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Part I: Seismic Imaging

Figure: Seismic Acquisition

A source creates a
disturbance in the
form of a wave.

Wave travels
through earth and
reflects off material
properties interfaces.

Sensors record the
returning wave.



Seismic Imaging

Aim: Use the measured data to create an image of the subsurface
(image = map of geological properties of subsurface)

Data Image

FWI

Method: Full Waveform Inversion

Goal: Estimation of subsurface properties (model m)

How? Minimising the data misfit ∆d

Data Misfit ∆d = difference between measured data (d)
and modelled data (dmod )
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FWI

Goal: Find the model m that predicts the measured data d best
mFWI(p) = argmin

m
φ(m,p) = argmin

m

1
2 ||d− dmod (m,p)︸ ︷︷ ︸

∆d

||22

φ: Misfit function 1
2 ||∆d||22

d: Measured data
m: Model - geological property we want to find
dmod : Modelled data = R(p)u(m)

- u: Wavefield - numerical solution of wave equation
- R: Sampling operator at sensor positions p

Subsurface

Source Sensors
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Full FWI Formulation

Multiple source, multiple frequency problem
Find the model mFWI such that

mFWI(p) = argmin
m

φ(m,p, s, ω)

= argmin
m

∑
s

∑
ω

1
2 ||d(s, ω)− R(p)u(m, s, ω)||22 + Regularisation



Forward Modelling

Solving wave equation to compute modelled data Ru
Model acoustic waves in the frequency domain =⇒
Helmholtz Equation(

−ω2m −∇2
)

u = q

Model m = 1
wavespeed2

Solve discretised equation numerically A(m, ω)u(m, ω) = q



FWI Process
Initial model

Forward Modelling
Find u(m) by solving the wave equation

Modelled Data
dmod(m, p) = R(p)u(m)

Calculate Objective Fn
φ(m) =

∑
s,ω

1
2 ||d − dmod||22 + Reg

Measured Data d

Update Model
Find model update that reduces φ

mnew = mold + ∆m

Convergence
Final model mFWI

minimises φ
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Example
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(a) Ground Truth
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(b) FWI Reconstruction

= Sources
= Sensors



Part II: Sensor Optimisation

Goal
Optimise the placement of sensors in the seismic imaging process

Source

Where to place
the sensors?



Problem Formulation

Problem Statement
Given a training set of N models m′, we learn the sensor positions
p, such that the FWI output model mFWI is as close to the ground
truth as possible.

Objective function:

ψ(p) = 1
2N

∑
m′

||m′ −mFWI(p,m′)||22

ψ measures average error in FWI reconstruction

Solution to FWI optimisation problem where ‘measured’ data
d is produced from m′
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Bilevel Optimisation

2 levels of optimisation

- Upper Level: Sensor Placement Optimisation
- Lower Level: Seismic Imaging (FWI)

Bilevel Problem Statement

Find pmin = argmin
p

ψ(mFWI(p,m′))

subject to mFWI(p,m′) = argmin
m

φ(m,p) ∀ m′



Bilevel Optimisation Process

Bilevel Problem

Find pmin = argmin
p

ψ(mFWI(p,m′))

subject to mFWI(p,m′) = argmin
m

φ(m,p) ∀ m′

Initial guess p0

Lower Level:
FWI

Given: d(m′), m0

Upper Level:
Sensor Optimisation

Given: m′

mFWI p

Convergence:
pmin



Solution Approach

Bilevel Problem

Find pmin = argmin
p

ψ(mFWI(p,m′))

subject to mFWI(p,m′) = argmin
m

φ(m,p) ∀ m′

Gradient

∇pψ = − 1
N
∑
m′

(dmFWI

dp

)T (
m′ −mFWI

)

Quasi-Newton method =⇒ need to compute the gradient

Difficulty: differentiating the argmin operation

Instead: replace the lower-level with its optimality condition

Chain rule =⇒ dmFWI

dp = −H−1(mFWI)∇m,pφ(mFWI)

Computing the gradient:
- δ(mFWI): Solve the linear system H(mFWI )δ(mFWI ) = m′ −mFWI

-
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Example 1
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Example 2 - Setup

Learn optimal sensor positions AND level of regularisation
Set of training models of certain class - smooth circles of
different size, wavespeeds and positions along diagonal
Subset of training models:

 

 

 



Example 2 - Results
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Example 2 - Testing

How well do these results work on other models in this class?

Subset of 50 random testing models:

 

 

 



Example 2 - Testing Results

 

ψstart

Improvement

 

ψoptim

Improvement factor = ψstart
ψoptim

Over 50 testing models:

- Average improvement factor = 536

- Range of improvement factors = 287 - 842



Example 2 - Further Testing

How well do these results work on models outside this class?

Subset of 150 random testing models:

 

 

 

 

 

 

 

 

Over 150 testing models:

- Average improvement factor = 533

- Range of improvement factors = 42 - 1171



Future Work

Extend current bilevel framework to learn the optimal source
placement and the number of sensors and sources
Preliminary Results:

- Starting Setup =⇒ 110 sensors
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Future Work

Extend current bilevel framework to learn the optimal source
placement and the number of sensors and sources
Preliminary Results:

- Optimised Weights =⇒ 62 sensors
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Future Work

Extend current bilevel framework to learn the optimal source
placement and the number of sensors and sources
Preliminary Results:

- Larger Sparsity Parameter =⇒ 33 sensors
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Summary

Seismic Imaging can be performed with Full Waveform
Inversion

Sensor placement can be optimised using a bilevel learning
framework

Bilevel learning results in significant improvements in FWI
images




