The polynomial Szemerédi theorem and beyond

Borys Kuca

University of Jyväskylä

Borys Kuca The polynomial Szemerédi theorem and beyond

Let (X, \mathcal{X}, μ, T) be an ergodic measure-preserving dynamical system and $f \in L^2(\mu)$. Then

$$\frac{1}{N}\sum_{n=1}^{N}T^{n}f\rightarrow\int_{X}f\quad\text{in}\quad L^{2}(\mu).$$

What if we replace the iterate *n* by P(n) for some $P \in \mathbb{Z}[n]$? E.g. 2*n* or n^2 ?

Let (X, \mathcal{X}, μ, T) be an ergodic measure-preserving dynamical system and $f \in L^2(\mu)$. Then

$$\frac{1}{N}\sum_{n=1}^{N}T^{n}f\rightarrow\int_{X}f\quad\text{in}\quad L^{2}(\mu).$$

What if we replace the iterate *n* by P(n) for some $P \in \mathbb{Z}[n]$? E.g. 2n or n^2 ?

Consider
$$P(n) = 2n$$
, $X = \mathbb{Z}/2\mathbb{Z}$, $Tx = x + 1 \mod 2$.

Then $T^2 = Id$, and so $T^{2n}f = f$ for every *n*. Hence

$$\frac{1}{N}\sum_{n=1}^{N}T^{2n}f=f.$$

Now take $X = \mathbb{Z}/3\mathbb{Z}$, $Tx = x + 1 \mod 3$. Then T^2 is ergodic, and so

$$\frac{1}{N}\sum_{n=1}^{N}T^{2n}f \to \int_{X}f := \frac{f(0) + f(1) + f(2)}{3}$$

Consider
$$P(n) = 2n$$
, $X = \mathbb{Z}/2\mathbb{Z}$, $Tx = x + 1 \mod 2$.

Then $T^2 = Id$, and so $T^{2n}f = f$ for every *n*. Hence

$$\frac{1}{N}\sum_{n=1}^{N}T^{2n}f=f.$$

Now take $X = \mathbb{Z}/3\mathbb{Z}$, $Tx = x + 1 \mod 3$. Then T^2 is ergodic, and so

$$\frac{1}{N}\sum_{n=1}^{N}T^{2n}f \to \int_{X}f := \frac{f(0) + f(1) + f(2)}{3}$$

Consider
$$P(n) = 2n$$
, $X = \mathbb{Z}/2\mathbb{Z}$, $Tx = x + 1 \mod 2$.

Then $T^2 = Id$, and so $T^{2n}f = f$ for every *n*. Hence

$$\frac{1}{N}\sum_{n=1}^{N}T^{2n}f=f.$$

Now take $X = \mathbb{Z}/3\mathbb{Z}$, $Tx = x + 1 \mod 3$. Then T^2 is ergodic, and so

$$\frac{1}{N}\sum_{n=1}^{N}T^{2n}f \to \int_{X}f := \frac{f(0)+f(1)+f(2)}{3}$$

Consider
$$P(n) = n^2$$
, $X = \mathbb{Z}/3\mathbb{Z}$, $Tx = x + 1 \mod 3$.

Note that

$$n^{2} = \begin{cases} 0 \mod 3 & \text{if } n \equiv 0 \mod 3 \\ 1 \mod 3 & \text{if } n \equiv 1, 2 \mod 3. \end{cases}$$

Hence

$$\frac{1}{N}\sum_{n=1}^{N}T^{n^{2}}f(x) \to \frac{f(x) + 2f(x+1)}{3}$$

Consider
$$P(n) = n^2$$
, $X = \mathbb{Z}/3\mathbb{Z}$, $Tx = x + 1 \mod 3$.

Note that

$$n^{2} = \begin{cases} 0 \mod 3 & \text{if } n = 0 \mod 3 \\ 1 \mod 3 & \text{if } n = 1, 2 \mod 3. \end{cases}$$

Hence

Consider
$$P(n) = n^2$$
, $X = \mathbb{Z}/3\mathbb{Z}$, $Tx = x + 1 \mod 3$.

Note that

$$n^{2} = \begin{cases} 0 \mod 3 & \text{if } n = 0 \mod 3 \\ 1 \mod 3 & \text{if } n = 1, 2 \mod 3. \end{cases}$$

Hence

$$\frac{1}{N}\sum_{n=1}^{N}T^{n^{2}}f(x) \to \frac{f(x)+2f(x+1)}{3}$$

Let (X, \mathcal{X}, μ, T) be *totally ergodic*, i.e. T, T^2, T^3, \ldots are all ergodic.

For instance, an irrational translation on ${\mathbb T}$ is totally ergodic.

Then

$$\frac{1}{N}\sum_{n=1}^{N}T^{P(n)}f \to \int_{X}f \quad \text{in} \quad L^{2}(\mu)$$

for any nonconstant polynomial $P \in \mathbb{Z}[n]$.

Let (X, \mathcal{X}, μ, T) be *totally ergodic*, i.e. T, T^2, T^3, \ldots are all ergodic.

For instance, an irrational translation on $\ensuremath{\mathbb{T}}$ is totally ergodic.

Then

$$\frac{1}{N}\sum_{n=1}^{N}T^{P(n)}f \to \int_{X}f \quad \text{in} \quad L^{2}(\mu)$$

for any nonconstant polynomial $P \in \mathbb{Z}[n]$.

Let (X, \mathcal{X}, μ, T) be *totally ergodic*, i.e. T, T^2, T^3, \ldots are all ergodic.

For instance, an irrational translation on $\ensuremath{\mathbb{T}}$ is totally ergodic.

Then

$$\frac{1}{N}\sum_{n=1}^{N}T^{P(n)}f\to \int_{X}f\quad \text{in}\quad L^{2}(\mu)$$

for any nonconstant polynomial $P \in \mathbb{Z}[n]$.

Multiple ergodic averages with polynomial iterates

We will study averages

$$\frac{1}{N}\sum_{n=1}^{N}T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

where

- (X, X, μ, T) is an invertible measure preserving dynamical system;
- P₁,..., P_k ∈ Z[n] are distinct polynomials with P_i(0) = 0 (we call such polynomials *integral*);

$$\frac{1}{N}\sum_{n=1}^{N}T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

where

- (X, X, µ, T) is an invertible measure preserving dynamical system;
- P₁,..., P_k ∈ Z[n] are distinct polynomials with P_i(0) = 0 (we call such polynomials *integral*);

$$f_1,\ldots,f_k\in L^\infty(\mu).$$

$$\frac{1}{N}\sum_{n=1}^{N}T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

where

- (X, X, μ, T) is an invertible measure preserving dynamical system;
- P₁,..., P_k ∈ ℤ[n] are distinct polynomials with P_i(0) = 0 (we call such polynomials *integral*);

$$\frac{1}{N}\sum_{n=1}^{N}T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

where

- (X, X, μ, T) is an invertible measure preserving dynamical system;
- P₁,..., P_k ∈ ℤ[n] are distinct polynomials with P_i(0) = 0 (we call such polynomials *integral*);

$$f_1,\ldots,f_k\in L^\infty(\mu).$$

$$\frac{1}{N}\sum_{n=1}^{N}T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

where

- (X, X, μ, T) is an invertible measure preserving dynamical system;
- P₁,..., P_k ∈ ℤ[n] are distinct polynomials with P_i(0) = 0 (we call such polynomials *integral*);

$$f_1,\ldots,f_k\in L^\infty(\mu).$$

Let $k \in \mathbb{N}$, (X, \mathcal{X}, μ, T) be a system and $A \in \mathcal{X}$ be a set with positive measure. Then

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n}A\cap\cdots\cap T^{-kn}A)>0.$$

As a corollary, there exists n > 0 such that

$$\mu(A\cap T^{-n}A\cap\cdots\cap T^{-(k-1)n}A)>0.$$

In particular, there exists $x \in A$ such that

$$x, T^n x, \ldots, T^{kn} x \in A.$$

Let $k \in \mathbb{N}$, (X, \mathcal{X}, μ, T) be a system and $A \in \mathcal{X}$ be a set with positive measure. Then

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n}A\cap\cdots\cap T^{-kn}A)>0.$$

As a corollary, there exists n > 0 such that

$$\mu(A\cap T^{-n}A\cap\cdots\cap T^{-(k-1)n}A)>0.$$

In particular, there exists $x \in A$ such that

$$x, T^n x, \ldots, T^{kn} x \in A.$$

Let $k \in \mathbb{N}$, (X, \mathcal{X}, μ, T) be a system and $A \in \mathcal{X}$ be a set with positive measure. Then

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n}A\cap\cdots\cap T^{-kn}A)>0.$$

As a corollary, there exists n > 0 such that

$$\mu(A\cap T^{-n}A\cap\cdots\cap T^{-(k-1)n}A)>0.$$

In particular, there exists $x \in A$ such that

$$x, T^n x, \ldots, T^{kn} x \in A.$$

Let $k \in \mathbb{N}$, (X, \mathcal{X}, μ, T) be a system and $A \in \mathcal{X}$ be a set with positive measure. Then

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n}A\cap\cdots\cap T^{-kn}A)>0.$$

Theorem (Szemerédi 1975)

Let $k \ge 3$. Then each dense subset of \mathbb{N} contains a k-term arithmetic progression

$$m, m+n, \ldots, m+(k-1)n$$

Let $k \in \mathbb{N}$, (X, \mathcal{X}, μ, T) be a system and $A \in \mathcal{X}$ be a set with positive measure. Then

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\mu(A\cap T^{-n}A\cap\cdots\cap T^{-kn}A)>0.$$

Theorem (Szemerédi 1975)

Let $k \ge 3$. Then each dense subset of \mathbb{N} contains a k-term arithmetic progression

$$m, m+n, \ldots, m+(k-1)n$$

Theorem (Bergelson & Leibman 1996)

Let P_1, \ldots, P_k be distinct integral polynomials and (X, \mathcal{X}, μ, T) be a system. Suppose that $A \in \mathcal{X}$ has positive measure. Then

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \mu(A\cap T^{-P_1(n)}A\cap\cdots\cap T^{-P_k(n)}A)>0.$$

Corollary

Let P_1, \ldots, P_k be distinct integral polynomials. Then each dense subset of \mathbb{N} contains a polynomial progression of the form

 $m, m + P_1(n), \ldots, m + P_k(n)$

Theorem (Bergelson & Leibman 1996)

Let P_1, \ldots, P_k be distinct integral polynomials and (X, \mathcal{X}, μ, T) be a system. Suppose that $A \in \mathcal{X}$ has positive measure. Then

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \mu(A\cap T^{-P_1(n)}A\cap\cdots\cap T^{-P_k(n)}A)>0.$$

Corollary

Let P_1, \ldots, P_k be distinct integral polynomials. Then each dense subset of \mathbb{N} contains a polynomial progression of the form

$$m, m + P_1(n), \ldots, m + P_k(n)$$

Convergence of multiple ergodic averages

Both Furstenberg as well as Bergelson and Leibman showed

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \mu(A\cap T^{-P_1(n)}A\cap\cdots\cap T^{-P_k(n)}A)>0.$$

Does the limit exist?

Theorem (Host & Kra 2005; Leibman 2005)

Let (X, \mathcal{X}, μ, T) be a system, P_1, \ldots, P_k be distinct integral polynomials and $f_1, \ldots, f_k \in L^{\infty}(\mu)$. Then

$$\frac{1}{N}\sum_{n=1}^{N}T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

converges in $L^2(\mu)$.

Convergence of multiple ergodic averages

Both Furstenberg as well as Bergelson and Leibman showed

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \mu(A\cap T^{-P_1(n)}A\cap\cdots\cap T^{-P_k(n)}A)>0.$$

Does the limit exist?

Theorem (Host & Kra 2005; Leibman 2005)

Let (X, \mathcal{X}, μ, T) be a system, P_1, \ldots, P_k be distinct integral polynomials and $f_1, \ldots, f_k \in L^{\infty}(\mu)$. Then

$$\frac{1}{N}\sum_{n=1}^{N}T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

converges in $L^2(\mu)$.

Weak convergence

Strong convergence implies weak convergence, hence we have the following corollary.

Corollary

Let (X, \mathcal{X}, μ, T) be a system, P_1, \ldots, P_k be distinct integral polynomials and $f_0, \ldots, f_k \in L^{\infty}(\mu)$. Then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\int_X f_0\cdot T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

exists.

If $f_0 = \ldots = f_k = 1_A$ for $A \in \mathcal{X}$, then we get that

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \mu(A\cap T^{-P_1(n)}A\cap\cdots\cap T^{-P_k(n)}A)$$

exists.

Weak convergence

Strong convergence implies weak convergence, hence we have the following corollary.

Corollary

Let (X, \mathcal{X}, μ, T) be a system, P_1, \ldots, P_k be distinct integral polynomials and $f_0, \ldots, f_k \in L^{\infty}(\mu)$. Then

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\int_X f_0\cdot T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

exists.

f
$$f_0 = \ldots = f_k = 1_A$$
 for $A \in \mathcal{X}$, then we get that
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \ \mu(A \cap T^{-P_1(n)}A \cap \cdots \cap T^{-P_k(n)}A)$$

exists.

Factors

A factor of a system (X, \mathcal{X}, μ, T) is a *T*-invariant sub- σ -algebra \mathcal{Y} .

Equivalently, a factor of (X, \mathcal{X}, μ, T) is a system (Y, \mathcal{Y}, ν, S) together with a *factor map* $\pi : X \to Y$ satisfying

- 1) $\nu = \mu \circ \pi^{-1};$
- $\ 2 \ \pi \circ T = S \circ \pi.$

For instance, the translation

 $S: \mathbb{T} \to \mathbb{T}$ $x \mapsto x + a$

is a factor of the system

 $T: \mathbb{T}^2 \to \mathbb{T}^2$ $(x, y) \mapsto (x + a, y + x),$

```
and the factor map is given by \pi(x, y) = x.
```

Factors

A factor of a system (X, \mathcal{X}, μ, T) is a *T*-invariant sub- σ -algebra \mathcal{Y} .

Equivalently, a factor of (X, \mathcal{X}, μ, T) is a system (Y, \mathcal{Y}, ν, S) together with a *factor map* $\pi : X \to Y$ satisfying

- $\ 2 \ \pi \circ T = S \circ \pi.$

For instance, the translation

 $S: \mathbb{T} \to \mathbb{T}$ $x \mapsto x + a$

is a factor of the system

 $T: \mathbb{T}^2 \to \mathbb{T}^2$ $(x, y) \mapsto (x+a, y+x),$

```
and the factor map is given by \pi(x, y) = x.
```

Factors

A factor of a system (X, \mathcal{X}, μ, T) is a *T*-invariant sub- σ -algebra \mathcal{Y} .

Equivalently, a factor of (X, \mathcal{X}, μ, T) is a system (Y, \mathcal{Y}, ν, S) together with a *factor map* $\pi : X \to Y$ satisfying

$$2 \ \pi \circ T = S \circ \pi.$$

For instance, the translation

$$S: \mathbb{T} \to \mathbb{T}$$
$$x \mapsto x + a$$

is a factor of the system

 $T:\mathbb{T}^2 o\mathbb{T}^2$ $(x, y)\mapsto (x+a, y+x),$

and the factor map is given by $\pi(x, y) = x$.

The idea behind Host-Kra proof

Theorem (Host & Kra 2005)

Let (X, \mathcal{X}, μ, T) be a system, P_1, \ldots, P_k be distinct integral polynomials and $f_1, \ldots, f_k \in L^{\infty}(\mu)$. Then the average

$$\frac{1}{N}\sum_{n=1}^{N}T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

converges in $L^2(\mu)$.

For distinct integral polynomials P_1, \ldots, P_k , we want to find a well-structured factor \mathcal{Y} of (X, \mathcal{X}, μ, T) such that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Y}) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Y})$$

For an ergodic system (X, \mathcal{X}, μ, T) , Host and Kra constructed a tower of factors

$$\mathcal{Z}_0 \subseteq \mathcal{Z}_1 \subseteq \mathcal{Z}_2 \subseteq \cdots \subseteq \mathcal{X}$$

with the following property.

Theorem (Host & Kra 2005)

Let (X, \mathcal{X}, μ, T) be ergodic, $f_1, \ldots, f_k \in L^{\infty}(\mu)$ and $\mathcal{P} = \{P_1, \ldots, P_k\}$ be a family of distinct integral polynomials. Then there exists $s \in \mathbb{N}$, such that the $L^2(\mu)$ limits agree

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s).$$

We say that the factor \mathcal{Z}_s is characteristic for the family \mathcal{P} and the system (X, \mathcal{X}, μ, T) .

For an ergodic system (X, \mathcal{X}, μ, T) , Host and Kra constructed a tower of factors

$$\mathcal{Z}_0 \subseteq \mathcal{Z}_1 \subseteq \mathcal{Z}_2 \subseteq \cdots \subseteq \mathcal{X}$$

with the following property.

Theorem (Host & Kra 2005)

Let (X, \mathcal{X}, μ, T) be ergodic, $f_1, \ldots, f_k \in L^{\infty}(\mu)$ and $\mathcal{P} = \{P_1, \ldots, P_k\}$ be a family of distinct integral polynomials. Then there exists $s \in \mathbb{N}$, such that the $L^2(\mu)$ limits agree

$$\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s).$$

We say that the factor Z_s is characteristic for the family \mathcal{P} and the system (X, \mathcal{X}, μ, T) .

For an ergodic system (X, \mathcal{X}, μ, T) , Host and Kra constructed a tower of factors

$$\mathcal{Z}_0 \subseteq \mathcal{Z}_1 \subseteq \mathcal{Z}_2 \subseteq \cdots \subseteq \mathcal{X}$$

with the following property.

Theorem (Host & Kra 2005)

Let (X, \mathcal{X}, μ, T) be ergodic, $f_1, \ldots, f_k \in L^{\infty}(\mu)$ and $\mathcal{P} = \{P_1, \ldots, P_k\}$ be a family of distinct integral polynomials. Then there exists $s \in \mathbb{N}$, such that the $L^2(\mu)$ limits agree

$$\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s).$$

We say that the factor \mathcal{Z}_s is characteristic for the family \mathcal{P} and the system (X, \mathcal{X}, μ, T) .

For an ergodic system (X, \mathcal{X}, μ, T) , Host and Kra constructed a tower of factors

$$\mathcal{Z}_0 \subseteq \mathcal{Z}_1 \subseteq \mathcal{Z}_2 \subseteq \cdots \subseteq \mathcal{X}$$

with the following property.

Theorem (Host & Kra 2005)

Let (X, \mathcal{X}, μ, T) be ergodic, $f_1, \ldots, f_k \in L^{\infty}(\mu)$ and $\mathcal{P} = \{P_1, \ldots, P_k\}$ be a family of distinct integral polynomials. Then there exists $s \in \mathbb{N}$, such that the $L^2(\mu)$ limits agree

$$\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s).$$

We say that the factor \mathcal{Z}_s is characteristic for the family \mathcal{P} and the system (X, \mathcal{X}, μ, T) .
The structure of Host-Kra factors

The factor \mathcal{Z}_0 of (X, \mathcal{X}, μ, T) is the σ -algebra of T-invariant sets.

The factor Z_1 of an ergodic system is the Kronecker factor, i.e. the factor generated by eigenfunctions of T. Equivalently, it is the maximal factor of X s.t. (X, Z_1, μ, T) is isomorphic to a rotation on a compact abelian group.

More generally, the factor \mathcal{Z}_s is an inverse limit of *s*-step nilsystems, i.e. systems of the form $(G/\Gamma, \mathcal{Y}, \nu, S)$, where:

- G/Γ is an s-step nilmanifold, i.e. G is an s-step nilpotent Lie group and Γ is a cocompact lattice;
- 2 \mathcal{Y} is the Borel σ -algebra;
- (a) ν is the Haar measure;
- Sx = gx is a left multiplication map for some $g \in G$ (called *nilrotation*).

The structure of Host-Kra factors

The factor \mathcal{Z}_0 of (X, \mathcal{X}, μ, T) is the σ -algebra of T-invariant sets.

The factor \mathcal{Z}_1 of an ergodic system is the Kronecker factor, i.e. the factor generated by eigenfunctions of T. Equivalently, it is the maximal factor of X s.t. $(X, \mathcal{Z}_1, \mu, T)$ is isomorphic to a rotation on a compact abelian group.

More generally, the factor \mathcal{Z}_s is an inverse limit of *s*-step nilsystems, i.e. systems of the form $(G/\Gamma, \mathcal{Y}, \nu, S)$, where:

- G/Γ is an s-step nilmanifold, i.e. G is an s-step nilpotent Lie group and Γ is a cocompact lattice;
- 2 \mathcal{Y} is the Borel σ -algebra;
- \bigcirc ν is the Haar measure;
- Sx = gx is a left multiplication map for some $g \in G$ (called *nilrotation*).

The factor \mathcal{Z}_0 of (X, \mathcal{X}, μ, T) is the σ -algebra of T-invariant sets.

The factor Z_1 of an ergodic system is the Kronecker factor, i.e. the factor generated by eigenfunctions of T. Equivalently, it is the maximal factor of X s.t. (X, Z_1, μ, T) is isomorphic to a rotation on a compact abelian group.

More generally, the factor Z_s is an inverse limit of *s*-step nilsystems, i.e. systems of the form $(G/\Gamma, \mathcal{Y}, \nu, S)$, where:

- G/Γ is an s-step nilmanifold, i.e. G is an s-step nilpotent Lie group and Γ is a cocompact lattice;
- 2 \mathcal{Y} is the Borel σ -algebra;
- \bullet ν is the Haar measure;
- $S_x = g_x$ is a left multiplication map for some $g \in G$ (called *nilrotation*).

Examples of nilsystems

A translation Tx = x + a on $G/\Gamma = \mathbb{T} = \mathbb{R}/\mathbb{Z}$ defines a 1-step nilsystem.

An example of a 2-step nilsystem is

$$T: \mathbb{T}^2 \to \mathbb{T}^2$$
$$(x, y) \mapsto (x + a, y + x).$$

This system can be realized as G/Γ for

$$G = egin{pmatrix} 1 & \mathbb{Z} & \mathbb{R} \ 0 & 1 & \mathbb{R} \ 0 & 0 & 1 \end{pmatrix} \quad ext{and} \quad \Gamma = egin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} \ 0 & 1 & \mathbb{Z} \ 0 & 0 & 1 \end{pmatrix}.$$

Then *T* corresponds to the left multiplication by $g = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}$, which is:

$$g\begin{pmatrix} 1 & 0 & y \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & y \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & y + x \\ 0 & 1 & x + a \\ 0 & 0 & 1 \end{pmatrix}.$$

Examples of nilsystems

A translation Tx = x + a on $G/\Gamma = \mathbb{T} = \mathbb{R}/\mathbb{Z}$ defines a 1-step nilsystem.

An example of a 2-step nilsystem is

$$T: \mathbb{T}^2 \to \mathbb{T}^2$$
$$(x, y) \mapsto (x + a, y + x).$$

This system can be realized as G/Γ for

$$G = egin{pmatrix} 1 & \mathbb{Z} & \mathbb{R} \ 0 & 1 & \mathbb{R} \ 0 & 0 & 1 \end{pmatrix} \quad ext{and} \quad \Gamma = egin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} \ 0 & 1 & \mathbb{Z} \ 0 & 0 & 1 \end{pmatrix}.$$

Then *T* corresponds to the left multiplication by $g = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}$, which is:

$$g\begin{pmatrix} 1 & 0 & y \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & y \\ 0 & 1 & x \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & y + x \\ 0 & 1 & x + a \\ 0 & 0 & 1 \end{pmatrix}.$$

Examples of nilsystems

A translation Tx = x + a on $G/\Gamma = \mathbb{T} = \mathbb{R}/\mathbb{Z}$ defines a 1-step nilsystem.

An example of a 2-step nilsystem is

$$T: \mathbb{T}^2 \to \mathbb{T}^2$$
$$(x, y) \mapsto (x + a, y + x).$$

This system can be realized as G/Γ for

$$G = egin{pmatrix} 1 & \mathbb{Z} & \mathbb{R} \ 0 & 1 & \mathbb{R} \ 0 & 0 & 1 \end{pmatrix} \quad ext{and} \quad \Gamma = egin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} \ 0 & 1 & \mathbb{Z} \ 0 & 0 & 1 \end{pmatrix}.$$

Then *T* corresponds to the left multiplication by $g = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}$, which is:

$$g\begin{pmatrix}1 & 0 & y\\ 0 & 1 & x\\ 0 & 0 & 1\end{pmatrix} = \begin{pmatrix}1 & 1 & 0\\ 0 & 1 & a\\ 0 & 0 & 1\end{pmatrix} \begin{pmatrix}1 & 0 & y\\ 0 & 1 & x\\ 0 & 0 & 1\end{pmatrix} = \begin{pmatrix}1 & 1 & y+x\\ 0 & 1 & x+a\\ 0 & 0 & 1\end{pmatrix}.$$

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

- Some Host-Kra factor Z_s is characteristic for the average, so we can assume that all the functions are Z_s -measurable.
- Interstate in the approximated by an s-step nilsystem.
- 3 The limit exists for nilsystems.

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

- Some Host-Kra factor Z_s is characteristic for the average, so we can assume that all the functions are Z_s -measurable.
- Intersection of the approximated by an s-step nilsystem.
- Interpretation of the second state of the s

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

- Some Host-Kra factor Z_s is characteristic for the average, so we can assume that all the functions are Z_s -measurable.
- **②** The system can be approximated by an *s*-step nilsystem.
- Interpretation of the second state of the s

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N T^{P_1(n)}f_1\cdots T^{P_k(n)}f_k$$

- Some Host-Kra factor Z_s is characteristic for the average, so we can assume that all the functions are Z_s -measurable.
- **②** The system can be approximated by an *s*-step nilsystem.
- **③** The limit exists for nilsystems.

Recall the equality

$$\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s).$$

Recall that \mathcal{Z}_s is a factor of \mathcal{Z}_{s+1} for each $s \in \mathbb{N}$.

What is the smallest *s* for which the equality holds?

Recall the equality

$$\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s).$$

Recall that \mathcal{Z}_s is a factor of \mathcal{Z}_{s+1} for each $s \in \mathbb{N}$.

What is the smallest s for which the equality holds?

For the rest of the talk, we assume that T is *totally ergodic*, i.e. T, T^2, T^3, \ldots are all ergodic.

Question

Let $\mathcal{P} = \{P_1, \ldots, P_k\}$ be a family of distinct integral polynomials. What is the smallest *s* such that the factor \mathcal{Z}_s is characteristic for \mathcal{P} for all totally ergodic systems?

Thus, we look for the smallest s such that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s)$$

For the rest of the talk, we assume that T is *totally ergodic*, i.e. T, T^2, T^3, \ldots are all ergodic.

Question

Let $\mathcal{P} = \{P_1, \ldots, P_k\}$ be a family of distinct integral polynomials. What is the smallest *s* such that the factor \mathcal{Z}_s is characteristic for \mathcal{P} for all totally ergodic systems?

Thus, we look for the smallest s such that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s)$$

For the rest of the talk, we assume that T is *totally ergodic*, i.e. T, T^2, T^3, \ldots are all ergodic.

Question

Let $\mathcal{P} = \{P_1, \ldots, P_k\}$ be a family of distinct integral polynomials. What is the smallest *s* such that the factor \mathcal{Z}_s is characteristic for \mathcal{P} for all totally ergodic systems?

Thus, we look for the smallest s such that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s)$$

For the rest of the talk, we assume that T is *totally ergodic*, i.e. T, T^2, T^3, \ldots are all ergodic.

Question

Let $\mathcal{P} = \{P_1, \ldots, P_k\}$ be a family of distinct integral polynomials. What is the smallest *s* such that the factor \mathcal{Z}_s is characteristic for \mathcal{P} for all totally ergodic systems?

Thus, we look for the smallest s such that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s)$$

Linearly independent polynomials

Theorem (Frantzikinakis & Kra 2005)

The factor Z_0 is characteristic for linearly independent families such as $\{n, n^2, \ldots, n^k\}$. Thus,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^n f_1 \cdots T^{n^k} f_k$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^n \mathbb{E}(f_1 | \mathcal{Z}_0) \cdots T^{n^k} \mathbb{E}(f_k | \mathcal{Z}_0)$$

whenever T is totally ergodic.

 \mathcal{Z}_0 is the σ -algebra \mathcal{I} of \mathcal{T} -invariant sets, hence

$$T^{n^i} \mathbb{E}(f_i | \mathcal{Z}_0) = T^{n^i} \mathbb{E}(f_i | \mathcal{I}) = \mathbb{E}(f_i | \mathcal{I}) = \int_X f_i,$$

and so

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N T^n f_1\cdots T^{n^k} f_k = \int_X f_1\cdots \int_X f_k.$$

Linearly independent polynomials

Theorem (Frantzikinakis & Kra 2005)

The factor Z_0 is characteristic for linearly independent families such as $\{n, n^2, \ldots, n^k\}$. Thus,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^n f_1 \cdots T^{n^k} f_k$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^n \mathbb{E}(f_1 | \mathcal{Z}_0) \cdots T^{n^k} \mathbb{E}(f_k | \mathcal{Z}_0)$$

whenever T is totally ergodic.

 \mathcal{Z}_0 is the σ -algebra \mathcal{I} of T-invariant sets, hence

...

$$T^{n^i} \mathbb{E}(f_i | \mathcal{Z}_0) = T^{n^i} \mathbb{E}(f_i | \mathcal{I}) = \mathbb{E}(f_i | \mathcal{I}) = \int_X f_i,$$

and so

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^n f_1 \cdots T^{n^k} f_k = \int_X f_1 \cdots \int_X f_k.$$

evond

- Linearly independent families have complexity 0 (Frantzikinakis & Kra 2005).
- The linear family {n, 2n ..., kn} has complexity k 1 (Host & Kra 2005; Ziegler 2007).
- For any nonconstant integral polynomial P, the family {P(n), 2P(n), ..., kP(n)} has complexity k - 1 (Frantzikinakis 2008).
- A classification for polynomial families of length 3 (Frantzikinakis 2008).
- Results when attention is restricted to nilsystems or Weyl systems (Bergelson, Leibman & Lesigne 2007; Leibman 2009).

- Linearly independent families have complexity 0 (Frantzikinakis & Kra 2005).
- The linear family {n, 2n ..., kn} has complexity k 1 (Host & Kra 2005; Ziegler 2007).

For any nonconstant integral polynomial P, the family {P(n), 2P(n), ..., kP(n)} has complexity k - 1 (Frantzikinakis 2008).

- A classification for polynomial families of length 3 (Frantzikinakis 2008).
- Results when attention is restricted to nilsystems or Weyl systems (Bergelson, Leibman & Lesigne 2007; Leibman 2009).

- Linearly independent families have complexity 0 (Frantzikinakis & Kra 2005).
- The linear family {n, 2n ..., kn} has complexity k 1 (Host & Kra 2005; Ziegler 2007).
- For any nonconstant integral polynomial P, the family {P(n), 2P(n), ..., kP(n)} has complexity k - 1 (Frantzikinakis 2008).
- A classification for polynomial families of length 3 (Frantzikinakis 2008).
- Results when attention is restricted to nilsystems or Weyl systems (Bergelson, Leibman & Lesigne 2007; Leibman 2009).

- Linearly independent families have complexity 0 (Frantzikinakis & Kra 2005).
- The linear family {n, 2n ..., kn} has complexity k 1 (Host & Kra 2005; Ziegler 2007).
- For any nonconstant integral polynomial P, the family {P(n), 2P(n), ..., kP(n)} has complexity k - 1 (Frantzikinakis 2008).
- A classification for polynomial families of length 3 (Frantzikinakis 2008).
- Results when attention is restricted to nilsystems or Weyl systems (Bergelson, Leibman & Lesigne 2007; Leibman 2009).

- Linearly independent families have complexity 0 (Frantzikinakis & Kra 2005).
- The linear family {n, 2n ..., kn} has complexity k 1 (Host & Kra 2005; Ziegler 2007).
- For any nonconstant integral polynomial P, the family {P(n), 2P(n), ..., kP(n)} has complexity k - 1 (Frantzikinakis 2008).
- A classification for polynomial families of length 3 (Frantzikinakis 2008).
- Results when attention is restricted to nilsystems or Weyl systems (Bergelson, Leibman & Lesigne 2007; Leibman 2009).

The complexity of $\mathcal{P} = \{P_1, \dots, P_k\}$ is related to algebraic relations

$$Q_0(m) + Q_1(m + P_1(n)) + \ldots + Q_k(m + P_k(n)) = 0$$

satisfied by the polynomial progression

$$m, m + P_1(n), \ldots, m + P_k(n).$$

Algebraic relations

An algebraic relation of degree s satisfied by $\{P_1, \ldots, P_k\}$ is a relation of the form

$$Q_0(m) + Q_1(m + P_1(n)) + \ldots + Q_k(m + P_k(n)) = 0,$$

where $\max_i \deg Q_i = s$.

For instance, the family $\{n, n^2, n + n^2\}$ satisfies one linear relation (up to scaling):

$$m - (m + n) - (m + n^{2}) + (m + n + n^{2}) = 0.$$

The family $\{n, 2n, n^2\}$ satisfies any linear combination of the relations:

$$m - 2(m + n) + (m + 2n) = 0$$
 and
 $(m^2 + 2m) - 2(m + n)^2 + (m + 2n)^2 - 2(m + n^2) = 0.$

Algebraic relations

An algebraic relation of degree s satisfied by $\{P_1, \ldots, P_k\}$ is a relation of the form

$$Q_0(m) + Q_1(m + P_1(n)) + \ldots + Q_k(m + P_k(n)) = 0,$$

where $\max_i \deg Q_i = s$.

For instance, the family $\{n, n^2, n + n^2\}$ satisfies one linear relation (up to scaling):

$$m - (m + n) - (m + n^2) + (m + n + n^2) = 0.$$

The family $\{n, 2n, n^2\}$ satisfies any linear combination of the relations:

$$m - 2(m + n) + (m + 2n) = 0$$
 and
 $(m^2 + 2m) - 2(m + n)^2 + (m + 2n)^2 - 2(m + n^2) = 0.$

Algebraic relations

An algebraic relation of degree s satisfied by $\{P_1, \ldots, P_k\}$ is a relation of the form

$$Q_0(m) + Q_1(m + P_1(n)) + \ldots + Q_k(m + P_k(n)) = 0,$$

where $\max_i \deg Q_i = s$.

For instance, the family $\{n, n^2, n + n^2\}$ satisfies one linear relation (up to scaling):

$$m - (m + n) - (m + n^2) + (m + n + n^2) = 0.$$

The family $\{n, 2n, n^2\}$ satisfies any linear combination of the relations:

$$m - 2(m + n) + (m + 2n) = 0$$
 and
 $(m^2 + 2m) - 2(m + n)^2 + (m + 2n)^2 - 2(m + n^2) = 0.$

Complexity conjecture

Conjecture

Let $\mathcal{P} = \{P_1, \dots, P_k\}$ be a family of distinct integral polynomials. The factor \mathcal{Z}_s is characteristic for \mathcal{P} iff \mathcal{P} satisfies no relation of degree s + 1 or higher.

E.g., the conjecture is saying:

() Z_1 is characteristic for $\{n, n^2, n + n^2\}$ because of the relation

$$m - (m + n) - (m + n^2) + (m + n + n^2) = 0.$$

② Z_2 is characteristic for $\{n, 2n, n^2\}$ because of the relation

$$(m^{2}+2m) - 2(m+n)^{2} + (m+2n)^{2} - 2(m+n^{2}) = 0.$$

Complexity conjecture

Conjecture

Let $\mathcal{P} = \{P_1, \ldots, P_k\}$ be a family of distinct integral polynomials. The factor \mathcal{Z}_s is characteristic for \mathcal{P} iff \mathcal{P} satisfies no relation of degree s + 1 or higher.

E.g., the conjecture is saying:

() Z_1 is characteristic for $\{n, n^2, n + n^2\}$ because of the relation

$$m - (m + n) - (m + n^2) + (m + n + n^2) = 0.$$

② Z_2 is characteristic for $\{n, 2n, n^2\}$ because of the relation

 $(m^{2}+2m) - 2(m+n)^{2} + (m+2n)^{2} - 2(m+n^{2}) = 0.$

Complexity conjecture

Conjecture

Let $\mathcal{P} = \{P_1, \ldots, P_k\}$ be a family of distinct integral polynomials. The factor \mathcal{Z}_s is characteristic for \mathcal{P} iff \mathcal{P} satisfies no relation of degree s + 1 or higher.

E.g., the conjecture is saying:

() \mathcal{Z}_1 is characteristic for $\{n, n^2, n + n^2\}$ because of the relation

$$m - (m + n) - (m + n^2) + (m + n + n^2) = 0.$$

2 \mathbb{Z}_2 is characteristic for $\{n, 2n, n^2\}$ because of the relation

$$(m^{2}+2m)-2(m+n)^{2}+(m+2n)^{2}-2(m+n^{2})=0.$$

It suffices to find the characteristic factor for the weak convergence, i.e. the smallest \boldsymbol{s} for which

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_0 \cdot T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} \mathbb{E}(f_0 | \mathcal{Z}_s) \cdot T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s)?$$

Since T is measure-preserving, we can rewrite the integral as

$$\int_X f_0 \cdot T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k = \int_X T^m f_0 \cdot T^{m+P_1(n)} f_1 \cdots T^{m+P_k(n)} f_k.$$

Hence

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_{0} \cdot T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k}$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{m,n=1}^{N} \int_{X} T^{m} f_{0} \cdot T^{m+P_{1}(n)} f_{1} \cdots T^{m+P_{k}(n)} f_{k}.$$

It suffices to find the characteristic factor for the weak convergence, i.e. the smallest \boldsymbol{s} for which

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_0 \cdot T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} \mathbb{E}(f_0 | \mathcal{Z}_s) \cdot T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s)?$$

Since T is measure-preserving, we can rewrite the integral as

$$\int_X f_0 \cdot T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k = \int_X T^m f_0 \cdot T^{m+P_1(n)} f_1 \cdots T^{m+P_k(n)} f_k.$$

Hence

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_{0} \cdot T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k}$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{m,n=1}^{N} \int_{X} T^{m} f_{0} \cdot T^{m+P_{1}(n)} f_{1} \cdots T^{m+P_{k}(n)} f_{k}.$$

It suffices to find the characteristic factor for the weak convergence, i.e. the smallest \boldsymbol{s} for which

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_0 \cdot T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} \mathbb{E}(f_0 | \mathcal{Z}_s) \cdot T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_s) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_s)?$$

Since T is measure-preserving, we can rewrite the integral as

$$\int_X f_0 \cdot T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k = \int_X T^m f_0 \cdot T^{m+P_1(n)} f_1 \cdots T^{m+P_k(n)} f_k.$$

Hence

$$\lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_0 \cdot T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N\to\infty} \frac{1}{N} \sum_{m,n=1}^{N} \int_{X} T^m f_0 \cdot T^{m+P_1(n)} f_1 \cdots T^{m+P_k(n)} f_k.$$

Consider the family $\mathcal{P}=\{n,\,2n,\,3n\}$ and note the algebraic relation $m^2-3(m+n)^2+3(m+2n)^2-(m+3n)^2=0.$

Take nonzero $a \in \mathbb{T}$, let $e(y) = e^{2\pi i y}$ and consider the expressions $e(am^2), e(-3a(m+n)^2), e(3a(m+2n)^2), e(-a(m+3n)^2)$

Morally, we can express these exponentials as functions

$$T^{m}f_{1}, T^{m+n}f_{2}, T^{m+2n}f_{3}, T^{m+3n}f_{4},$$

where $f_i(x, y) = e(ac_i y)$ for some $c_i \in \mathbb{Z}$ and

$$T(x, y) = (x + a, y + 2x + a)$$
 on \mathbb{T}^2 .

Thus,

$$T^m f_1 \cdot T^{m+n} f_2 \cdot T^{m+2n} f_3 \cdot T^{m+3n} f_4 = 1,$$

but

$$\mathbb{E}(f_i|\mathcal{Z}_1)(x,y) = \int_{\mathbb{T}} f_i(x,y') dy' = \int_{\mathbb{T}} e(ac_iy') dy' = 0,$$

and so

$$T^{m}\mathbb{E}(f_{1}|\mathcal{Z}_{1})\cdot T^{m+n}\mathbb{E}(f_{2}|\mathcal{Z}_{1})\cdot T^{m+2n}\mathbb{E}(f_{3}|\mathcal{Z}_{1})\cdot T^{m+3n}\mathbb{E}(f_{4}|\mathcal{Z}_{1})=0$$

Consider the family $\mathcal{P}=\{n,\,2n,\,3n\}$ and note the algebraic relation $m^2-3(m+n)^2+3(m+2n)^2-(m+3n)^2=0.$

Take nonzero $a \in \mathbb{T}$, let $e(y) = e^{2\pi i y}$ and consider the expressions $e(am^2)$, $e(-3a(m+n)^2)$, $e(3a(m+2n)^2)$, $e(-a(m+3n)^2)$

Morally, we can express these exponentials as functions

$$T^{m}f_{1}, T^{m+n}f_{2}, T^{m+2n}f_{3}, T^{m+3n}f_{4},$$

where $f_i(x, y) = e(ac_i y)$ for some $c_i \in \mathbb{Z}$ and

$$T(x, y) = (x + a, y + 2x + a)$$
 on \mathbb{T}^2

Thus,

$$T^m f_1 \cdot T^{m+n} f_2 \cdot T^{m+2n} f_3 \cdot T^{m+3n} f_4 = 1,$$

but

$$\mathbb{E}(f_i|\mathcal{Z}_1)(x,y) = \int_{\mathbb{T}} f_i(x,y') dy' = \int_{\mathbb{T}} e(ac_iy') dy' = 0,$$

and so

$$T^{m}\mathbb{E}(f_{1}|\mathcal{Z}_{1})\cdot T^{m+n}\mathbb{E}(f_{2}|\mathcal{Z}_{1})\cdot T^{m+2n}\mathbb{E}(f_{3}|\mathcal{Z}_{1})\cdot T^{m+3n}\mathbb{E}(f_{4}|\mathcal{Z}_{1})=0$$

Consider the family $\mathcal{P}=\{n,\,2n,\,3n\}$ and note the algebraic relation $m^2-3(m+n)^2+3(m+2n)^2-(m+3n)^2=0.$

Take nonzero $a \in \mathbb{T}$, let $e(y) = e^{2\pi i y}$ and consider the expressions

$$e(am^2), e(-3a(m+n)^2), e(3a(m+2n)^2), e(-a(m+3n)^2)$$

Morally, we can express these exponentials as functions

$$T^m f_1$$
, $T^{m+n} f_2$, $T^{m+2n} f_3$, $T^{m+3n} f_4$,

where $f_i(x, y) = e(ac_i y)$ for some $c_i \in \mathbb{Z}$ and

$$T(x, y) = (x + a, y + 2x + a)$$
 on \mathbb{T}^2 .

Thus,

$$T^m f_1 \cdot T^{m+n} f_2 \cdot T^{m+2n} f_3 \cdot T^{m+3n} f_4 = 1,$$

but

$$\mathbb{E}(f_i|\mathcal{Z}_1)(x,y) = \int_{\mathbb{T}} f_i(x,y') dy' = \int_{\mathbb{T}} e(ac_iy') dy' = 0,$$

and so

 $T^{m}\mathbb{E}(f_{1}|\mathcal{Z}_{1})\cdot T^{m+n}\mathbb{E}(f_{2}|\mathcal{Z}_{1})\cdot T^{m+2n}\mathbb{E}(f_{3}|\mathcal{Z}_{1})\cdot T^{m+3n}\mathbb{E}(f_{4}|\mathcal{Z}_{1})=0$
Why do algebraic relations matter?

Consider the family $\mathcal{P}=\{n,\,2n,\,3n\}$ and note the algebraic relation $m^2-3(m+n)^2+3(m+2n)^2-(m+3n)^2=0.$

Take nonzero $a \in \mathbb{T}$, let $e(y) = e^{2\pi i y}$ and consider the expressions

$$e(am^2), e(-3a(m+n)^2), e(3a(m+2n)^2), e(-a(m+3n)^2)$$

Morally, we can express these exponentials as functions

$$T^m f_1$$
, $T^{m+n} f_2$, $T^{m+2n} f_3$, $T^{m+3n} f_4$,

where $f_i(x, y) = e(ac_i y)$ for some $c_i \in \mathbb{Z}$ and

$$T(x, y) = (x + a, y + 2x + a)$$
 on \mathbb{T}^2

Thus,

$$T^m f_1 \cdot T^{m+n} f_2 \cdot T^{m+2n} f_3 \cdot T^{m+3n} f_4 = 1,$$

but

$$\mathbb{E}(f_i|\mathcal{Z}_1)(x,y) = \int_{\mathbb{T}} f_i(x,y') dy' = \int_{\mathbb{T}} e(ac_iy') dy' = 0,$$

and so

 $T^{m}\mathbb{E}(f_{1}|\mathcal{Z}_{1})\cdot T^{m+n}\mathbb{E}(f_{2}|\mathcal{Z}_{1})\cdot T^{m+2n}\mathbb{E}(f_{3}|\mathcal{Z}_{1})\cdot T^{m+3n}\mathbb{E}(f_{4}|\mathcal{Z}_{1})=0$

Why do algebraic relations matter?

Consider the family $\mathcal{P}=\{n,\,2n,\,3n\}$ and note the algebraic relation $m^2-3(m+n)^2+3(m+2n)^2-(m+3n)^2=0.$

Take nonzero $a \in \mathbb{T}$, let $e(y) = e^{2\pi i y}$ and consider the expressions

$$e(am^2), e(-3a(m+n)^2), e(3a(m+2n)^2), e(-a(m+3n)^2)$$

Morally, we can express these exponentials as functions

$$T^m f_1$$
, $T^{m+n} f_2$, $T^{m+2n} f_3$, $T^{m+3n} f_4$,

where $f_i(x, y) = e(ac_i y)$ for some $c_i \in \mathbb{Z}$ and

$$T(x, y) = (x + a, y + 2x + a)$$
 on \mathbb{T}^2

Thus,

$$T^m f_1 \cdot T^{m+n} f_2 \cdot T^{m+2n} f_3 \cdot T^{m+3n} f_4 = 1,$$

but

$$\mathbb{E}(f_i|\mathcal{Z}_1)(x,y) = \int_{\mathbb{T}} f_i(x,y') dy' = \int_{\mathbb{T}} e(ac_iy') dy' = 0,$$

and so

 $T^m \mathbb{E}(f_1|\mathcal{Z}_1) \cdot T^{m+n} \mathbb{E}(f_2|\mathcal{Z}_1) \cdot T^{m+2n} \mathbb{E}(f_3|\mathcal{Z}_1) \cdot T^{m+3n} \mathbb{E}(f_4|\mathcal{Z}_1) = 0.$

Why do algebraic relations matter?

Consider the family $\mathcal{P}=\{n,\,2n,\,3n\}$ and note the algebraic relation $m^2-3(m+n)^2+3(m+2n)^2-(m+3n)^2=0.$

Take nonzero $a \in \mathbb{T}$, let $e(y) = e^{2\pi i y}$ and consider the expressions

$$e(am^2), e(-3a(m+n)^2), e(3a(m+2n)^2), e(-a(m+3n)^2)$$

Morally, we can express these exponentials as functions

$$T^m f_1$$
, $T^{m+n} f_2$, $T^{m+2n} f_3$, $T^{m+3n} f_4$,

where $f_i(x, y) = e(ac_i y)$ for some $c_i \in \mathbb{Z}$ and

$$T(x, y) = (x + a, y + 2x + a)$$
 on \mathbb{T}^2

Thus,

$$T^m f_1 \cdot T^{m+n} f_2 \cdot T^{m+2n} f_3 \cdot T^{m+3n} f_4 = 1,$$

but

$$\mathbb{E}(f_i|\mathcal{Z}_1)(x,y) = \int_{\mathbb{T}} f_i(x,y') dy' = \int_{\mathbb{T}} e(ac_iy') dy' = 0,$$

and so

$$T^{m}\mathbb{E}(f_{1}|\mathcal{Z}_{1})\cdot T^{m+n}\mathbb{E}(f_{2}|\mathcal{Z}_{1})\cdot T^{m+2n}\mathbb{E}(f_{3}|\mathcal{Z}_{1})\cdot T^{m+3n}\mathbb{E}(f_{4}|\mathcal{Z}_{1})=0$$

Conjecture

Let $\mathcal{P} = \{P_1, \dots, P_k\}$ be a family of distinct integral polynomials. The factor \mathcal{Z}_s is characteristic for \mathcal{P} iff \mathcal{P} satisfies no relation of degree s + 1 or higher.

Extending the previous example, we can show that if \mathcal{P} satisfies an algebraic relation of degree s + 1, then there is a system (X, \mathcal{X}, μ, T) and functions $f_0, \ldots, f_k \in L^{\infty}(\mu)$ such that

$$T^m f_0 \cdot T^{m+P_1(n)} f_1 \cdots T^{m+P_k(n)} f_k = 1$$

but $\mathbb{E}(f_i|\mathcal{Z}_s) = 0$ for some $i = 0, \ldots, k$.

Conjecture

Let $\mathcal{P} = \{P_1, \dots, P_k\}$ be a family of distinct integral polynomials. The factor \mathcal{Z}_s is characteristic for \mathcal{P} iff \mathcal{P} satisfies no relation of degree s + 1 or higher.

Extending the previous example, we can show that if \mathcal{P} satisfies an algebraic relation of degree s + 1, then there is a system (X, \mathcal{X}, μ, T) and functions $f_0, \ldots, f_k \in L^{\infty}(\mu)$ such that

$$T^m f_0 \cdot T^{m+P_1(n)} f_1 \cdots T^{m+P_k(n)} f_k = 1$$

but $\mathbb{E}(f_i|\mathcal{Z}_s) = 0$ for some $i = 0, \ldots, k$.

Homogeneity

A homogeneous relation of degree s is a relation of the form

 $a_0m^s + a_1(m + P_1(n))^s + \ldots + a_k(m + P_k(n))^s = 0.$

A family $\{P_1, \ldots, P_k\}$ is *homogeneous* if all the relations that it satisfies are sums of homogeneous relations.

For instance, the family $\{n, n^2, n + n^2\}$ satisfies only the relation

$$m - (m + n) - (m + n^{2}) + (m + n + n^{2}) = 0$$

(up to scaling), hence it is homogeneous.

The family $\{n, 2n, n^2\}$ satisfies the nonhomogeneous relation

$$(m^{2}+2m) - 2(m+n)^{2} + (m+2n)^{2} - 2(m+n^{2}) = 0,$$

hence it is not homogeneous.

Homogeneity

A homogeneous relation of degree s is a relation of the form

$$a_0m^s + a_1(m + P_1(n))^s + \ldots + a_k(m + P_k(n))^s = 0.$$

A family $\{P_1, \ldots, P_k\}$ is *homogeneous* if all the relations that it satisfies are sums of homogeneous relations.

For instance, the family $\{n, n^2, n + n^2\}$ satisfies only the relation

$$m - (m + n) - (m + n^2) + (m + n + n^2) = 0$$

(up to scaling), hence it is homogeneous.

The family $\{n, 2n, n^2\}$ satisfies the nonhomogeneous relation

$$(m^{2}+2m) - 2(m+n)^{2} + (m+2n)^{2} - 2(m+n^{2}) = 0,$$

hence it is not homogeneous.

Homogeneity

A homogeneous relation of degree s is a relation of the form

$$a_0m^s + a_1(m + P_1(n))^s + \ldots + a_k(m + P_k(n))^s = 0.$$

A family $\{P_1, \ldots, P_k\}$ is *homogeneous* if all the relations that it satisfies are sums of homogeneous relations.

For instance, the family $\{n, n^2, n + n^2\}$ satisfies only the relation

$$m - (m + n) - (m + n^2) + (m + n + n^2) = 0$$

(up to scaling), hence it is homogeneous.

The family $\{n, 2n, n^2\}$ satisfies the nonhomogeneous relation

$$(m^2 + 2m) - 2(m + n)^2 + (m + 2n)^2 - 2(m + n^2) = 0,$$

hence it is not homogeneous.

Conjecture

The factor \mathcal{Z}_s is characteristic for $\mathcal{P} = \{P_1, \dots, P_k\}$ iff \mathcal{P} satisfies no relation of degree s + 1 or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families \mathcal{P} .

Examples:

3 Z_1 (Kronecker factor) is characteristic for $P = \{n, n^2, n + n^2\}$ because it satisfies one homogeneous relation up to scaling:

$$m - (m + n) - (m + n^{2}) + (m + n + n^{2}) = 0$$

(this example was previously proved by Frantzikinakis)

2 Z_1 (Kronecker factor) is characteristic for $P = \{n, 2n, n^3, 2n^3\}$ because it only satisfies linear combinations of two homogeneous relations

$$m-2(m+n)-(m+2n)=0$$
 and $m-2(m+n^3)-(m+2n^3)=0$.

Conjecture

The factor \mathcal{Z}_s is characteristic for $\mathcal{P} = \{P_1, \dots, P_k\}$ iff \mathcal{P} satisfies no relation of degree s + 1 or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families \mathcal{P} .

Examples:

3 Z_1 (Kronecker factor) is characteristic for $P = \{n, n^2, n + n^2\}$ because it satisfies one homogeneous relation up to scaling:

$$m - (m + n) - (m + n^{2}) + (m + n + n^{2}) = 0$$

(this example was previously proved by Frantzikinakis)

2 Z_1 (Kronecker factor) is characteristic for $P = \{n, 2n, n^3, 2n^3\}$ because it only satisfies linear combinations of two homogeneous relations

$$m-2(m+n)-(m+2n)=0$$
 and $m-2(m+n^3)-(m+2n^3)=0$.

Conjecture

The factor \mathcal{Z}_s is characteristic for $\mathcal{P} = \{P_1, \dots, P_k\}$ iff \mathcal{P} satisfies no relation of degree s + 1 or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families \mathcal{P} .

Examples:

3 Z_1 (Kronecker factor) is characteristic for $P = \{n, n^2, n + n^2\}$ because it satisfies one homogeneous relation up to scaling:

$$m - (m + n) - (m + n^{2}) + (m + n + n^{2}) = 0$$

(this example was previously proved by Frantzikinakis)

2 Z_1 (Kronecker factor) is characteristic for $P = \{n, 2n, n^3, 2n^3\}$ because it only satisfies linear combinations of two homogeneous relations

$$m-2(m+n)-(m+2n)=0$$
 and $m-2(m+n^3)-(m+2n^3)=0.$

Conjecture

The factor \mathcal{Z}_s is characteristic for $\mathcal{P} = \{P_1, \dots, P_k\}$ iff \mathcal{P} satisfies no relation of degree s + 1 or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families \mathcal{P} .

Examples:

1 Z_1 (Kronecker factor) is characteristic for $P = \{n, n^2, n + n^2\}$ because it satisfies one homogeneous relation up to scaling:

$$m - (m + n) - (m + n^{2}) + (m + n + n^{2}) = 0$$

(this example was previously proved by Frantzikinakis)

2 Z_1 (Kronecker factor) is characteristic for $\mathcal{P} = \{n, 2n, n^3, 2n^3\}$ because it only satisfies linear combinations of two homogeneous relations

$$m-2(m+n)-(m+2n)=0$$
 and $m-2(m+n^3)-(m+2n^3)=0.$

Conjecture

The factor \mathcal{Z}_s is characteristic for $\mathcal{P} = \{P_1, \dots, P_k\}$ iff \mathcal{P} satisfies no relation of degree s + 1 or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families \mathcal{P} .

Examples:

1 Z_1 (Kronecker factor) is characteristic for $P = \{n, n^2, n + n^2\}$ because it satisfies one homogeneous relation up to scaling:

$$m - (m + n) - (m + n^{2}) + (m + n + n^{2}) = 0$$

(this example was previously proved by Frantzikinakis)

2 Z_1 (Kronecker factor) is characteristic for $\mathcal{P} = \{n, 2n, n^3, 2n^3\}$ because it only satisfies linear combinations of two homogeneous relations

$$m-2(m+n)-(m+2n)=0$$
 and $m-2(m+n^3)-(m+2n^3)=0.$

More examples of homogeneous families

- Linear families $\{a_1n, \ldots, a_kn\};$
- **2** Families $\{a_1P(n), \ldots, a_kP(n)\};$
- **③** Linearly independent families such as $\{n, n^2, \ldots, n^k\}$
- Families satisfying only linear relations

$$a_0m + a_1(m + P_1(n)) + \ldots + a_k(m + P_k(n)) = 0$$

and no higher relations, such as $\{n, 2n, n^3, 2n^3\}$.

- Linear families $\{a_1n, \ldots, a_kn\};$
- **2** Families $\{a_1P(n), \ldots, a_kP(n)\};$
- Linearly independent families such as $\{n, n^2, \ldots, n^k\}$
- Families satisfying only linear relations

$$a_0m + a_1(m + P_1(n)) + \ldots + a_k(m + P_k(n)) = 0$$

and no higher relations, such as $\{n, 2n, n^3, 2n^3\}$.

Corollary (K. 2021)

Suppose that a family \mathcal{P} satisfies only linear relations

$$a_0m + a_1(m + P_1(n)) + \ldots + a_k(m + P_k(n)) = 0$$

and no higher order relations. Then the Kronecker factor \mathcal{Z}_1 is characteristic for \mathcal{P} , i.e.

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} f_1 \cdots T^{P_k(n)} f_k$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_1(n)} \mathbb{E}(f_1 | \mathcal{Z}_1) \cdots T^{P_k(n)} \mathbb{E}(f_k | \mathcal{Z}_1) \quad \text{in} \quad L^2(\mu)$$

for every totally ergodic system (X, \mathcal{X}, μ, T) and $f_1, \ldots, f_k \in L^{\infty}(\mu)$.

Proof: reduction to nilsystems

We use Host-Kra's result to replace

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N\int_X T^m f_0\cdot T^{m+P_1(n)}f_1\cdots T^{m+P_k(n)}f_k$$

by

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\int_{X}T^{m}\mathbb{E}(f_{0}|\mathcal{Z}_{s})\cdot T^{m+P_{1}(n)}\mathbb{E}(f_{1}|\mathcal{Z}_{s})\cdots T^{m+P_{k}(n)}\mathbb{E}(f_{k}|\mathcal{Z}_{s})$$

for some $s \in \mathbb{N}$.

- **2** We approximate the system by a totally ergodic nilsystem G/Γ .
- **③** For an ergodic element $a \in G$, we find the closures of

$$\left(a^m x, a^{m+P_1(n)}x, \ldots, a^{m+P_k(n)}x\right)_{n,m\in\mathbb{N}}$$

inside G^{k+1}/Γ^{k+1} for $x \in G/\Gamma$.

Let $\mathcal{P} = \{P_1, \dots, P_k\}$ be a homogeneous family and $g^P(m, n) = (g(m), g(m + P_1(n)), \dots, g(m + P_k(n))).$

My main result gives an explicit description of the closure of g^P inside the product nilmanifold $(G/\Gamma)^{k+1}$.

This result works if and only if \mathcal{P} is homogeneous.

Let $\mathcal{P} = \{P_1, \dots, P_k\}$ be a homogeneous family and $g^P(m, n) = (g(m), g(m + P_1(n)), \dots, g(m + P_k(n))).$

My main result gives an explicit description of the closure of g^P inside the product nilmanifold $(G/\Gamma)^{k+1}$.

This result works if and only if \mathcal{P} is homogeneous.

Let $\mathcal{P} = \{P_1, \dots, P_k\}$ be a homogeneous family and $g^P(m, n) = (g(m), g(m + P_1(n)), \dots, g(m + P_k(n))).$

My main result gives an explicit description of the closure of g^P inside the product nilmanifold $(G/\Gamma)^{k+1}$.

This result works if and only if $\mathcal P$ is homogeneous.

Let $\mathcal{P} = \{P_1, \dots, P_k\}$ be a homogeneous family and $g^P(m, n) = (g(m), g(m + P_1(n)), \dots, g(m + P_k(n))).$

My main result gives an explicit description of the closure of g^P inside the product nilmanifold $(G/\Gamma)^{k+1}$.

This result works if and only if \mathcal{P} is homogeneous.

Corollary (K. 2021)

Let (X, \mathcal{X}, μ, T) be a totally ergodic system and $f_1, \ldots, f_4 \in L^{\infty}(\mu)$. Then

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^n f_1 \cdot T^{2n} f_2 \cdot T^{n^3} f_3 \cdot T^{2n^3} f_4$$
$$= \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} T^n f_1 \cdot T^{2n} f_2 \cdot \mathop{\mathbb{E}}_{r \in [N]} T^r f_3 \cdot T^{2r} f_4$$

Khintchine's recurrence theorem says that for every $\varepsilon > 0$, the set

$$\{n \in \mathbb{N} : \mu(A \cap T^{-n}A) > \mu(A)^2 - \varepsilon\}$$

is syndetic (i.e. it has bounded gaps).

It was proved by Bergelson, Host, Kra & Ruzsa that for ergodic systems, the set

$$\{n \in \mathbb{N} : \mu(A \cap T^{-n}A \cap \cdots \cap T^{-kn}A) > \mu(A)^{k+1} - \varepsilon\}$$

is syndetic for $k \leq 3$, but this can fail for higher k.

- $\{n, n^2, ..., n^k\}$ (Frantzikinakis & Kra 2005);
- **3** {P(n), Q(n), P(n) + Q(n)} (Frantzikinakis 2008).

Khintchine's recurrence theorem says that for every $\varepsilon > 0$, the set

$$\{n \in \mathbb{N} : \mu(A \cap T^{-n}A) > \mu(A)^2 - \varepsilon\}$$

is syndetic (i.e. it has bounded gaps).

It was proved by Bergelson, Host, Kra & Ruzsa that for ergodic systems, the set

$$\{n \in \mathbb{N} : \mu(A \cap T^{-n}A \cap \cdots \cap T^{-kn}A) > \mu(A)^{k+1} - \varepsilon\}$$

is syndetic for $k \leq 3$, but this can fail for higher k.

- $\{n, n^2, ..., n^k\}$ (Frantzikinakis & Kra 2005);
- **3** {P(n), Q(n), P(n) + Q(n)} (Frantzikinakis 2008).

Khintchine's recurrence theorem says that for every $\varepsilon > 0$, the set

$$\{n \in \mathbb{N} : \mu(A \cap T^{-n}A) > \mu(A)^2 - \varepsilon\}$$

is syndetic (i.e. it has bounded gaps).

It was proved by Bergelson, Host, Kra & Ruzsa that for ergodic systems, the set

$$\{n \in \mathbb{N} : \mu(A \cap T^{-n}A \cap \cdots \cap T^{-kn}A) > \mu(A)^{k+1} - \varepsilon\}$$

is syndetic for $k \leq 3$, but this can fail for higher k.

- $\{n, n^2, ..., n^k\}$ (Frantzikinakis & Kra 2005);
- P(n), Q(n), P(n) + Q(n) (Frantzikinakis 2008).

Khintchine's recurrence theorem says that for every $\varepsilon > 0$, the set

$$\{n \in \mathbb{N} : \mu(A \cap T^{-n}A) > \mu(A)^2 - \varepsilon\}$$

is syndetic (i.e. it has bounded gaps).

It was proved by Bergelson, Host, Kra & Ruzsa that for ergodic systems, the set

$$\{n \in \mathbb{N} : \mu(A \cap T^{-n}A \cap \cdots \cap T^{-kn}A) > \mu(A)^{k+1} - \varepsilon\}$$

is syndetic for $k \leq 3$, but this can fail for higher k.

- $\{n, n^2, ..., n^k\}$ (Frantzikinakis & Kra 2005);
- **2** {P(n), Q(n), P(n) + Q(n)} (Frantzikinakis 2008).

Corollary (K. 2021)

Let P_1, \ldots, P_k be integral polynomials satisfying only linear relations (and some technical assumptions on the coefficients). Let (X, \mathcal{X}, μ, T) be an ergodic system and $A \in \mathcal{X}$ have positive measure.

For every $\varepsilon > 0$, the set

$$\{n \in \mathbb{N} : \mu(A \cap T^{-P_1(n)}A \cap \cdots \cap T^{-P_k(n)}A) > \mu(A)^{k+1} - \varepsilon\}$$

is syndetic.

- Ooes the complexity conjecture hold for nonhomogeneous families?
- Is it true that the complexity of a family of k polynomials is at most k - 1?

3 If

$$Q_0(m) + Q_1(m + P_1(n)) + \ldots + Q_k(m + P_k(n)) = 0,$$

- What about pointwise convergence?
- What if we look at polynomial iterates of several commuting transformations, so averages of the form

$$\frac{1}{N} \sum_{n=1}^{N} T_1^{P_1(n)} f_1 \cdots T_k^{P_k(n)} f_k?$$

- Ooes the complexity conjecture hold for nonhomogeneous families?
- Is it true that the complexity of a family of k polynomials is at most k 1?

3 lf

$$Q_0(m) + Q_1(m + P_1(n)) + \ldots + Q_k(m + P_k(n)) = 0,$$

- What about pointwise convergence?
- What if we look at polynomial iterates of several commuting transformations, so averages of the form

$$\frac{1}{N} \sum_{n=1}^{N} T_1^{P_1(n)} f_1 \cdots T_k^{P_k(n)} f_k?$$

- Ooes the complexity conjecture hold for nonhomogeneous families?
- Is it true that the complexity of a family of k polynomials is at most k 1?

If

$$Q_0(m) + Q_1(m + P_1(n)) + \ldots + Q_k(m + P_k(n)) = 0,$$

- What about pointwise convergence?
- What if we look at polynomial iterates of several commuting transformations, so averages of the form

$$\frac{1}{N} \sum_{n=1}^{N} T_1^{P_1(n)} f_1 \cdots T_k^{P_k(n)} f_k?$$

- Ooes the complexity conjecture hold for nonhomogeneous families?
- Is it true that the complexity of a family of k polynomials is at most k 1?

3 If

$$Q_0(m) + Q_1(m + P_1(n)) + \ldots + Q_k(m + P_k(n)) = 0,$$

- What about pointwise convergence?
- What if we look at polynomial iterates of several commuting transformations, so averages of the form

$$\frac{1}{N} \sum_{n=1}^{N} T_1^{P_1(n)} f_1 \cdots T_k^{P_k(n)} f_k?$$

- Ooes the complexity conjecture hold for nonhomogeneous families?
- Is it true that the complexity of a family of k polynomials is at most k 1?

If

$$Q_0(m) + Q_1(m + P_1(n)) + \ldots + Q_k(m + P_k(n)) = 0,$$

- What about pointwise convergence?
- What if we look at polynomial iterates of several commuting transformations, so averages of the form

$$\frac{1}{N}\sum_{n=1}^{N}T_{1}^{P_{1}(n)}f_{1}\cdots T_{k}^{P_{k}(n)}f_{k}?$$