΓ
1 (X ) =

∑
I ,i<j(

∫
C(X )

x Idx i ∧ dx j)z I ⊗ zi ∧ zj , where C(X ) is the

closed surface obtained from conning off the boundary of X .
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The surface signature is injective

Theorem(B., Lee) The piecewise linear surface signature

SPL,1 : PL1(V )→ K̂ (V )

is injective.

In particular, if X ∈ PL1(V ) is a surface such that SPL,1(X ) = 0, then
R1(X ) is thinly null-homotopic.
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