Sensor Optimisation in Seismic Imaging Via Bilevel Learning

Shaunagh Downing with Silvia Gazzola, Ivan Graham, Euan Spence

University of Bath

• Part I

- Seismic Imaging

• Part II

- Sensor Placement Optimisation

Part I: Seismic Imaging

Figure: Seismic Acquisition

- A **source** creates a disturbance in the form of a wave.
- Wave travels through earth and reflects off material properties interfaces.
- Sensors record the returning wave.

Aim: Use the measured data to create an image of the subsurface (image = map of geological properties of subsurface)

Aim: Use the measured data to create an image of the subsurface (image = map of geological properties of subsurface)

Method: Full Waveform Inversion

- Goal: Estimation of subsurface properties (model m)
- <u>How?</u> Minimising the *data misfit* Δ**d**
- Data Misfit Δd = difference between measured data (d) and modelled data (d^{mod})

- **Goal:** Find the model **m** that predicts the measured data **d** best $\mathbf{m}^{FWI}(\mathbf{p}) = \underset{\mathbf{m}}{\operatorname{argmin}} \frac{\phi(\mathbf{m}, \mathbf{p})}{\phi} = \underset{\mathbf{m}}{\operatorname{argmin}} \frac{1}{2} ||\underbrace{\mathbf{d} - \mathbf{d}^{mod}(\mathbf{m}, \mathbf{p})}_{\Delta \mathbf{d}}||_{2}^{2}$ • ϕ : Misfit function $\frac{1}{2} ||\Delta \mathbf{d}||_{2}^{2}$
 - d: Measured data
 - m: Model geological property we want to find
 - \mathbf{d}^{mod} : Modelled data = $R(\mathbf{p})\mathbf{u}(\mathbf{m})$
 - u: Wavefield numerical solution of wave equation
 - R: Sampling operator at sensor positions **p**

- **Goal:** Find the model **m** that predicts the measured data **d** best $\mathbf{m}^{FWI}(\mathbf{p}) = \underset{\mathbf{m}}{\operatorname{argmin}} \phi(\mathbf{m}, \mathbf{p}) = \underset{\mathbf{m}}{\operatorname{argmin}} \frac{1}{2} ||\mathbf{d} - \mathbf{d}^{mod}(\mathbf{m}, \mathbf{p})||_2^2$
 - ϕ : Misfit function
 - d: Measured data
 - m: Model geological property we want to find
 - \mathbf{d}^{mod} : Modelled data = $R(\mathbf{p})\mathbf{u}(\mathbf{m})$
 - u: Wavefield numerical solution of wave equation
 - R: Sampling operator at sensor positions **p**

- **Goal:** Find the model **m** that predicts the measured data **d** best $\mathbf{m}^{FWI}(\mathbf{p}) = \operatorname{argmin} \phi(\mathbf{m}, \mathbf{p}) = \operatorname{argmin} \frac{1}{2} ||\mathbf{d} - \mathbf{d}^{mod}(\mathbf{m}, \mathbf{p})||_2^2$
 - ϕ : Misfit function
 - **d**: Measured data
 - m: Model geological property we want to find
 - \mathbf{d}^{mod} : Modelled data = $R(\mathbf{p})\mathbf{u}(\mathbf{m})$
 - u: Wavefield numerical solution of wave equation
 - R: Sampling operator at sensor positions **p**

- **Goal:** Find the model **m** that predicts the measured data **d** best $\mathbf{m}^{FWI}(\mathbf{p}) = \operatorname{argmin} \phi(\mathbf{m}, \mathbf{p}) = \operatorname{argmin} \frac{1}{2} ||\mathbf{d} - \mathbf{d}^{mod}(\mathbf{m}, \mathbf{p})||_2^2$
 - ϕ : Misfit function
 - **d**: Measured data
 - m: Model geological property we want to find
 - \mathbf{d}^{mod} : Modelled data = $R(\mathbf{p})\mathbf{u}(\mathbf{m})$
 - u: Wavefield numerical solution of wave equation
 - R: Sampling operator at sensor positions **p**

- **Goal:** Find the model **m** that predicts the measured data **d** best $\mathbf{m}^{FWI}(\mathbf{p}) = \operatorname{argmin} \phi(\mathbf{m}, \mathbf{p}) = \operatorname{argmin} \frac{1}{2} ||\mathbf{d} - \mathbf{d}^{mod}(\mathbf{m}, \mathbf{p})||_2^2$
 - ϕ : Misfit function
 - **d**: Measured data
 - m: Model geological property we want to find
 - \mathbf{d}^{mod} : Modelled data = $R(\mathbf{p})\mathbf{u}(\mathbf{m})$
 - u: Wavefield numerical solution of wave equation
 - R: Sampling operator at sensor positions **p**

- **Goal:** Find the model **m** that predicts the measured data **d** best $\mathbf{m}^{FWI}(\mathbf{p}) = \operatorname{argmin} \phi(\mathbf{m}, \mathbf{p}) = \operatorname{argmin} \frac{1}{2} ||\mathbf{d} - \mathbf{d}^{mod}(\mathbf{m}, \mathbf{p})||_2^2$
 - ϕ : Misfit function
 - **d**: Measured data
 - m: Model geological property we want to find
 - \mathbf{d}^{mod} : Modelled data = $R(\mathbf{p})\mathbf{u}(\mathbf{m})$
 - u: Wavefield numerical solution of wave equation
 - R: Sampling operator at sensor positions p

Multiple source, multiple frequency problem

Find the model \mathbf{m}^{FWI} such that $\mathbf{m}^{FWI}(\mathbf{p}) = \underset{\mathbf{m}}{\operatorname{argmin}} \phi(\mathbf{m}, \mathbf{p}, s, \omega)$ $= \underset{\mathbf{m}}{\operatorname{argmin}} \sum_{s} \sum_{\omega} \frac{1}{2} ||\mathbf{d}(s, \omega) - R(\mathbf{p})\mathbf{u}(\mathbf{m}, s, \omega)||_{2}^{2} + \text{Regularisation}$

Forward Modelling

- Solving wave equation to compute modelled data Ru
- Model acoustic waves in the frequency domain \implies Helmholtz Equation

$$\left(-\omega^2 m - \nabla^2\right) u = q$$

- Model $\mathbf{m} = \frac{1}{\mathbf{wavespeed}^2}$
- Solve discretised equation numerically $A(\mathbf{m},\omega)\mathbf{u}(\mathbf{m},\omega) = \mathbf{q}$

Initial model

Forward Modelling

Find u(m) by solving the wave equation

Example

(a) Ground Truth

(b) FWI Reconstruction

- $\bullet = \mathsf{Sources}$
- $\bullet = \mathsf{Sensors}$

Goal

Optimise the placement of sensors in the seismic imaging process

Problem Statement

Given a training set of *N* models \mathbf{m}' , we learn the sensor positions \mathbf{p} , such that the FWI output model \mathbf{m}^{FWI} is as close to the ground truth as possible.

• Objective function:

$$\psi(\mathbf{p}) = \frac{1}{2N} \sum_{\mathbf{m}'} ||\mathbf{m}' - \mathbf{m}^{FWI}(\mathbf{p}, \mathbf{m}')||_2^2$$

• ψ measures average error in FWI reconstruction

Problem Statement

Given a training set of N models \mathbf{m}' , we learn the sensor positions \mathbf{p} , such that the FWI output model \mathbf{m}^{FWI} is as close to the ground truth as possible.

• Objective function:

$$\psi(\mathbf{p}) = \frac{1}{2N} \sum_{\mathbf{m}'} ||\mathbf{m}' - \mathbf{m}^{FWI}(\mathbf{p}, \mathbf{m}')||_2^2$$

- ψ measures average error in FWI reconstruction
- Solution to FWI optimisation problem where 'measured' data d is produced from m'

Bilevel Optimisation

- 2 levels of optimisation
- Upper Level: Sensor Placement Optimisation
- Lower Level: Seismic Imaging (FWI)

Bilevel Problem StatementFind
$$\mathbf{p}_{\min} = \operatorname*{argmin}_{\mathbf{p}} \psi(\mathbf{m}^{FWI}(\mathbf{p},\mathbf{m}'))$$
subject to $\mathbf{m}^{FWI}(\mathbf{p},\mathbf{m}') = \operatorname*{argmin}_{\mathbf{m}} \phi(\mathbf{m},\mathbf{p}) \quad \forall \ \mathbf{m}'$

Bilevel Optimisation Process

Bilevel ProblemFind
$$\mathbf{p}_{\min} = \underset{\mathbf{p}}{\operatorname{argmin}} \psi(\mathbf{m}^{FWI}(\mathbf{p}, \mathbf{m}'))$$
subject to $\mathbf{m}^{FWI}(\mathbf{p}, \mathbf{m}') = \underset{\mathbf{m}}{\operatorname{argmin}} \phi(\mathbf{m}, \mathbf{p}) \quad \forall \; \mathbf{m}'$

Gradient

$$\nabla_{\mathbf{p}}\psi = -\frac{1}{N}\sum_{\mathbf{m}'} \left(\frac{d\mathbf{m}^{FWl}}{d\mathbf{p}}\right)^{T} \left(\mathbf{m}' - \mathbf{m}^{FWl}\right)$$

 ${\scriptstyle \bullet}\,$ Quasi-Newton method \implies need to compute the gradient

Bilevel Pr	oblem
Find	$\mathbf{p}_{min} = \mathop{\mathrm{argmin}}_{\mathbf{p}} \psi(\mathbf{m}^{FWI}(\mathbf{p},\mathbf{m}'))$
subject to	$\mathbf{m}^{FWI}(\mathbf{p},\mathbf{m}') = \operatorname*{argmin}_{\mathbf{m}} \phi(\mathbf{m},\mathbf{p}) \ \forall \ \mathbf{m}'$

Gradient

$$\nabla_{\mathbf{p}}\psi = -\frac{1}{N}\sum_{\mathbf{m}'} \left(\frac{d\mathbf{m}^{FWl}}{d\mathbf{p}}\right)^{T} \left(\mathbf{m}' - \mathbf{m}^{FWl}\right)$$

- ${\scriptstyle \bullet}\,$ Quasi-Newton method \implies need to compute the gradient
- Difficulty: differentiating the argmin operation

Bilevel Problem	
Find	$\mathbf{p}_{min} = \mathop{\mathrm{argmin}}\limits_{\mathbf{p}} \psi(\mathbf{m}^{\mathit{FWI}}(\mathbf{p},\mathbf{m}'))$
subject to	$ abla_{\mathbf{m}}\phi(\mathbf{m}^{FWI}(\mathbf{p},\mathbf{m}'),\mathbf{p})=0 \ \ \forall \ \mathbf{m}'$

Gradient

$$\nabla_{\mathbf{p}}\psi = -\frac{1}{N}\sum_{\mathbf{m}'} \left(\frac{d\mathbf{m}^{FWI}}{d\mathbf{p}}\right)^{T} \left(\mathbf{m}' - \mathbf{m}^{FWI}\right)$$

- ${\, \bullet \, }$ Quasi-Newton method \implies need to compute the gradient
- Difficulty: differentiating the argmin operation
- Instead: replace the lower-level with its optimality condition

Bilevel Problem	
Find	$\mathbf{p}_{min} = \operatorname*{argmin}_{\mathbf{p}} \psi(\mathbf{m}^{FWI}(\mathbf{p},\mathbf{m}'))$
subject to	$ abla_{\mathbf{m}}\phi(\mathbf{m}^{FWI}(\mathbf{p},\mathbf{m}'),\mathbf{p}) = 0 \ \ \forall \ \mathbf{m}'$

Gradient

$$\nabla_{\mathbf{p}}\psi = -\frac{1}{N}\sum_{\mathbf{m}'} \left(\frac{d\mathbf{m}^{FWl}}{d\mathbf{p}}\right)^{T} \left(\mathbf{m}' - \mathbf{m}^{FWl}\right)$$

- ${\, \bullet \, }$ Quasi-Newton method \implies need to compute the gradient
- Difficulty: differentiating the argmin operation
- Instead: replace the lower-level with its optimality condition

• Chain rule
$$\implies \frac{d\mathbf{m}^{FWI}}{d\mathbf{p}} = -H^{-1}(\mathbf{m}^{FWI})\nabla_{\mathbf{m},\mathbf{p}}\phi(\mathbf{m}^{FWI})$$

Bilevel Problem	
Find	$\mathbf{p}_{min} = \operatorname*{argmin}_{\mathbf{p}} \psi(\mathbf{m}^{\mathit{FWI}}(\mathbf{p},\mathbf{m}'))$
subject to	$ abla_{\mathbf{m}}\phi(\mathbf{m}^{FWI}(\mathbf{p},\mathbf{m}'),\mathbf{p})=0 \ \ \forall \ \mathbf{m}'$

$$\begin{aligned} & \mathsf{Gradient} \\ & \nabla_{\mathbf{p}}\psi = \frac{1}{N}\sum_{\mathbf{m}'} \left(\nabla_{\mathbf{m},\mathbf{p}}\phi(\mathbf{m}^{FWI})\right)^T \delta(\mathbf{m}^{FWI}) \end{aligned}$$

- ${\scriptstyle \bullet}\,$ Quasi-Newton method \implies need to compute the gradient
- Difficulty: differentiating the argmin operation
- Instead: replace the lower-level with its optimality condition

• Chain rule
$$\implies \frac{d\mathbf{m}^{FWI}}{d\mathbf{p}} = -H^{-1}(\mathbf{m}^{FWI}) \nabla_{\mathbf{m},\mathbf{p}} \phi(\mathbf{m}^{FWI})$$

- Computing the gradient:
 - $\delta(\mathbf{m}^{FWI})$: Solve the linear system $H(\mathbf{m}^{FWI})\delta(\mathbf{m}^{FWI}) = \mathbf{m}' \mathbf{m}^{FWI}$
 - $\nabla_{\mathbf{m},\mathbf{p}}\phi(\mathbf{m}^{FWI})$: Solve $\dim \times \# \text{ sensors} \times \# s \times \# \omega$ PDEs

Bilevel Problem	
Find	$\mathbf{p}_{min} = \operatorname*{argmin}_{\mathbf{p}} \psi(\mathbf{m}^{\mathit{FWI}}(\mathbf{p},\mathbf{m}'))$
subject to	$ abla_{\mathbf{m}}\phi(\mathbf{m}^{FWI}(\mathbf{p},\mathbf{m}'),\mathbf{p})=0 \ \ \forall \ \mathbf{m}'$

$$\begin{aligned} & \textbf{Gradient} \\ & \nabla_{\textbf{p}}\psi = \frac{1}{N}\sum_{\textbf{m}'} \left(\nabla_{\textbf{m},\textbf{p}}\phi(\textbf{m}^{FWI})\right)^T \boldsymbol{\delta}(\textbf{m}^{FWI}) \end{aligned}$$

- ${\scriptstyle \bullet}\,$ Quasi-Newton method \implies need to compute the gradient
- Difficulty: differentiating the argmin operation
- Instead: replace the lower-level with its optimality condition

• Chain rule
$$\implies \frac{d\mathbf{m}^{FWI}}{d\mathbf{p}} = -H^{-1}(\mathbf{m}^{FWI}) \nabla_{\mathbf{m},\mathbf{p}} \phi(\mathbf{m}^{FWI})$$

Computing the gradient:

- $\delta(\mathbf{m}^{FWI})$: Solve the linear system $H(\mathbf{m}^{FWI})\delta(\mathbf{m}^{FWI}) = \mathbf{m}' - \mathbf{m}^{FWI}$

- $\nabla_{\mathbf{m},\mathbf{p}}\phi(\mathbf{m}^{FWI})$: Solve $dim \times \# sensors \times \# s \times \# \omega$ PDEs

Bilevel Problem	
Find	$\mathbf{p}_{min} = \operatorname*{argmin}_{\mathbf{p}} \psi(\mathbf{m}^{\mathit{FWI}}(\mathbf{p},\mathbf{m}'))$
subject to	$ abla_{\mathbf{m}}\phi(\mathbf{m}^{FWI}(\mathbf{p},\mathbf{m}'),\mathbf{p})=0 \ \ \forall \ \mathbf{m}'$

$$\begin{aligned} & \mathsf{Gradient} \\ & \nabla_{\mathsf{p}}\psi = \frac{1}{N}\sum_{\mathsf{m}'} \left(\nabla_{\mathsf{m},\mathsf{p}}\phi(\mathsf{m}^{FWI})\right)^T \delta(\mathsf{m}^{FWI}) \end{aligned}$$

- ${\scriptstyle \bullet}\,$ Quasi-Newton method \implies need to compute the gradient
- Difficulty: differentiating the argmin operation
- Instead: replace the lower-level with its optimality condition

• Chain rule
$$\implies \frac{d\mathbf{m}^{FWI}}{d\mathbf{p}} = -H^{-1}(\mathbf{m}^{FWI}) \nabla_{\mathbf{m},\mathbf{p}} \phi(\mathbf{m}^{FWI})$$

- Computing the gradient:
 - $\delta(\mathbf{m}^{FWI})$: Solve the linear system $H(\mathbf{m}^{FWI})\delta(\mathbf{m}^{FWI}) = \mathbf{m}' \mathbf{m}^{FWI}$
 - $\nabla_{\mathbf{m},\mathbf{p}}\phi(\mathbf{m}^{FWI})$: Solve $\dim \times \# \text{ sensors} \times \# s \times \# \omega$ PDEs

Bilevel Pro	blem
Find	$\mathbf{p}_{min} = \mathop{\mathrm{argmin}}\limits_{\mathbf{p}} \psi(\mathbf{m}^{\mathit{FWI}}(\mathbf{p},\mathbf{m}'))$
subject to	$ abla_{\mathbf{m}}\phi(\mathbf{m}^{FWI}(\mathbf{p},\mathbf{m}'),\mathbf{p})=0 \ \ \forall \ \mathbf{m}'$

$$\begin{aligned} & \mathsf{Gradient} \\ & \nabla_{\mathsf{p}}\psi = \frac{1}{N}\sum_{\mathsf{m}'} \left(\nabla_{\mathsf{m},\mathsf{p}}\phi(\mathsf{m}^{\mathsf{FWI}})\right)^T \delta(\mathsf{m}^{\mathsf{FWI}}) \end{aligned}$$

- Quasi-Newton method \implies need to compute the gradient
- Difficulty: differentiating the argmin operation
- Instead: replace the lower-level with its optimality condition

• Chain rule
$$\implies \frac{d\mathbf{m}^{FWI}}{d\mathbf{p}} = -H^{-1}(\mathbf{m}^{FWI})\nabla_{\mathbf{m},\mathbf{p}}\phi(\mathbf{m}^{FWI})$$

Computing the gradient:

- $\delta(\mathbf{m}^{FWI})$: Solve the linear system $H(\mathbf{m}^{FWI})\delta(\mathbf{m}^{FWI}) = \mathbf{m}' - \mathbf{m}^{FWI}$

- $\nabla_{\mathbf{m},\mathbf{p}}\phi(\mathbf{m}^{FWI})$: Solve $dim \times \# sensors \times \# s \times \# \omega$ PDEs
- $(\nabla_{\mathbf{m},\mathbf{p}}\phi(\mathbf{m}^{FWI}))^T \delta(\mathbf{m}^{FWI})$: # PDEs independent of $\dim \times \#$ sensors

Example 1

Example 2 - Setup

- Learn optimal sensor positions AND level of regularisation
- Set of **training models** of certain class smooth circles of different size, wavespeeds and positions along diagonal
- Subset of training models:

Example 2 - Results

Reconstruction Without Optimisation mFWI(p_n)

Reconstruction With Optimisation mFWI(pmin)

Example 2 - Testing

- How well do these results work on other models in this class?
- Subset of 50 random testing models:

Example 2 - Testing Results

 ψ_{start}

- Improvement factor $= rac{\psi_{start}}{\psi_{optim}}$
- Over 50 testing models:
 - Average improvement factor = 536
 - Range of improvement factors = 287 842

Example 2 - Further Testing

- How well do these results work on models outside this class?
- Subset of 150 random testing models:

- Over 150 testing models:
 - Average improvement factor = 533
 - Range of improvement factors = 42 1171

Future Work

- Extend current bilevel framework to learn the optimal source placement and the number of sensors and sources
- Preliminary Results:
- Starting Setup \implies 110 sensors

- Reconstruction

Future Work

- Extend current bilevel framework to learn the optimal source placement and the number of sensors and sources
- Preliminary Results:
- Optimised Weights \implies 62 sensors

- Reconstruction $\approx 5\%$ worse

Future Work

- Extend current bilevel framework to learn the optimal source placement and the number of sensors and sources
- Preliminary Results:
- Larger Sparsity Parameter \implies 33 sensors

- Reconstruction $\approx 22\%$ worse

- Seismic Imaging can be performed with Full Waveform Inversion
- Sensor placement can be optimised using a bilevel learning framework
- Bilevel learning results in significant improvements in FWI images

