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Rough paths to model stochastic dynamics

• Suppose we are interested in giving meaning to stochastic
differential equations

dYt = F (Yt)dXt, Y0 = y0. (1)

with X a given multidimensional stochastic process.
• We must only give meaning to the terms

Xα1...αn
s,t “=”
∫
s<u1<...<un<t

dXα1
u1

· · · dXαn
un

, |α1|+ . . .+ |αn| ≤ 1

with Xα |α|-Hölder, e.g. through some kind of notion of stochastic
∫
.

• (1) will then automatically inherit meaning as

Yt ≈ Ys + Fα(Ys)X
α
s,t + . . .+ Fα1

◦ · · · ◦ Fαn
(Ys)X

α1...αn
s,t

• Is consistent with Itô and Stratonovich calculus and works for many
other multidimensional stochastic processes beyond
semimartingales, including 1/4 < H-fBm1.
1Coutin and Qian (2002).



Rough volatility

• Option pricing: find dynamics for the (discounted) stock S

dSt = σtStdW
Q
t

such that the values of EQΦ(St) agree with those on the market, for
liquid instruments Φ, e.g. call options C(K,T ).

• Black-Scholes: σt ≡ σ, too simple, volatility surface;
• Local volatility: σt = σ(St, t);
• Stochastic volatility: σt a Markovian diffusion process, correlated with
but not determined by S (Bergomi, Heston, SABR,…).

• Rough volatility2: a stoch vol model in which σt has behaviour
similar to 0.1 ≈ H-fBm on short timescales:

• Good fit to market data (short dated smiles, term structure of the ATM
vol skew) with relatively few parameters;

• Statistical evidence from historical volatility.

2Gatheral, Jaisson, and Rosenbaum (2018).



Rough volatility models

• In most rough vol models, σ is taken to be an explicit function of
type-II fBm, e.g. rough Bergomi:

σt = exp
(
νBH

t − 1
2c

2
Hν2t2H

)
where BH

t = cH

∫ t
0

(t− s)H−1/2dB, B = ρW +
√
1− ρ2W⊥.

• More complex models: take σ to satisfy a Volterra equation

σt = σ0 +

∫ t
0

(t− s)H−1/2
(
f(σs, s)ds+ g(σs, s)dBs

)
.



Challenges and limitations

• Challenges with rough vol:
• [σ,W ] = ∞ =⇒ no Stratonovich formulation or classical Wong-Zakai;
• H ≤ 1/4,W ̸⊥⊥ BH =⇒ (W,BH) not a classical Gaussian rp.

• Use regularity structures3 to precisely subtract the divergent
Itô-Stratonovich correction originating from EBH,ε

t Ẇ ε
t ∼ ρεH−1/2.

• However this comes at the cost of heavy tools, which become
intractable for Volterra equations with low H .

• Moreover, Volterra equations driven by B with kernel K(t, s) are
different to ODEs driven by

∫ t
0 K(t, s)dBs (even if B is C∞), which

are more basic and widespread.
• Since σ is one-dimensional, we could model it as an SDE with drift
driven by BH .

• However, currently no framework to treat general joint dynamics of
price and vol, in the ODE sense, when the vol is rough.

3Bayer, Friz, Gassiat, Martin, and Stemper (2020).



The Itô lift of an adapted process

• W d-dimensional brownian motion, X an e-dimensional stochastic
rough path. Goal: jointly lift X and W to a geometric rough path X .

• Use Greek letters α, β, γ ∈ [d] for W , Latin letters i, j, k ∈ [e] for X .
Define some terms with Stratonovich or Itô calculus. For α, β ∈ [d],
v ∈ [e]•:

Xv := Xv, Xαβ
s,t :=

∫ t
s

Wα
s,u ◦ dW β

u ,

Xvα
s,t :=

∫ t
s

Xv
s,udW

α
u .

(2)

• X of Hölder regularity ∈ (1/3, 1/2] and deterministic4:

αi = i� α− iα ⇝ Xαi := XiXα −Xiα

• When the regularity is ≤ 1/3 there are more terms needed to define
X . Impose some conditions on X :
4Diehl, Oberhauser, and Riedel (2015).



The Itô lift of an adapted process II

Definition (Adapted H-integrable rough path)

An F•-adapted H-integrable (geometric) rough path is an
F•-adapted, G⌊1/H⌋(Re)-valued stochastic process X s.t.
Xs,t := X−1

s ⊗Xt satisfies the Chen identity and

sup
0≤s≤t≤T

∥Xv
s,t∥

p
Lp ≲p,T (t− s)pH·#v, p ∈ [1,+∞).

Theorem (Itô lift)
There exists a unique geometric rough path extending (2) on words
αβ, v and vα for v ∈ [e]•. It is F•-adapted and

|Xw
st(ω)| ≲p,T,ω (t− s)λ, λ < |w|,

with the constant of proportionality ∈ Lp for all p.



The Itô lift of an adapted process III

• Main idea: only words left are of the form uαv with u, v ∈ [e]•.
Recursively express uαv as a �-polynomial in words u′α, v′ (⇝X a
polynomial in rough path terms already defined).

uαj1 . . . jn = uα� j1 . . . jn −
n∑

k=1

(u� j1 . . . jk)αjk+1 . . . jn.

• E.g. iαjk

= iα� jk − (i� j)αk − (i� jk)α

= iα� jk − ijαk − jiαk − ijkα− jikα− jkiα

= iα� jk − [ijα� k − (ij � k)α]− [jiα� k − (ji� k)α]− ijkα− jikα− jkiα

= iα� jk − ijα� k + ikjα+ kijα− jiα� k + kjiα.

• BDG + Kolmogorov + above statement⇝ Hölder regularity.
• Chen identity is inherited, shuffle property holds by construction.



A rough path for rough volatility

• Take X to be the canonical rough path above X = BH

(0.1 ≈ H-fBm correlated with X).

Proposition

X0mα0n

s,t “=”
∫ t
s

(Xu −Xs)
m

m!

(Xt −Xu)
n

n!
dWα

u

:=

n∑
k=0

Xn−k
t

m!k!(n− k)!

∫ t
s

Xm
su(−Xu)

kWα
u .

• Consider general dynamics of the form{
dSt = σα(St, Vt, t)dW

α
t + g(St, Vt, t)dt,

dVt = τ(St, Vt, t)dXt + ςα(St, Vt, t)dW
α
t + h(St, Vt, t)dt.

(3)



A rough path for rough volatility II

Proposition

S is given by Itô and Riemann integration as

St = S0 +

∫ t
0

σ(Su, Vu, u)dWu

+

∫ t
0

[
1

2

∑
α

(∂Sσασα + ∂V σαςα) + g

]
(Su, Vu, u)du.

• Proof: compare Davie expansions. Interesting to consider the Davie
expansion of V (1/3 < H ≤ 1/2):

Vuv ≈ τXuv + ςγW
γ
uv + h · (v − u) + (∂V ςβςα + ∂Sςβσα)

∫ v
u

Wα
ur ◦ dW β

r + ∂V τjτiX
ij
uv

+ [
(

0
τk

)
,
( σγ

ςγ

)
]V
∫ v
u

Xk
urdW

γ
r + (∂Sτkσγ + ∂V τkςγ)X

k
uvW

γ
uv,

and if [X,W ] < ∞ the second line is equal to

+τk∂V ςγ

∫ v
u

Xk
ur ◦ dW γ

r + (∂V ςβςα + ∂Sςβσα)

∫ v
u

W γ
ur ◦ dXk

r − 1

2
[
(

0
τk

)
,
( σγ

ςγ

)
]V [Xk,W γ ]uv.



A rough path for rough volatility III

{
dSt = σα(St, Vt, t)dW

α
t + g(St, Vt, t)dt,

dVt = τ(St, Vt, t)dXt + ςα(St, Vt, t)dW
α
t + h(St, Vt, t)dt.

• For some dynamics only the original rough path terms are needed:
this occurs when ς = 0 and τ does not depend on S. This has
already been used for “simple” models (Vt = f(Xt)).5

• Correlation between V (rough process that feeds into the diffusion
coeff. for S) and S can even be introduced if X ⊥⊥W , thanks to ς . In
this case, X can be viewed as a Gaussian rough path with non i.d.
components (the condition is Hi +Hj > 1/2, always verified if
Hj = 1/2).

• Includes many models already in the literature, possible to consider
multi-asset extensions.
5Fukasawa and Takano (2024).



Lead-lag approximations

• How to simulate RDEs? Euler scheme requires prior simulation of
rough path terms and derivatives of order-10.

• Every geometric rough path X is the limit (in rough path topology)
of the Stieltjes lifts of a sequence of smooth paths:

Xα1...αn
s,t = lim

ε→0

∫
s<u1<...<un<t

Ẋε,α1
u1

· · · Ẋε,αn
un

du1 · · · dun

ULT
=⇒ (dY ε = F (Y ε)dXε)

ε→0−−−→ (dY = F (Y )dX)

• X Stratonovich lift: Xε pwl interpolation, Xε = φε ⋆ X , etc.
• Itô integrals of one-forms can also be approximated smoothly:6∫

f(Wt)dWt = lim
ε→0

∫
f(W ε,−

t )Ẇ ε
t dt.

• Define (X = BH ) for ti+1 − ti = ε, t ∈ [ti, ti+1] piecewise lead-lag
approximations

W ε
t := Wti +

t− ti
ε

Wti,ti+1 , Xε,−
t := Xε

t−ε.

6Flint, Hambly, and Lyons (2016).



Lead-lag approximations II

Theorem (Strong convergence of lead-lag)

∥∥X −Xε∥C∥Lp ≲ εH

for all p ≥ 1 and moreover the convergence is a.s. if the sequence of
partitions is regular.

• Similar results using hybrid scheme approximations∫ tk
0

(tk − s)H−1/2dBs

≈
k−1∑
i=1

∫ ti
ti−1

(tk − s)H−1/2ds ·Wti−1,ti +

∫ tk
tk−1

(tk − s)H−1/2dWs

and for mollifier approximations.



Simulation

• Simulate Xε,−,W ε on a grid and solve CDEs driven by them on a
grid several times finer, using Diffrax7.

⇝ notebook

7Kidger (2023).



Calibration

• Model:
dSt

St
=

√
a(Zt − b)2 + c ◦ dWt −

1

2

(
a(Zt − b)2 + c

)
dt, S0 = s0 > 0,

dZt = λ(θ − Zt)dt+ λη
√

a(Zt − b)2 + c ◦ dBH
t , Z0 = z0 > 0,

• Minimise loss function:

L(a, b, c, λ, θ, η) :=
Li∑
j=1

(
CT,Kj

(a, b, c, λ, θ, η)− Cobs
T,Kj

)2

,
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