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The Simplest Gauge-String Dualities (and embedding in AdS/CFT). 

[Open-Closed-Open Trialities] 



Motivation and Goals: 
The Big Picture(s)



Motivation

Gauge-String duality a more general phenomenon than AdS/CFT.  

Need to understand its nuts and bolts. Derive it from first principles, 
at least in some limits e.g. perturbative ( ) large N QFT.   

Simple examples capture some of the bare bones features. 

Aim to extract general lessons for gauge-string duality.   

Often embedded inside more complex AdS/CFT dualities as well. 

λ ≪ 1



Big Picture - I

Feynman diagrams know a lot about the dual closed strings.



Simple Gauge-String Duality
1
ZN ∫ dKdMN×Ne−NTr(KM)∏

i

Tr(Kli)∏
j

Tr(Mnj)

⟨∏
i

𝒱+li∏
j

𝒱−nj
⟩

Reconstruct

Worldsheet: Feynman Diagrams 
= Lattice points on moduli sp.

Spacetime: Feynman Diagrams 

count special holomorphic maps to .ℙ1

Closed String Dual:  Kazama-Suzuki 

(Cigar) exhibits these unusual features. 

𝔰𝔩(2,ℝ)k=1/𝔲(1)

Reproduce

[R.G, Kaushik, Komatsu, Mazenc, Sarkar ’24]

[Gaberdiel, R.G, Li, Mazenc (To appear)]

[Also relation to c=1 at R=1.]
[R.G, Mazenc ’22]



The Simplest Duality Chain Complex 

Imbimbo-Mukhi Matrix 
Model   String theory at 

self dual radius  
c = 1 B-Model on deformed 

conifold  
[Dijkgraaf-Vafa]

Two Matrix Model: 

 ⟨∏
i

Tr(Kli)∏
j

Tr(Mnj)⟩g

A-Model:  
SL(2,ℝ)1

U(1)
⟨∏

i

𝒱+li∏
j

𝒱−nj
⟩g

B-Model: Top.L-G theory 
  W(Z) =

1
Z

⟨∏
i

𝒯l1(Z)∏
j

𝒯−nj
(Z)⟩g

Open-Closed

Duality

Mirror 

Symmetry 

[Ashok-Murthy 
-Troost]

[Mukhi-Vafa]

[Ghoshal-Vafa][  identities]W∞

Open-Closed-Open 
       Triality[R.G.-Mazenc]

[Ghoshal-Mukhi; 
Hanany-Oz-Plesser]

[Gross-Klebanov]

[Ooguri-Vafa; 
Aganagic et.al]

[Nakamura- 
Niarchos]

[Moore-Plesser-Ramgoolam]
[Cf. Kontsevich-Penner Model 
Chekhov et.al.; Bonora-Xiong]

[Gaberdiel-R.G. 
Li-Mazenc]



The Embedding:  SUSY Correlators  
1
2

1
Zfree ∫ D(Fields)N×N e− N

λ S𝒩=4[ψ,A,ΦI]
Q

∏
a=1

det(xa − Y1 ⋅ Φ(w1))
R

∏
μ=1

det(ya − Y2 ⋅ Φ(w2))

=
1
ZN ∫ dKdMN×N e− N

λ |w1−w2|
2 Tr(KM)

Q

∏
a=1

det(xa − K)
R

∏
μ=1

det(vu − M)
Kij = Y1 ⋅ Φij(w1)
Mij = Y2 ⋅ Φij(w2)

∝ ∫ dKdMN×N e− N
λ |w1−w2|

2 Tr(KM)+∑n tnTr(Kn)+∑n t̃nTr(Mn) ≡ Z(tn, t̃n)

Generating Function of     

= correlators in a Two Matrix Model. 

⟨
n1

∏
i=1

1
ki

Tr [(Y1 ⋅ Φ(w1))ki]
n2

∏
j=1

1
lj

Tr [(Y2 ⋅ Φ(w2))lj]⟩c
𝒩=4

Giant Graviton 
Operators



Worldsheet of 
Open String Theory #1 (Closed) String

Worldsheet

↔ ↔
“Vertex”

Type
“Face”
Type

Worldsheet of 
Open String Theory #2

Big Picture - II

Open-Closed-Open Triality

Graph dual



           Riemann Surfaces 



“Meromorphic 

Quadratic Differential” Only Double-poles 


at marked points

ϕS ∼
−Lk

2

(2π)2

du2

u2

ϕS = ϕS(z)dz ⊗ dz

The key object: The Strebel Differential for Σg,n
[Strebel ’84]

( Residue)Lk =

Some Pretty Maths Pictures



Some Pretty Maths Pictures

Concentric closed 

curves around 


each double pole. 

The key object: The Strebel Differential for Σg,n
[Strebel ’84]

ϕS(z(t))( dz(t)
dt )2 > 0

Horizontal trajectories: 

Special to Strebel Differentials: 
Horizontal trajectories are like 

isotherms/equipotentials. 

ϕS ∼
L2

k

(2π)2
dθ2

(u = reiθ)



Some Pretty Maths Pictures

Each Face has a single 
double pole

`Critical’ Horizontal trajectories 

are graphs - not closed curves.


Strebel Graph

The key object: The Strebel Differential
[Strebel ’84]

ϕS(z(t))( dz(t)
dt )2 > 0

Horizontal trajectories: 

Generic Horizontal trajectories 

Vertices are zeroes of the 

Strebel Differential:


Valence of vertex=order of zero+2 



Lk = ∮k
ϕS(z)dz > 0

Build a punctured RS from gluing (half-)cylinders 
of circumference  along the Strebel Graph. 


Similar to light-cone gauge; no internal 
propagators unlike in closed SFT.

Lk

Building Riemann Surfaces

Conformally  
Equivalent



l(ab) = ∫
zb

za

ϕS(z)dz

Theorem: Strebel graph  ↔ p ∈ ℳg,n × ℝn
+

Strebel Parametrisation of ℳg,n
Edge lengths  = proper distance between 

zeroes  of the Strebel Graph 
l(ab)

(a, b)

- perimeters n {Lk}Parametrised by{l(ab)}

# of Double Poles# of Double Poles



Each ribbon graph (topology)

 + all possible edge lengths


parametrize one cell of ℳg,n

Strebel Parametrisation of ℳg,n



↔ ↔

Feynman Diagrams as Worldsheets



What about the Feynman Graphs?

⟨(Tr(K2))2(Tr(M2))2⟩KM ⟨(𝒱+2)2(𝒱−2)2⟩

Expect Vertices of Feynman Graph  Punctures on dual closed RS↔



What about the Feynman Graphs?

⟨(Tr(K2))2(Tr(M2))2⟩KM ⟨(𝒱+2)2(𝒱−2)2⟩

Whereas Faces of Strebel Graph  Punctures on dual closed RS↔
Feynman Diagram identified as graph dual to the Strebel Graph

[R.G. ’04-’06]



Worldsheets From Feynman 
Diagrams

ϕS(z(t))( dz(t)
dt )2 < 0

Vertical Trajectories
Carves the Riemann Surface  
into (infinite) strips

  A half-strip 
(Semi-infinite)

Special Vertical 
Trajectory

 Width lab



Worldsheets From Feynman Diagrams

The closed (punctured)   
Riemann Surface is assembled  

from these strips of width .lab

These strips between double poles 
naturally identified with the ribbon  
graphs of the large N gauge theory.

`String Bit’ picture.



Worldsheets from Feynman 
Diagrams

Can explicitly implement this picture of gluing by holomorphically patching together the strips.   
The Strebel length assignment  now made to the dual Feynman edge. lab
For matrix integrals  simply number of homotopic Feynman edges i.e. lengths are +ve integers.lab

[R. G. ’06, Razamat’08]



e.g. FD contributing to 

Strebel Edge Lengths = # of (homotopic) Feynman Edges crossed

⟨Tr[K2]Tr[K5]Tr[M4]Tr[M3]⟩KM

Worldsheets from Feynman 
Diagrams



Worldsheets From Feynman Diagrams

Integer Strebel Lengths are special in 
 Arithmetic Riemann Surfaces  ℳg,n ↔

Gives a natural latticisation of . 

Not of the worldsheet.   
Counting gives discretised volumes of 
moduli space.

ℳg,n

Each Feynman diagram

One point on moduli space
with integer Strebel coordinates

[Norbury’08]

[Mulase-Penkava’98]



Reconstructing the Target Space



Belyi Maps

Matrix model correlators 

 

Expressed as sum over branched 

holomorphic covering maps of a  
by the worldsheet over exactly three  
branchpoints (in target space). 

⟨∏
i

Tr(Kli)∏
j

Tr(Mnj)⟩KM

ℙ1

Such branched covers of  special: admitted only by Arithmetic RS - Belyi’s Theorem.  
Exactly the worldsheets we saw in our dictionary between Feynman Diagrams and worldsheets. 

ℙ1

[cf. Gross-Taylor ’92 for 2d Yang-Mills]

[Belyi ’80]



Belyi MapsBelyi Maps
Two step process to rewrite  
Matrix model correlators 

⟨∏
i

Tr(Kli)∏
j

Tr(Mnj)⟩KM

A. Each contribution (wick contraction) 
can be written in terms of three 
permutations - cycle structure. 

Two of them are determined by  
the cycle structure of the K, M vertices 

 and  (l1)(l2)…(lk) (n1)(n2)…(nm)

The third cycle depends on the specific wick contraction (diagram). Cycle structure in terms of faces.  
[ di Francesco-Itzykson ’92;  
de Mello Koch-Ramgoolam’10; 
R.G., R.G-Pius’10-’11]



Belyi MapsBelyi Maps
Two step process to rewrite  
Matrix model correlators 

⟨∏
i

Tr(Kli)∏
j

Tr(Mnj)⟩KM

B. Each diagram can be viewed as  
a branched covering of the target space  

 by the worldsheet. ℙ1

The degree of the cover is the number  

of edges . The three  

permutations  three branch points.
∑ li = ∑ nj

↔

Thus sum over Feynman diagrams counts the number of such branched Belyi maps. (Cf. Grothendieck) 

Closed string dual is thus an A-model topological string theory with a target topology .ℙ1



↔ ↔

Open-Closed-Open Triality



• (Ext.) Diagram Vertices  Closed String insertions 
• (Skeleton of) Feynman Diag = Dual of Strebel Graph 

↔

Vertex Type 

e.g.  SYM, Double-Scaled Matrix Models𝒩 = 4

Face Type 

E.g. Chern-Simons duality, Kontsevich Model  

• Diagram Faces (branes)  Closed String insertions 
• Feynman Diagram = Strebel Graph

↔

V-type vs. F-type:  
Refinement of Open-Closed Duality 

[Kontsevich’91; R.G.-Vafa ’98]

[R. G’10; R. G-Mazenc ’22]



V-type & F-type: Triality

Two complementary open string descriptions arising from open strings on different D-branes. 

Early example: Minimal string theory with ZZ-branes and FZZT branes.
[Maldacena-Moore-Seiberg-Shih ’04]



V-type & F-type: Triality

Can realise this in the simple matrix integrals describing this subsector of  SYM𝒩 = 4

Explicit integrating in and out of fields - implements dynamical graph duality. 



Z(tk, t̃k) ∼ ∫ dKdMN×Ndψdψ†
N×Qdχdχ†

N×ReTrN(KM)+ψ†
ia(Xabδij−δabMij)ψjb+χ†

iμ(Vμνδij−Kijδμν)χjν

∫ dKdMN×Ne− N
λ Tr(KM)+∑n tnTr(Kn)+∑n t̃nTr(Mn)

∫ dKdMdψdψ†dχdχ†e− N
λ TrN(KM)+ψ†

ia(Xabδij−δabMij)ψjb+χ†
iμ(Vμνδij−Kijδμν)χjν

∫ dψdψ†dχdχ†eψ†
iaXabψib+χ†

iμVμν χiν+ λ
N ψ†

iaψja χ†
jμχiμ

STEP 1: 
Integrate in ψ†

ia, χ†
iμ

STEP 2: 
Integrate out Kij, Mij

STEP 1

STEP 2

„Other holes open up“

Dynamical Graph Duality
[R. G’10; R. G-Mazenc ’22]



Z(tk, t̃k) ∼ ∫ dKdMN×Ndψdψ†
N×Qdχdχ†

N×ReTrN(KM)+ψ†
ia(Xabδij−δabMij)ψjb+χ†

iμ(Vμνδij−Kijδμν)χjν

STEP 3: 
Integrate in S†

aμ

STEP 4: 
Integrate out ψ†

ia, χ†
iμ

∫ dψdψ†dχdχ†eψ†
iaXabψib+χ†

iμVμν χiν+ λ
N ψ†

iaψja χ†
jμχiμ

∫ dψdψ†dχdχ†dSdS†e− N
λ S†

aμSμa+S†
aμψaj χ†

jμ+Saμψ†
aj χjμ+ψ†

iaXabψbi+χ†
iμVμν χνi

∫ dSdS†
Q×Re− N

λ Tr(VS†XS)+N∑k≥1
1
k Tr((S†S)k)

STEP 3

STEP 4

Redraw 
 

„Original D3 holes 
close up“

Dynamical Graph Duality
[R. G’10; R. G-Mazenc ’22]



Play the Movie!



Thanks for your attention


