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Part |: Seismic Imaging

o A source creates a
disturbance in the
form of a wave.

Vibrator Truck

o Wave travels
through earth and
reflects off material
properties interfaces.

o Sensors record the

returning wave.
Figure: Seismic Acquisition



Seismic Imaging

Aim: Use the measured data to create an image of the subsurface
(image = map of geological properties of subsurface)
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Method: Full Waveform Inversion

o Goal: Estimation of subsurface properties (model m)
o How? Minimising the data misfit Ad

o Data Misfit Ad = difference between measured data (d)
and modelled data (d™)



FWI

Goal: Find the model m that predicts the measured data d best
. 1
mF!(p) = argmin ¢(m, p) = argmin -|d — d™*(m. p) |
m m —_—————

Ad
o ¢: Misfit function 3||Ad||3

o d: Measured data
o m: Model - geological property we want to find

o d™9: Modelled data = R(p)u(m)

- u: Wavefield - numerical solution of wave equation
- R: Sampling operator at sensor positions p

Source Sensors
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Goal: Find the model m that predicts the measured data d best
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FWI

Goal: Find the model m that predicts the measured data d best
. 1 m
m™(p) = argmin ¢(m, p) = argmin d — d™*¢(m. p)|[3

o ¢: Misfit function
o d: Measured data

o m: Model - geological property we want to find
o d™9: Modelled data = R(p)u(m)

- u: Wavefield - numerical solution of wave equation
- R: Sampling operator at sensor positions p

Source Sensors
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Full FWI Formulation

Multiple source, multiple frequency problem

Find the model m™™/ such that

m™(p) = argmin ¢(m, p, s,w)

m
1
= argmin E E §||d(s, w) — R(p)u(m, s,w)||3 + Regularisation
m
S w




Forward Modelling

o Solving wave equation to compute modelled data Ru

o Model acoustic waves in the frequency domain —
Helmholtz Equation

(—wzm — Vz) u=gq
1

wavespeed?
@ Solve discretised equation numerically A(m,w)u(m,w) =q

o Model m =




FWI Process

Initial model

Forward Modelling

Find u(m) by solving the wave equation




FWI Process

Initial model

Forward Modelling { Modelled Data }

Find u(m) by solving the wave equation dmOd(m,p) = R(p)u(m)




FWI Process

Initial model

Forward Modelling { Modelled Data J

Find u(m) by solving the wave equation dm°d(m,p) = R(p)u(m)

A

Calculate Objective Fn
¢(m) = >5[ — d™O9|2 + Reg
S,w

Measured Data d



FWI Process

Initial model

Forward Modelling { Modelled Data }

Find u(m) by solving the wave equation dm°d(m,p) = R(p)u(m)

h

Update Model Calculate Objective Fn
Find model update that reduces ¢ é(m) = E%Hd _ dmong 4 Reg
mhew _ old + Am o

Measured Data d



FWI Process

Initial model

Forward Modelling { Modelled Data }

Find u(m) by solving the wave equation dm°d(m,p) = R(p)u(m)

A
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Update Model Calculate Objective Fn
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FWI Process

Initial model

Forward Modelling Modelled Data
Find u(m) by solving the wave equation dm°d(m,p) = R(p)u(m)
A
h
Update Model Calculate Objective Fn
Find model update that reduces ¢ é(m) = E%Hd _ dmong + Reg
mhew _ old + Am sw
h
Convergence Measured Data d

Final model m W/

minimises ¢




Example
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(b) FWI Reconstruction




Part Il: Sensor Optimisation

Optimise the placement of sensors in the seismic imaging process l

Where to place
the sensors?

Source




Problem Formulation

Problem Statement

Given a training set of N models m’, we learn the sensor positions
p, such that the FWI output model m™ is as close to the ground
truth as possible.

o Objective function:

G(p) = - 3 [ — mPWi(p, ) 2

o 1) measures average error in FWI reconstruction



Problem Formulation

Problem Statement

Given a training set of N models m’, we learn the sensor positions
p, such that the FWI output model m™ is as close to the ground
truth as possible.

o Objective function:

1
U(p) = 5 3 [l = m"(p,m)|

o 1) measures average error in FWI reconstruction

o Solution to FWI optimisation problem where ‘measured’ data
d is produced from m’



Bilevel Optimisation

o 2 levels of optimisation

- Upper Level: Sensor Placement Optimisation
- Lower Level: Seismic Imaging (FWI)

Bilevel Problem Statement

Find Prmin = argmin y(m™(p, m"))
p

subject to mFW'(p,

m’) = argmin ¢(m,p) V m’
m




Bilevel Optimisation Process

Bilevel Problem

Find Py — argmin (m¥(p, m))
P

Upper Level:

subject to m™/(p, m’) = argmin ¢(m,p) V m’ L. ) .
: Sensor Optimisation Convergence:
Pmin
Given: m’
mFWI p

Lower Level:

Initial guess P g=—— FWI

Given: d(m’), mg




Solution Approach

Bilevel Problem

Find i = argminy(m™(p, m’))
p

1 deWI T
Ve = N ; ( oo ) (m’ — mFW’)

subject to m"™(p,m’) = argmin ¢(m,p) V m’
m

o Quasi-Newton method = need to compute the gradient



Solution Approach

Bilevel Problem

Find i = argminy(m™(p, m’))
p

1 deWI T
Vi = N ; ( . ) (m’ — mFW’)

subject to m"™/(p,m’) = argmin p(m,p) V m’
m

o Quasi-Newton method = need to compute the gradient

o Difficulty: differentiating the argmin operation



Solution Approach

Bilevel Problem

Find  ppi, = argminy(m™(p, m')) 1 dmFWIN T
min o Vot = -5 Z ( rzp ) (m/ _ rnFWI)
o

subject to Vend(m™(p,m’),p) =0 vV m’

o Quasi-Newton method = need to compute the gradient
o Difficulty: differentiating the argmin operation

o Instead: replace the lower-level with its optimality condition



Solution Approach

Bilevel Problem

Find  Ppyp = argminy(m™(p, m"))
P

1 di FWIN T
Sy —
f

subject to Vend(m™(p,m’),p) =0 vV m’

Quasi-Newton method = need to compute the gradient

Difficulty: differentiating the argmin operation

Instead: replace the lower-level with its optimality condition

o Chain rule = d"‘}I;WI = —H Y (mY)Vp po(m)



Solution Approach

Bilevel Problem

Find  Pyip = argminv(m™(p, m"))
P

Vot = 1 3 (Tmpolm™) " 6(m™)

subject to  Vepd(m™/(p,m’),p) =0 V m’

Quasi-Newton method = need to compute the gradient

©

Difficulty: differentiating the argmin operation

Instead: replace the lower-level with its optimality condition

Chain rule = drz:WI = —H Y (m) Y po(mM)

Computing the gradient:
- 8(m™"): Solve the linear system H(mW)§(m W) = m’ — m W

= Vmpd(m™): Solve dim x # sensors X # s x #w PDEs
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Bilevel Problem
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Solution Approach

Bilevel Problem

Find Py = argmin o(m™(p, m)
P

Vot = 1 3 (Tmpo(m™) 5(m )

FWI(

subject to Vmo(m™'(p,m’),p) =0 Vv m’

Quasi-Newton method = need to compute the gradient

Difficulty: differentiating the argmin operation

Instead: replace the lower-level with its optimality condition

Chain rule = d'?,—gw = —H Y{(m V)V pdp(mfM)

Computing the gradient:

- 8(m™"): Solve the linear system H(mfW)§(m W) = m’ — mFW!
) FWI, ;
;m,p¢("| ) Selve—dim—x #56”’5615 X #5 X #w PDEs
. (Vm,pcﬁ(mFW’)) ! 5(m™"): # PDEs independent of dim x # sensors



Example 1
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Example 2 - Setup

o Learn optimal sensor positions AND level of regularisation

o Set of training models of certain class - smooth circles of
different size, wavespeeds and positions along diagonal

@ Subset of training models:




Example 2 - Results

O  Source
Initial Sensor Position
@ Optimised Sensor Position

Reconstruction Without Optimisation m™'(p) Reconstruction With Optimisation m™\(p__ )




Example 2 - Testing

o How well do these results work on other models in this class?

@ Subset of 50 random testing models:




Example 2 - Testing Results

%
Improvement
¢start woptim
¢start
o Improvement factor = ——
optim

o Over 50 testing models:

- Average improvement factor = 536

- Range of improvement factors = 287 - 842



Example 2 - Further Testing

o How well do these results work on models outside this class?

@ Subset of 150 random testing models:

o Over 150 testing models:

- Average improvement factor = 533

- Range of improvement factors = 42 - 1171



o Extend current bilevel framework to learn the optimal source
placement and the number of sensors and sources

o Preliminary Results:
- Starting Setup = 110 sensors




o Extend current bilevel framework to learn the optimal source
placement and the number of sensors and sources

o Preliminary Results:
- Optimised Weights = 62 sensors

- Reconstruction ~ 5% worse




o Extend current bilevel framework to learn the optimal source
placement and the number of sensors and sources

o Preliminary Results:

- Larger Sparsity Parameter — 33 sensors




@ Seismic Imaging can be performed with Full Waveform
Inversion

@ Sensor placement can be optimised using a bilevel learning
framework

o Bilevel learning results in significant improvements in FWI
images
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