
The polynomial Szemerédi theorem and beyond
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Mean ergodic theorem

Let (X ,X , µ,T ) be an ergodic measure-preserving dynamical
system and f ∈ L2(µ). Then

1

N

N∑
n=1

T nf →
∫
X
f in L2(µ).

What if we replace the iterate n by P(n) for some P ∈ Z[n]? E.g.
2n or n2?
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Failure of mean ergodic theorem for polynomial iterates

Consider P(n) = 2n, X = Z/2Z, Tx = x + 1 mod 2.

Then T 2 = Id , and so T 2nf = f for every n. Hence

1

N

N∑
n=1

T 2nf = f .

Now take X = Z/3Z, Tx = x + 1 mod 3. Then T 2 is ergodic,
and so

1

N

N∑
n=1

T 2nf →
∫
X
f :=

f (0) + f (1) + f (2)

3

in L2(µ).
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Failure of mean ergodic theorem for polynomial iterates

Consider P(n) = n2, X = Z/3Z, Tx = x + 1 mod 3.

Note that

n2 =

{
0 mod 3 if n = 0 mod 3

1 mod 3 if n = 1, 2 mod 3.

Hence

1

N

N∑
n=1

T n2f (x) → f (x) + 2f (x + 1)

3

in L2(µ).
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Let (X ,X , µ,T ) be totally ergodic, i.e. T ,T 2,T 3, . . . are all
ergodic.

For instance, an irrational translation on T is totally ergodic.

Then

1

N

N∑
n=1

TP(n)f →
∫
X
f in L2(µ)

for any nonconstant polynomial P ∈ Z[n].
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Multiple ergodic averages with polynomial iterates

We will study averages

1

N

N∑
n=1

TP1(n)f1 · · ·TPk (n)fk

where

1 (X ,X , µ,T ) is an invertible measure preserving dynamical
system;

2 P1, . . . ,Pk ∈ Z[n] are distinct polynomials with Pi (0) = 0 (we
call such polynomials integral);

3 f1, . . . , fk ∈ L∞(µ).
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Furstenberg’s proof of Szemerédi theorem

Theorem (Furstenberg 1977)

Let k ∈ N, (X ,X , µ,T ) be a system and A ∈ X be a set with
positive measure. Then

lim inf
N→∞

1

N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

As a corollary, there exists n > 0 such that

µ(A ∩ T−nA ∩ · · · ∩ T−(k−1)nA) > 0.

In particular, there exists x ∈ A such that

x , T nx , . . . , T knx ∈ A.
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Theorem (Furstenberg 1977)

Let k ∈ N, (X ,X , µ,T ) be a system and A ∈ X be a set with
positive measure. Then

lim inf
N→∞

1

N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

As a corollary, there exists n > 0 such that

µ(A ∩ T−nA ∩ · · · ∩ T−(k−1)nA) > 0.

In particular, there exists x ∈ A such that

x , T nx , . . . , T knx ∈ A.

Borys Kuca The polynomial Szemerédi theorem and beyond
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Theorem (Furstenberg 1977)

Let k ∈ N, (X ,X , µ,T ) be a system and A ∈ X be a set with
positive measure. Then

lim inf
N→∞

1

N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0.

Theorem (Szemerédi 1975)

Let k ≥ 3. Then each dense subset of N contains a k-term
arithmetic progression

m, m + n, . . . , m + (k − 1)n

with n ̸= 0.
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Polynomial Szemerédi theorem

Theorem (Bergelson & Leibman 1996)

Let P1, . . . ,Pk be distinct integral polynomials and (X ,X , µ,T ) be
a system. Suppose that A ∈ X has positive measure. Then

lim inf
N→∞

1

N

N∑
n=1

µ(A ∩ T−P1(n)A ∩ · · · ∩ T−Pk (n)A) > 0.

Corollary

Let P1, . . . ,Pk be distinct integral polynomials. Then each dense
subset of N contains a polynomial progression of the form

m, m + P1(n), . . . , m + Pk(n)

with n ̸= 0.

Borys Kuca The polynomial Szemerédi theorem and beyond
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Convergence of multiple ergodic averages

Both Furstenberg as well as Bergelson and Leibman showed

lim inf
N→∞

1

N

N∑
n=1

µ(A ∩ T−P1(n)A ∩ · · · ∩ T−Pk (n)A) > 0.

Does the limit exist?

Theorem (Host & Kra 2005; Leibman 2005)

Let (X ,X , µ,T ) be a system, P1, . . . ,Pk be distinct integral
polynomials and f1, . . . , fk ∈ L∞(µ). Then

1

N

N∑
n=1

TP1(n)f1 · · ·TPk (n)fk

converges in L2(µ).
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Weak convergence

Strong convergence implies weak convergence, hence we have the
following corollary.

Corollary

Let (X ,X , µ,T ) be a system, P1, . . . ,Pk be distinct integral
polynomials and f0, . . . , fk ∈ L∞(µ). Then

lim
N→∞

1

N

N∑
n=1

∫
X
f0 · TP1(n)f1 · · ·TPk (n)fk

exists.

If f0 = . . . = fk = 1A for A ∈ X , then we get that

lim
N→∞

1

N

N∑
n=1

µ(A ∩ T−P1(n)A ∩ · · · ∩ T−Pk (n)A)

exists.
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Factors

A factor of a system (X ,X , µ,T ) is a T -invariant sub-σ-algebra Y.

Equivalently, a factor of (X ,X , µ,T ) is a system (Y ,Y, ν,S)
together with a factor map π : X → Y satisfying

1 ν = µ ◦ π−1;
2 π ◦ T = S ◦ π.

For instance, the translation

S : T → T
x 7→ x + a

is a factor of the system

T : T2 → T2

(x , y) 7→ (x + a, y + x),

and the factor map is given by π(x , y) = x .
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The idea behind Host-Kra proof

Theorem (Host & Kra 2005)

Let (X ,X , µ,T ) be a system, P1, . . . ,Pk be distinct integral
polynomials and f1, . . . , fk ∈ L∞(µ). Then the average

1

N

N∑
n=1

TP1(n)f1 · · ·TPk(n)fk

converges in L2(µ).

For distinct integral polynomials P1, . . . ,Pk , we want to find a
well-structured factor Y of (X ,X , µ,T ) such that

lim
N→∞

1

N

N∑
n=1

TP1(n)f1 · · ·TPk(n)fk

= lim
N→∞

1

N

N∑
n=1

TP1(n) E(f1|Y) · · ·TPk(n) E(fk |Y)

for every f1, . . . , fk ∈ L∞(µ).Borys Kuca The polynomial Szemerédi theorem and beyond



The tower of Host-Kra factors
For an ergodic system (X ,X , µ,T ), Host and Kra constructed a tower of
factors

Z0 ⊆ Z1 ⊆ Z2 ⊆ · · · ⊆ X
with the following property.

Theorem (Host & Kra 2005)

Let (X ,X , µ,T ) be ergodic, f1, . . . , fk ∈ L∞(µ) and P = {P1, . . . ,Pk}
be a family of distinct integral polynomials. Then there exists s ∈ N,
such that the L2(µ) limits agree

lim
N→∞

1

N

N∑
n=1

TP1(n)f1 · · ·TPk (n)fk

= lim
N→∞

1

N

N∑
n=1

TP1(n) E(f1|Zs) · · ·TPk (n) E(fk |Zs).

We say that the factor Zs is characteristic for the family P and the
system (X ,X , µ,T ).

Importantly, s depends only on P1, . . . ,Pk but not on X or f1, . . . , fk .
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The structure of Host-Kra factors

The factor Z0 of (X ,X , µ,T ) is the σ-algebra of T -invariant sets.

The factor Z1 of an ergodic system is the Kronecker factor, i.e.
the factor generated by eigenfunctions of T .
Equivalently, it is the maximal factor of X s.t. (X ,Z1, µ,T ) is
isomorphic to a rotation on a compact abelian group.

More generally, the factor Zs is an inverse limit of s-step
nilsystems, i.e. systems of the form (G/Γ,Y, ν,S), where:

1 G/Γ is an s-step nilmanifold, i.e. G is an s-step nilpotent Lie
group and Γ is a cocompact lattice;

2 Y is the Borel σ-algebra;

3 ν is the Haar measure;

4 Sx = gx is a left multiplication map for some g ∈ G (called
nilrotation).
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The structure of Host-Kra factors

The factor Z0 of (X ,X , µ,T ) is the σ-algebra of T -invariant sets.

The factor Z1 of an ergodic system is the Kronecker factor, i.e.
the factor generated by eigenfunctions of T .
Equivalently, it is the maximal factor of X s.t. (X ,Z1, µ,T ) is
isomorphic to a rotation on a compact abelian group.

More generally, the factor Zs is an inverse limit of s-step
nilsystems, i.e. systems of the form (G/Γ,Y, ν,S), where:

1 G/Γ is an s-step nilmanifold, i.e. G is an s-step nilpotent Lie
group and Γ is a cocompact lattice;

2 Y is the Borel σ-algebra;

3 ν is the Haar measure;

4 Sx = gx is a left multiplication map for some g ∈ G (called
nilrotation).

Borys Kuca The polynomial Szemerédi theorem and beyond



Examples of nilsystems
A translation Tx = x + a on G/Γ = T = R/Z defines a 1-step nilsystem.

An example of a 2-step nilsystem is

T : T2 → T2

(x , y) 7→ (x + a, y + x).

This system can be realized as G/Γ for

G =

(
1 Z R
0 1 R
0 0 1

)
and Γ =

(
1 Z Z
0 1 Z
0 0 1

)
.

Then T corresponds to the left multiplication by g =

(
1 1 0
0 1 a
0 0 1

)
, which

is:

g

(
1 0 y
0 1 x
0 0 1

)
=

(
1 1 0
0 1 a
0 0 1

)(
1 0 y
0 1 x
0 0 1

)
=

(
1 1 y + x
0 1 x + a
0 0 1

)
.
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Examples of nilsystems
A translation Tx = x + a on G/Γ = T = R/Z defines a 1-step nilsystem.

An example of a 2-step nilsystem is

T : T2 → T2

(x , y) 7→ (x + a, y + x).

This system can be realized as G/Γ for

G =

(
1 Z R
0 1 R
0 0 1

)
and Γ =

(
1 Z Z
0 1 Z
0 0 1

)
.

Then T corresponds to the left multiplication by g =
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1 1 0
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0 0 1

)
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is:

g

(
1 0 y
0 1 x
0 0 1

)
=
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A proof of the existence of the limit

The proof of the existence of

lim
N→∞

1

N

N∑
n=1

TP1(n)f1 · · ·TPk (n)fk

would go as follows:

1 Some Host-Kra factor Zs is characteristic for the average, so
we can assume that all the functions are Zs -measurable.

2 The system can be approximated by an s-step nilsystem.

3 The limit exists for nilsystems.
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Host-Kra factors

Recall the equality

lim
N→∞

1

N

N∑
n=1

TP1(n)f1 · · ·TPk (n)fk

= lim
N→∞

1

N

N∑
n=1

TP1(n) E(f1|Zs) · · ·TPk (n) E(fk |Zs).

Recall that Zs is a factor of Zs+1 for each s ∈ N.

What is the smallest s for which the equality holds?
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Question
For the rest of the talk, we assume that T is totally ergodic, i.e.
T ,T 2,T 3, . . . are all ergodic.

Question

Let P = {P1, . . . ,Pk} be a family of distinct integral polynomials.
What is the smallest s such that the factor Zs is characteristic for
P for all totally ergodic systems?

Thus, we look for the smallest s such that

lim
N→∞

1

N

N∑
n=1

TP1(n)f1 · · ·TPk(n)fk

= lim
N→∞

1

N

N∑
n=1

TP1(n) E(f1|Zs) · · ·TPk(n) E(fk |Zs)

for all totally ergodic systems (X ,X , µ,T ) and f1, . . . , fk ∈ L∞(µ).

This smallest s is called the complexity of P.
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Linearly independent polynomials

Theorem (Frantzikinakis & Kra 2005)

The factor Z0 is characteristic for linearly independent families such as
{n, n2, . . . , nk}. Thus,

lim
N→∞

1

N

N∑
n=1

T nf1 · · ·T nk fk

= lim
N→∞

1

N

N∑
n=1

T n E(f1|Z0) · · ·T nk E(fk |Z0)

whenever T is totally ergodic.

Z0 is the σ-algebra I of T -invariant sets, hence

T ni E(fi |Z0) = T ni E(fi |I) = E(fi |I) =
∫
X

fi ,

and so

lim
N→∞

1

N

N∑
n=1

T nf1 · · ·T nk fk =

∫
X

f1 · · ·
∫
X

fk .
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Linearly independent polynomials

Theorem (Frantzikinakis & Kra 2005)

The factor Z0 is characteristic for linearly independent families such as
{n, n2, . . . , nk}. Thus,

lim
N→∞

1

N

N∑
n=1

T nf1 · · ·T nk fk

= lim
N→∞

1

N

N∑
n=1

T n E(f1|Z0) · · ·T nk E(fk |Z0)

whenever T is totally ergodic.

Z0 is the σ-algebra I of T -invariant sets, hence

T ni E(fi |Z0) = T ni E(fi |I) = E(fi |I) =
∫
X

fi ,

and so

lim
N→∞

1

N

N∑
n=1

T nf1 · · ·T nk fk =

∫
X

f1 · · ·
∫
X

fk .

Borys Kuca The polynomial Szemerédi theorem and beyond



Summary of known results

1 Linearly independent families have complexity 0
(Frantzikinakis & Kra 2005).

2 The linear family {n, 2n . . . , kn} has complexity k − 1 (Host
& Kra 2005; Ziegler 2007).

3 For any nonconstant integral polynomial P, the family
{P(n), 2P(n), . . . , kP(n)} has complexity k − 1
(Frantzikinakis 2008).

4 A classification for polynomial families of length 3
(Frantzikinakis 2008).

5 Results when attention is restricted to nilsystems or Weyl
systems (Bergelson, Leibman & Lesigne 2007; Leibman 2009).
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Summary of known results

1 Linearly independent families have complexity 0
(Frantzikinakis & Kra 2005).

2 The linear family {n, 2n . . . , kn} has complexity k − 1 (Host
& Kra 2005; Ziegler 2007).

3 For any nonconstant integral polynomial P, the family
{P(n), 2P(n), . . . , kP(n)} has complexity k − 1
(Frantzikinakis 2008).

4 A classification for polynomial families of length 3
(Frantzikinakis 2008).

5 Results when attention is restricted to nilsystems or Weyl
systems (Bergelson, Leibman & Lesigne 2007; Leibman 2009).

Borys Kuca The polynomial Szemerédi theorem and beyond
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Idea

The complexity of P = {P1, . . . ,Pk} is related to algebraic
relations

Q0(m) + Q1(m + P1(n)) + . . .+ Qk(m + Pk(n)) = 0

satisfied by the polynomial progression

m, m + P1(n), . . . ,m + Pk(n).
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Algebraic relations

An algebraic relation of degree s satisfied by {P1, . . . ,Pk} is a
relation of the form

Q0(m) + Q1(m + P1(n)) + . . .+ Qk(m + Pk(n)) = 0,

where maxi degQi = s.

For instance, the family {n, n2, n + n2} satisfies one linear relation
(up to scaling):

m − (m + n)− (m + n2) + (m + n + n2) = 0.

The family {n, 2n, n2} satisfies any linear combination of the
relations:

m − 2(m + n) + (m + 2n) = 0 and

(m2 + 2m)− 2(m + n)2 + (m + 2n)2 − 2(m + n2) = 0.
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Complexity conjecture

Conjecture

Let P = {P1, . . . ,Pk} be a family of distinct integral polynomials.
The factor Zs is characteristic for P iff P satisfies no relation of
degree s + 1 or higher.

E.g., the conjecture is saying:

1 Z1 is characteristic for {n, n2, n + n2} because of the relation

m − (m + n)− (m + n2) + (m + n + n2) = 0.

2 Z2 is characteristic for {n, 2n, n2} because of the relation

(m2 + 2m)− 2(m + n)2 + (m + 2n)2 − 2(m + n2) = 0.
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Why do algebraic relations matter?
It suffices to find the characteristic factor for the weak convergence, i.e. the
smallest s for which

lim
N→∞

1

N

N∑
n=1

∫
X

f0 · TP1(n)f1 · · ·TPk (n)fk

= lim
N→∞

1

N

N∑
n=1

∫
X

E(f0|Zs) · TP1(n) E(f1|Zs) · · ·TPk (n) E(fk |Zs)?

Since T is measure-preserving, we can rewrite the integral as∫
X

f0 · TP1(n)f1 · · ·TPk (n)fk =

∫
X

Tmf0 · Tm+P1(n)f1 · · ·Tm+Pk (n)fk .

Hence

lim
N→∞

1

N

N∑
n=1

∫
X

f0 · TP1(n)f1 · · ·TPk (n)fk

= lim
N→∞

1

N

N∑
m,n=1

∫
X

Tmf0 · Tm+P1(n)f1 · · ·Tm+Pk (n)fk .
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Why do algebraic relations matter?
Consider the family P = {n, 2n, 3n} and note the algebraic relation

m2 − 3(m + n)2 + 3(m + 2n)2 − (m + 3n)2 = 0.

Take nonzero a ∈ T, let e(y) = e2πiy and consider the expressions

e(am2), e(−3a(m + n)2), e(3a(m + 2n)2), e(−a(m + 3n)2)

Morally, we can express these exponentials as functions

Tmf1, Tm+nf2, Tm+2nf3, Tm+3nf4,

where fi (x , y) = e(aciy) for some ci ∈ Z and

T (x , y) = (x + a, y + 2x + a) on T2.

Thus,

Tmf1 · Tm+nf2 · Tm+2nf3 · Tm+3nf4 = 1,

but

E(fi |Z1)(x , y) =

∫
T
fi (x , y

′)dy ′ =

∫
T
e(aciy

′)dy ′ = 0,

and so

Tm E(f1|Z1) · Tm+n E(f2|Z1) · Tm+2n E(f3|Z1) · Tm+3n E(f4|Z1) = 0.
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∫
T
e(aciy

′)dy ′ = 0,

and so

Tm E(f1|Z1) · Tm+n E(f2|Z1) · Tm+2n E(f3|Z1) · Tm+3n E(f4|Z1) = 0.

Borys Kuca The polynomial Szemerédi theorem and beyond



Why do algebraic relations matter?
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Easy direction in the complexity conjecture

Conjecture

Let P = {P1, . . . ,Pk} be a family of distinct integral polynomials.
The factor Zs is characteristic for P iff P satisfies no relation of
degree s + 1 or higher.

Extending the previous example, we can show that if P satisfies an
algebraic relation of degree s + 1, then there is a system
(X ,X , µ,T ) and functions f0, . . . , fk ∈ L∞(µ) such that

Tmf0 · Tm+P1(n)f1 · · ·Tm+Pk (n)fk = 1

but E(fi |Zs) = 0 for some i = 0, . . . , k .
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Homogeneity

A homogeneous relation of degree s is a relation of the form

a0m
s + a1(m + P1(n))

s + . . .+ ak(m + Pk(n))
s = 0.

A family {P1, . . . ,Pk} is homogeneous if all the relations that it
satisfies are sums of homogeneous relations.

For instance, the family {n, n2, n + n2} satisfies only the relation

m − (m + n)− (m + n2) + (m + n + n2) = 0

(up to scaling), hence it is homogeneous.

The family {n, 2n, n2} satisfies the nonhomogeneous relation

(m2 + 2m)− 2(m + n)2 + (m + 2n)2 − 2(m + n2) = 0,

hence it is not homogeneous.
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Complexity conjecture holds for homogeneous families

Conjecture

The factor Zs is characteristic for P = {P1, . . . ,Pk} iff P satisfies no
relation of degree s + 1 or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families P.

Examples:
1 Z1 (Kronecker factor) is characteristic for P = {n, n2, n + n2}

because it satisfies one homogeneous relation up to scaling:

m − (m + n)− (m + n2) + (m + n + n2) = 0

(this example was previously proved by Frantzikinakis)
2 Z1 (Kronecker factor) is characteristic for P = {n, 2n, n3, 2n3}

because it only satisfies linear combinations of two homogeneous
relations

m − 2(m + n)− (m + 2n) = 0 and m − 2(m + n3)− (m + 2n3) = 0.
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More examples of homogeneous families

1 Linear families {a1n, . . . , akn};
2 Families {a1P(n), . . . , akP(n)};
3 Linearly independent families such as {n, n2, . . . , nk}
4 Families satisfying only linear relations

a0m + a1(m + P1(n)) + . . .+ ak(m + Pk(n)) = 0

and no higher relations, such as {n, 2n, n3, 2n3}.
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Families satisfying only linear relations

Corollary (K. 2021)

Suppose that a family P satisfies only linear relations

a0m + a1(m + P1(n)) + . . .+ ak(m + Pk(n)) = 0

and no higher order relations. Then the Kronecker factor Z1 is
characteristic for P, i.e.

lim
N→∞

1

N

N∑
n=1

TP1(n)f1 · · ·TPk (n)fk

= lim
N→∞

1

N

N∑
n=1

TP1(n) E(f1|Z1) · · ·TPk (n) E(fk |Z1) in L2(µ)

for every totally ergodic system (X ,X , µ,T ) and
f1, . . . , fk ∈ L∞(µ).
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Proof: reduction to nilsystems

1 We use Host-Kra’s result to replace

lim
N→∞

1

N

N∑
n=1

∫
X

Tmf0 · Tm+P1(n)f1 · · ·Tm+Pk (n)fk

by

lim
N→∞

1

N

N∑
n=1

∫
X

Tm E(f0|Zs) · Tm+P1(n) E(f1|Zs) · · ·Tm+Pk (n) E(fk |Zs)

for some s ∈ N.
2 We approximate the system by a totally ergodic nilsystem G/Γ.
3 For an ergodic element a ∈ G , we find the closures of(

amx , am+P1(n)x , . . . , am+Pk (n)x
)
n,m∈N

inside G k+1/Γk+1 for x ∈ G/Γ.
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Closure of polynomial sequences

Let G/Γ be a nilmanifold and g(n) = g0g
n
1 g

n2
2 · · · gns

s be a
polynomial sequence on G which is irrational.

Let P = {P1, . . . ,Pk} be a homogeneous family and

gP(m, n) = (g(m), g(m + P1(n)), . . . , g(m + Pk(n))).

My main result gives an explicit description of the closure of gP

inside the product nilmanifold (G/Γ)k+1.

This result works if and only if P is homogeneous.
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Application: equality of limits

Corollary (K. 2021)

Let (X ,X , µ,T ) be a totally ergodic system and
f1, . . . , f4 ∈ L∞(µ). Then

lim
N→∞

1

N

N∑
n=1

T nf1 · T 2nf2 · T n3f3 · T 2n3f4

= lim
N→∞

1

N

N∑
n=1

T nf1 · T 2nf2 · E
r∈[N]

T r f3 · T 2r f4
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Application: Multiple recurrence

Khintchine’s recurrence theorem says that for every ε > 0, the set

{n ∈ N : µ(A ∩ T−nA) > µ(A)2 − ε}

is syndetic (i.e. it has bounded gaps).

It was proved by Bergelson, Host, Kra & Ruzsa that for ergodic
systems, the set

{n ∈ N : µ(A ∩ T−nA ∩ · · · ∩ T−knA) > µ(A)k+1 − ε}

is syndetic for k ≤ 3, but this can fail for higher k .

A similar multiple recurrence property has been proved e.g. for:

1 {n, n2, . . . , nk} (Frantzikinakis & Kra 2005);

2 {P(n),Q(n),P(n) + Q(n)} (Frantzikinakis 2008).
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Multiple recurrence for families of complexity 1

Corollary (K. 2021)

Let P1, . . . ,Pk be integral polynomials satisfying only linear
relations (and some technical assumptions on the coefficients).
Let (X ,X , µ,T ) be an ergodic system and A ∈ X have positive
measure.
For every ε > 0, the set

{n ∈ N : µ(A ∩ T−P1(n)A ∩ · · · ∩ T−Pk (n)A) > µ(A)k+1 − ε}

is syndetic.
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Open questions

1 Does the complexity conjecture hold for nonhomogeneous
families?

2 Is it true that the complexity of a family of k polynomials is at
most k − 1?

3 If

Q0(m) + Q1(m + P1(n)) + . . .+ Qk(m + Pk(n)) = 0,

then is it true that max degQi ≤ k − 1?

4 What about pointwise convergence?

5 What if we look at polynomial iterates of several commuting
transformations, so averages of the form

1

N

N∑
n=1

T
P1(n)
1 f1 · · ·TPk (n)

k fk?
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Open questions

1 Does the complexity conjecture hold for nonhomogeneous
families?

2 Is it true that the complexity of a family of k polynomials is at
most k − 1?

3 If

Q0(m) + Q1(m + P1(n)) + . . .+ Qk(m + Pk(n)) = 0,

then is it true that max degQi ≤ k − 1?

4 What about pointwise convergence?

5 What if we look at polynomial iterates of several commuting
transformations, so averages of the form

1

N

N∑
n=1

T
P1(n)
1 f1 · · ·TPk (n)

k fk?

Borys Kuca The polynomial Szemerédi theorem and beyond
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