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Mean ergodic theorem

Let (X, X, u, T) be an ergodic measure-preserving dynamical
system and f € L2(u). Then

N

1

N§ :T”f%/xf in L%(p).
n=1
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Mean ergodic theorem

Let (X, X, u, T) be an ergodic measure-preserving dynamical
system and f € L2(u). Then

N

1

N§ :T”f%/xf in L%(p).
n=1

What if we replace the iterate n by P(n) for some P € Z[n]|? E.g.
2n or n??
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Failure of mean ergodic theorem for polynomial iterates

Consider P(n) =2n, X =7Z/2Z, Tx =x+1 mod 2.
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Failure of mean ergodic theorem for polynomial iterates

Consider P(n) =2n, X =7Z/2Z, Tx =x+1 mod 2.

Then T2 = Id, and so T2"f = f for every n. Hence

1.,
SNTTE—f
P>
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Failure of mean ergodic theorem for polynomial iterates

Consider P(n) =2n, X =7Z/2Z, Tx =x+1 mod 2.

Then T2 = Id, and so T2"f = f for every n. Hence
1 N
2ng
g =1
n=1

Now take X =Z/3Z, Tx = x+1 mod 3. Then T2 s ergodic,
and so
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Failure of mean ergodic theorem for polynomial iterates

Consider P(n) = n?, X =Z/3Z, Tx = x +1 mod 3.
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Failure of mean ergodic theorem for polynomial iterates

Consider P(n) = n?, X =Z/3Z, Tx = x +1 mod 3.

Note that

2 0 mod3 ifn=0 mod3
" ]1 mod 3 ifn=1,2 mod 3.
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Failure of mean ergodic theorem for polynomial iterates

Consider P(n) = n?, X =Z/3Z, Tx = x +1 mod 3.

Note that
n2:{0 mod 3 ifn=0 mod 3
1 mod3 ifn=12 modS3.
Hence
1 on F(x)+2F(x + 1
LS - 9+ 20x
in L2(p).
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Let (X, X, u, T) be totally ergodic, i.e. T, T2 T3,... are all
ergodic.
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Let (X, X, u, T) be totally ergodic, i.e. T, T2 T3,... are all
ergodic.

For instance, an irrational translation on T is totally ergodic.
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Let (X, X, u, T) be totally ergodic, i.e. T, T2 T3,... are all
ergodic.

For instance, an irrational translation on T is totally ergodic.

Then

N

1

EWWN%/fnlﬁ
N ; (1)

n=1

for any nonconstant polynomial P € Z[n].
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Multiple ergodic averages with polynomial iterates

We will study averages

el Z TP ”)f . TP(n )
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Multiple ergodic averages with polynomial iterates

We will study averages
il Z TP g . TP g

where

@ (X, X, u, T)is an invertible measure preserving dynamical
system;
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Multiple ergodic averages with polynomial iterates

We will study averages
il Z TP g . TP g

where

@ (X, X, u, T)is an invertible measure preserving dynamical
system;

@ Pi,..., Py € Z[n] are distinct polynomials with P;(0) =0 (we
call such polynomials integral);
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Multiple ergodic averages with polynomial iterates

We will study averages

el Z TP ”)f . TP(n )

where

@ (X, X, u, T)is an invertible measure preserving dynamical
system;

@ Pi,..., Py € Z[n] are distinct polynomials with P;(0) =0 (we
call such polynomials integral);

Q fi,....fk € L=(n).
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Multiple ergodic averages with polynomial iterates

We will study averages

el Z TP ”)f . TP(n )

where

@ (X, X, u, T)is an invertible measure preserving dynamical
system;

@ Pi,..., Py € Z[n] are distinct polynomials with P;(0) =0 (we
call such polynomials integral);

Q fi,....fk € L=(n).
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Furstenberg's proof of Szemerédi theorem

Theorem (Furstenberg 1977)

Let k e N, (X,X,pu, T) be a system and A € X be a set with
positive measure. Then

I|m|nf—z,u (ANT"AN---NnT~*4) > 0.

N—oo N
n=1
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Furstenberg's proof of Szemerédi theorem

Theorem (Furstenberg 1977)

Let k e N, (X,X,pu, T) be a system and A € X be a set with
positive measure. Then

I|m|nf—z,u (ANT"AN---NnT~*4) > 0.

N—oo N
n=1

As a corollary, there exists n > 0 such that

w(ANT"AN---n T na) > 0.
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Furstenberg's proof of Szemerédi theorem

Theorem (Furstenberg 1977)

Let k e N, (X,X,pu, T) be a system and A € X be a set with
positive measure. Then

I|m|nf—z,u (ANT"AN---NnT~*4) > 0.

N—oo N
n=1

As a corollary, there exists n > 0 such that
w(ANT"AN---n T na) > 0.
In particular, there exists x € A such that

x, T"x, ..., TFx € A.
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Furstenberg's proof of Szemerédi theorem

Theorem (Furstenberg 1977)

Let k e N, (X,X,u, T) be a system and A € X be a set with
positive measure. Then

N
1
l 'f—E: ANT"AN---NT kA .
}Vr‘rng\oNnZI,u( N NN )>0
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Furstenberg's proof of Szemerédi theorem
Theorem (Furstenberg 1977)

Let k e N, (X,X,u, T) be a system and A € X be a set with
positive measure. Then

1
liminf = > W(ANT "AN--- N T ¥A) > 0.

N
N—oco N
n=1

Theorem (Szemerédi 1975)

Let k > 3. Then each dense subset of N contains a k-term
arithmetic progression

m, m+n, ..., m+(k—1)n

with n # 0.
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Polynomial Szemerédi theorem

Theorem (Bergelson & Leibman 1996)

Let P1,..., Pk be distinct integral polynomials and (X, X, u, T) be
a system. Suppose that A € X has positive measure. Then

N
1

liminf =~ p(AnT-AAN...A TP 2) > 0.

im inf 2 u( )

N—oo
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Polynomial Szemerédi theorem
Theorem (Bergelson & Leibman 1996)

Let P1,..., Pk be distinct integral polynomials and (X, X, u, T) be
a system. Suppose that A € X has positive measure. Then

N
1
liminf =~ p(AnT-AAN...A TP 2) > 0.
imin N 2 w( ) >

N—oo

Let P, ..., Pk be distinct integral polynomials. Then each dense
subset of N contains a polynomial progression of the form

m, m+ Pi(n), ..., m+ Px(n)

with n # 0.
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Convergence of multiple ergodic averages

Both Furstenberg as well as Bergelson and Leibman showed

N
e ] —Pi(n) —Pu(n)
I|m|anE p(ANTHWAN...N T 7KMA) > 0.

N—
o n=1

Does the limit exist?

v
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Convergence of multiple ergodic averages

Both Furstenberg as well as Bergelson and Leibman showed

N
1
liminf — ANT PMan...A TP Aa) > 0.
int g 2 :

Does the limit exist?

Theorem (Host & Kra 2005; Leibman 2005)

Let (X, X, u, T) be a system, Py, ..., Py be distinct integral
polynomials and fi, ..., f, € L°(u). Then

N
%Z TP .. TP f
n=1

converges in L%(1).
v
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Weak convergence

Strong convergence implies weak convergence, hence we have the
following corollary.

Let (X, X, u, T) be a system, Py, ..., Py be distinct integral
polynomials and fy, ..., fi € L°(u). Then

N
1 Pi(n) Pu(n)
ey ; /X fo - THRA - THE

exists.
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Weak convergence

Strong convergence implies weak convergence, hence we have the
following corollary.

Let (X, X, u, T) be a system, Py, ..., Py be distinct integral
polynomials and fy, ..., fi € L°(u). Then

N
1
lim fE / fo - TR o TPn) g
n=1 X

N—oo N
exists. )
If fo=...=fc =14 for A€ X, then we get that
L
lim — ANTPMAN...A T Pg
exists.
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A factor of a system (X, X, u, T) is a T-invariant sub-o-algebra ).
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A factor of a system (X, X, u, T) is a T-invariant sub-o-algebra ).

Equivalently, a factor of (X, X, pu, T) is a system (Y,),v,S)
together with a factor map m : X — Y satisfying

Q@ v=yponl

Q@ mtoT =Som.
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A factor of a system (X, X, u, T) is a T-invariant sub-o-algebra ).

Equivalently, a factor of (X, X, pu, T) is a system (Y,),v,S)
together with a factor map m : X — Y satisfying

Q@ v=yponl

Q@ mtoT =Som.

For instance, the translation

S§:T—>T
XX+ a
is a factor of the system
T:T?—T?

(x, y) = (x+a, y+x),

and the factor map is given by 7(x,y) = x.
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The idea behind Host-Kra proof

Theorem (Host & Kra 2005)

Let (X, X, u, T) be a system, Py, ..., Py be distinct integral
polynomials and f, ..., fx € L°°(u). Then the average

N

1

N E Th g . TP g
n=1

converges in L2(y1).

For distinct integral polynomials Py, ..., Pk, we want to find a
well-structured factor Y of (X, X, u, T) such that
1N
im — Pi(n) g ... TPx(n)
im gy 2 TP TR0
L
= lim — E Pi(n) ... TP«(n)
NIl_r}noo N 2 T E(A|Y)--- T E(f]Y)
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The tower of Host-Kra factors

For an ergodic system (X, X, u, T), Host and Kra constructed a tower of
factors

Z0CZCZC--CX
with the following property.

V.
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The tower of Host-Kra factors

For an ergodic system (X, X, u, T), Host and Kra constructed a tower of
factors

Z0CZCZC--CX
with the following property.

Theorem (Host & Kra 2005)

Let (X, X, pu, T) be ergodic, fi,...,fx € L(n) and P = {P1,..., P}
be a family of distinct integral polynomials. Then there exists s € N,
such that the L?(p) limits agree

lim —ZTPI(” . TP g

N—oo N

= lim —ZTPl E(f|Zs) - - TP E(f | Z5).

N—oo N
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The tower of Host-Kra factors

For an ergodic system (X, X, u, T), Host and Kra constructed a tower of
factors

Z0CZ2C2ZC---CX
with the following property.
Theorem (Host & Kra 2005)

Let (X, X, pu, T) be ergodic, fi,...,fx € L(n) and P = {P1,..., P}
be a family of distinct integral polynomials. Then there exists s € N,
such that the L?(p) limits agree

lim —ZTPI(” . TP g

N—oo N

= lim —ZTPl E(f|Zs) - - TP E(f | Z5).

N—oo N

We say that the factor Z is characteristic for the family P and the
system (X, X, u, T).
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The tower of Host-Kra factors

For an ergodic system (X, X, u, T), Host and Kra constructed a tower of
factors

Z0CZ2C2ZC---CX
with the following property.
Theorem (Host & Kra 2005)

Let (X, X, pu, T) be ergodic, fi,...,fx € L(n) and P = {P1,..., P}
be a family of distinct integral polynomials. Then there exists s € N,
such that the L?(p) limits agree

lim —ZTPI(” . TP g

N—oo N

= lim —ZTPl E(f|Zs) - - TP E(f | Z5).

N—oo N

We say that the factor Z is characteristic for the family P and the
system (X, X, u, T).

Importantly, s depends only on Py, ..., Py but not on X or fi, ..., fx.




The structure of Host-Kra factors

The factor Zy of (X, X, u, T) is the o-algebra of T-invariant sets.
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The structure of Host-Kra factors

The factor Zy of (X, X, u, T) is the o-algebra of T-invariant sets.

The factor Z; of an ergodic system is the Kronecker factor, i.e.
the factor generated by eigenfunctions of T.

Equivalently, it is the maximal factor of X s.t. (X, Z1,p, T) is
isomorphic to a rotation on a compact abelian group.
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The structure of Host-Kra factors

The factor Zy of (X, X, u, T) is the o-algebra of T-invariant sets.

The factor Z; of an ergodic system is the Kronecker factor, i.e.
the factor generated by eigenfunctions of T.

Equivalently, it is the maximal factor of X s.t. (X, Z1,p, T) is
isomorphic to a rotation on a compact abelian group.

More generally, the factor Z; is an inverse limit of s-step
nilsystems, i.e. systems of the form (G/I',),v,S), where:

@ G/I is an s-step nilmanifold, i.e. G is an s-step nilpotent Lie
group and [ is a cocompact lattice;

@ Y is the Borel o-algebra;
© v is the Haar measure;

© Sx = gx is a left multiplication map for some g € G (called
nilrotation).
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Examples of nilsystems

A translation Tx = x +aon G/I =T = R/Z defines a 1-step nilsystem.
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Examples of nilsystems

A translation Tx = x +aon G/I =T = R/Z defines a 1-step nilsystem.

An example of a 2-step nilsystem is

T:T? > T?
(x, y) = (x+a, y +x).
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Examples of nilsystems

A translation Tx = x +aon G/I =T = R/Z defines a 1-step nilsystem.

An example of a 2-step nilsystem is

T:T? > T?
(x, y) = (x+a, y +x).

This system can be realized as G/T for

1 Z R 1 Z Z
G=10 1 R and I'=10 1 Z].
0 0 1 0 0 1

110
Then T corresponds to the left multiplication by g = (8 é i) which

10y 1 1 0\/1 0 y 11 y+
g0 1 x]=(0 1 a)[0o 1 X|=(0 1 x+
00 1 00 1)\0o 0 1 00 1
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A proof of the existence of the limit

The proof of the existence of

lim =Y ThAMA . TR0
Nl—r>nooNZ

would go as follows:
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A proof of the existence of the limit

The proof of the existence of

N—o0

N
1
lim > Thg . TR
n=1

would go as follows:

@ Some Host-Kra factor Z; is characteristic for the average, so
we can assume that all the functions are Zs-measurable.
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A proof of the existence of the limit

The proof of the existence of

N—o0

N
1
lim > Thg . TR
n=1

would go as follows:

@ Some Host-Kra factor Z; is characteristic for the average, so
we can assume that all the functions are Zs-measurable.

© The system can be approximated by an s-step nilsystem.
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A proof of the existence of the limit

The proof of the existence of

N—o0

N
1
lim > Thg . TR
n=1

would go as follows:

@ Some Host-Kra factor Z; is characteristic for the average, so
we can assume that all the functions are Zs-measurable.

© The system can be approximated by an s-step nilsystem.

© The limit exists for nilsystems.

Borys Kuca The polynomial Szemerédi theorem and beyond



Host-Kra factors

Recall the equality

lim =y TR g . TP g
Nl—r;nool\/Z

_ Pi(n Pi(n
_N'i“ooNZTl VE(A|Z)--- TP E(£|Z5).
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Host-Kra factors

Recall the equality

lim =y TR g . TP g
Nl—r;nool\/Z

_ P n Pi(n
_N'i“ooNZTl VE(A|Z)--- TP E(£|Z5).

Recall that Z; is a factor of Z,1 for each s € N.

What is the smallest s for which the equality holds?
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Question

For the rest of the talk, we assume that T is totally ergodic, i.e.
T, T2, T3,... are all ergodic.

v
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Question

For the rest of the talk, we assume that T is totally ergodic, i.e.
T, T2 T3,... are all ergodic.

Let P = {P1,..., Px} be a family of distinct integral polynomials.
What is the smallest s such that the factor Z; is characteristic for
P for all totally ergodic systems?
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Question

For the rest of the talk, we assume that T is totally ergodic, i.e.
T, T2 T3,... are all ergodic.

Let P = {P1,..., Px} be a family of distinct integral polynomials.
What is the smallest s such that the factor Z; is characteristic for
P for all totally ergodic systems?

Thus, we look for the smallest s such that

lim ZTPl N .. TP f

= lim ZTPI”)IE(fl\Z) - TP B (£ | Z5)

for all totally ergodic systems (X, X, u, T) and f1,..., fx € L®(p).
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Question

For the rest of the talk, we assume that T is totally ergodic, i.e.
T, T2 T3,... are all ergodic.

Let P = {P1,..., Px} be a family of distinct integral polynomials.
What is the smallest s such that the factor Z; is characteristic for
P for all totally ergodic systems?

Thus, we look for the smallest s such that

N

1
lim — E TP £ .. TPen)g,
m N 2 1 k

N—o0

N
. . 1 P, n) P (n)
= |im N nE:1 T E(f|2Zs) - TV E(f|Zs)

for all totally ergodic systems (X, X, u, T) and f1,..., fx € L®(p).

This smallest s is called the complexity of P.
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Linearly independent polynomials

Theorem (Frantzikinakis & Kra 2005)

The factor Zy is characteristic for linearly independent families such as
{n,n? ...,n%}. Thus,

N
1 K
im =N T ... T,
Nll—r>noo an:; ! ,
R K
=0 Zl T E(f]20) - -- T E(fi| Zo)

whenever T is totally ergodic.
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Linearly independent polynomials

Theorem (Frantzikinakis & Kra 2005)

The factor Zy is characteristic for linearly independent families such as
{n,n? ...,n%}. Thus,

lim —ZT”ﬂ T

N—oo N

= |im —ZT"]E f120) - T™ E(f| Zo)

whenever T is totally ergodic.

Zy is the o-algebra Z of T-invariant sets, hence

E(f|20) = T" E(f|T) = E(f|T) = / .

and so

lim — E Tnfl sz fl fk.
N—>OO X X
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Summary of known results

@ Linearly independent families have complexity 0
(Frantzikinakis & Kra 2005).
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Summary of known results

@ Linearly independent families have complexity 0
(Frantzikinakis & Kra 2005).

@ The linear family {n, 2n ..., kn} has complexity k — 1 (Host
& Kra 2005; Ziegler 2007).
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Summary of known results

@ Linearly independent families have complexity 0
(Frantzikinakis & Kra 2005).

@ The linear family {n, 2n ..., kn} has complexity k — 1 (Host
& Kra 2005; Ziegler 2007).

© For any nonconstant integral polynomial P, the family
{P(n), 2P(n), ..., kP(n)} has complexity k — 1
(Frantzikinakis 2008).
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Summary of known results

@ Linearly independent families have complexity 0
(Frantzikinakis & Kra 2005).

@ The linear family {n, 2n ..., kn} has complexity k — 1 (Host
& Kra 2005; Ziegler 2007).

© For any nonconstant integral polynomial P, the family
{P(n), 2P(n), ..., kP(n)} has complexity k — 1
(Frantzikinakis 2008).

@ A classification for polynomial families of length 3
(Frantzikinakis 2008).
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Summary of known results

@ Linearly independent families have complexity 0
(Frantzikinakis & Kra 2005).

@ The linear family {n, 2n ..., kn} has complexity k — 1 (Host
& Kra 2005; Ziegler 2007).

© For any nonconstant integral polynomial P, the family
{P(n), 2P(n), ..., kP(n)} has complexity k — 1
(Frantzikinakis 2008).

@ A classification for polynomial families of length 3
(Frantzikinakis 2008).

© Results when attention is restricted to nilsystems or Weyl
systems (Bergelson, Leibman & Lesigne 2007; Leibman 2009).
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The complexity of P = {Pi,..., Pk} is related to algebraic
relations

Qo(m) + Ql(m + Pl(n)) + ...+ Qk(m + Pk(n)) =0
satisfied by the polynomial progression

m, m+ Pi(n), ..., m-+ Py(n).
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Algebraic relations

An algebraic relation of degree s satisfied by {P1,..., Py} is a
relation of the form

Qo(m) + Qi(m+ P1(n)) + ...+ Qx(m+ Px(n)) =0,

where max; deg Q; = s.
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Algebraic relations

An algebraic relation of degree s satisfied by {P1,..., Py} is a
relation of the form

Qo(m) + Qi(m+ P1(n)) + ...+ Qx(m+ Px(n)) =0,

where max; deg Q; = s.

For instance, the family {n, n?, n + n?} satisfies one linear relation
(up to scaling):

m—(m+n) —(m+n?)+(m+n+n?) =0.
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Algebraic relations

An algebraic relation of degree s satisfied by {P1,..., Py} is a
relation of the form

Qo(m) + Qi(m+ P1(n)) + ...+ Qx(m+ Px(n)) =0,

where max; deg Q; = s.

For instance, the family {n, n?, n + n?} satisfies one linear relation
(up to scaling):

m—(m+n) —(m+n?)+(m+n+n?) =0.
The family {n,2n, n?} satisfies any linear combination of the
relations:

m—2(m+n)+(m+2n)=0 and
(m? 4 2m) —2(m + n)® + (m +2n)?> = 2(m + n?) = 0.
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Complexity conjecture

Let P ={P1,...,Px} be a family of distinct integral polynomials.
The factor Zs is characteristic for P iff P satisfies no relation of
degree s + 1 or higher.
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Complexity conjecture

Let P ={P1,...,Px} be a family of distinct integral polynomials.
The factor Zs is characteristic for P iff P satisfies no relation of
degree s + 1 or higher.

E.g., the conjecture is saying:

@ Z is characteristic for {n, n?, n 4+ n?} because of the relation

m—(m+4n) —(m+n?)+(m+n+n*)=0.
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Complexity conjecture

Let P ={P1,...,Px} be a family of distinct integral polynomials.
The factor Zs is characteristic for P iff P satisfies no relation of
degree s + 1 or higher.

E.g., the conjecture is saying:

@ Z is characteristic for {n, n?, n 4+ n?} because of the relation

m—(m+4n) —(m+n?)+(m+n+n*)=0.

@ 2, is characteristic for {n,2n, n?} because of the relation

(m? 4 2m) — 2(m + n)® + (m +2n)*> = 2(m + n?) = 0.
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Why do algebraic relations matter?

It suffices to find the characteristic factor for the weak convergence, i.e. the
smallest s for which

N
_— P1(n) Pi(n)

N
= lim %Z/E(ﬁ)|zs)'TP1(")E(f1\Zs)'” T P(n) E(fi|Zs)?
n=1 X
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Why do algebraic relations matter?

It suffices to find the characteristic factor for the weak convergence, i.e. the
smallest s for which

- P1(n) Py(n
Jim Z/fT R O

= lim %Z/E(ﬁ)|zs)'TP1(")E(f1\Zs)'” T P(n) E(fi|Zs)?
n=1YX

Since T is measure-preserving, we can rewrite the integral as

/ fo - TP TP, —/ Tmp . TP g L P g
X X
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Why do algebraic relations matter?

It suffices to find the characteristic factor for the weak convergence, i.e. the
smallest s for which

- P1(n) Py(n
Jim Z/fT R O

= lim %Z/E(ﬁ)|zs)'TP1(")E(f1\Zs)'” T P(n) E(fi|Zs)?
n=1YX

Since T is measure-preserving, we can rewrite the integral as
/ fo - TP TP, —/ Tmp . TP g L P g
X X

Hence

= § P1( ") Py (n f
m+P1(n) m+P (n)
= Nlll;nooﬁ E / T" fo-T A K e,
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Why do algebraic relations matter?

Consider the family P = {n, 2n, 3n} and note the algebraic relation

m? —3(m+ n)? 4+ 3(m +2n)> — (m+3n)? = 0.
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Why do algebraic relations matter?

Consider the family P = {n, 2n, 3n} and note the algebraic relation

m? —3(m+ n)? 4+ 3(m +2n)> — (m+3n)? = 0.

Take nonzero a € T, let e(y) = 2™ and consider the expressions

e(am?), e(—3a(m + n)?), e(3a(m + 2n)?), e(—a(m + 3n)?)
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Why do algebraic relations matter?

Consider the family P = {n, 2n, 3n} and note the algebraic relation

m? —3(m+ n)? 4+ 3(m +2n)> — (m+3n)? = 0.

Take nonzero a € T, let e(y) = 2™ and consider the expressions

e(am?), e(—3a(m + n)?), e(3a(m + 2n)?), e(—a(m + 3n)?)

Morally, we can express these exponentials as functions
7—mf:17 Tm+"f2, 7—m+2n,%7 -,—m+3nﬁ‘7
where fi(x, y) = e(ac;y) for some ¢; € Z and

T(x, y)=(x+a, y+2x+a) on T2
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Why do algebraic relations matter?

Consider the family P = {n, 2n, 3n} and note the algebraic relation

m? —3(m+ n)? 4+ 3(m +2n)> — (m+3n)? = 0.

Take nonzero a € T, let e(y) = 2™ and consider the expressions

e(am?), e(—3a(m + n)?), e(3a(m + 2n)?), e(—a(m + 3n)?)

Morally, we can express these exponentials as functions
TmR, TmHng, Tmng  pmidag
where fi(x, y) = e(ac;y) for some ¢; € Z and
T(x, y)=(x+a, y+2x+a) on T2
Thus,
T - T TMH20f . TG = 1,
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Why do algebraic relations matter?

Consider the family P = {n, 2n, 3n} and note the algebraic relation

m? —3(m+ n)? 4+ 3(m +2n)> — (m+3n)? = 0.

Take nonzero a € T, let e(y) = 2™ and consider the expressions

e(am?), e(—3a(m + n)?), e(3a(m + 2n)?), e(—a(m + 3n)?)

Morally, we can express these exponentials as functions
7—mf:17 Tm+"f2, 7—m+2n,%7 -,—m+3nﬁ‘7
where fi(x, y) = e(ac;y) for some ¢; € Z and

T(x, y)=(x+a, y+2x+a) on T2
Thus,

Tmf - -,—m+nf-2 ) Tm+2"f},- —,—m+3nf—4 =1,
but

E(f,-|21)(><7y):/fi(x,y’)dy’:/e(ac,-y’)dy’ZO,
T T
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Why do algebraic relations matter?

Consider the family P = {n, 2n, 3n} and note the algebraic relation

m? —3(m+ n)? 4+ 3(m +2n)> — (m+3n)? = 0.

Take nonzero a € T, let e(y) = 2™ and consider the expressions

e(am?), e(—3a(m + n)?), e(3a(m + 2n)?), e(—a(m + 3n)?)

Morally, we can express these exponentials as functions
7—mf:17 Tm+"f2, 7—m+2n,%7 -,—m+3nﬁ‘7
where fi(x, y) = e(ac;y) for some ¢; € Z and

T(x, y)=(x+a, y+2x+a) on T2

Thus,
Tmfl . -,—m+nf-2 ) Tm+2"f},- —,—m+3nf—4 — 17
but
E(f,-|21)(><7y):/fi(x,y’)dy’:/e(ac,-y’)dy’ZO,
T T
and so

TME(A|Z1) - T E(R|21) - T™2E(R|21) - T3 E(f|21) = 0.
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Easy direction in the complexity conjecture

Let P ={P1,...,Px} be a family of distinct integral polynomials.
The factor Zs is characteristic for P iff P satisfies no relation of
degree s + 1 or higher.

Extending the previous example, we can show that if P satisfies an
algebraic relation of degree s + 1, then there is a system
(X, X, u, T) and functions fy, ..., fx € L>(u) such that

-,-mfo . Tm+P1(n)f1 . Tm+Pk(n)f'k -1

but E(f;|Zs) = 0 for some i =0,..., k.
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Easy direction in the complexity conjecture

Let P ={P1,...,Px} be a family of distinct integral polynomials.
The factor Zs is characteristic for P iff P satisfies no relation of
degree s + 1 or higher.

Extending the previous example, we can show that if P satisfies an
algebraic relation of degree s + 1, then there is a system
(X, X, u, T) and functions fy, ..., fx € L>(u) such that

-,-mfo . Tm+P1(n)f1 . Tm+Pk(n)f'k -1

but E(f;|Zs) = 0 for some i =0,..., k.
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A homogeneous relation of degree s is a relation of the form

aom® + ay(m+ P1(n))® + ... + ax(m + Pi(n))* = 0.
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A homogeneous relation of degree s is a relation of the form

aom® + ay(m+ P1(n))® + ... + ax(m + Pi(n))* = 0.

A family {P1,..., Pc} is homogeneous if all the relations that it
satisfies are sums of homogeneous relations.

For instance, the family {n, n?, n + n?} satisfies only the relation
m—(m+n)—(m+n)+(m+n+n?)=0

(up to scaling), hence it is homogeneous.
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A homogeneous relation of degree s is a relation of the form
aom® + ay(m+ P1(n))® + ... + ax(m + Pi(n))* = 0.

A family {P1,..., Pc} is homogeneous if all the relations that it
satisfies are sums of homogeneous relations.

For instance, the family {n, n?, n + n?} satisfies only the relation
m—(m+n)—(m+n)+(m+n+n?)=0
(up to scaling), hence it is homogeneous.
The family {n,2n, n?} satisfies the nonhomogeneous relation
(m? +2m) —2(m + n)? + (m +2n)*> — 2(m 4 n?) =0,

hence it is not homogeneous.
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Complexity conjecture holds for homogeneous families

The factor Zs is characteristic for P = {Px, ..., Py} iff P satisfies no
relation of degree s + 1 or higher.
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Complexity conjecture holds for homogeneous families

., Px} iff P satisfies no

The factor Zs is characteristic for P = {Py, ..
relation of degree s + 1 or higher.

Theorem (K. 2021)
The conjecture holds for all homogeneous families P.
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Complexity conjecture holds for homogeneous families

The factor Zs is characteristic for P = {Px,..., Px} iff P satisfies no
relation of degree s + 1 or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families P.

Examples:

@ Z; (Kronecker factor) is characteristic for P = {n, n? n+ n?}
because it satisfies one homogeneous relation up to scaling:

m—(m+n)—m+nr)+(m+n+n’)=0

(this example was previously proved by Frantzikinakis)
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Complexity conjecture holds for homogeneous families

The factor Zs is characteristic for P = {Px, ..., Py} iff P satisfies no
relation of degree s + 1 or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families P.

Examples:

@ Z; (Kronecker factor) is characteristic for P = {n, n? n+ n?}
because it satisfies one homogeneous relation up to scaling:

m—(m+n)—m+nr)+(m+n+n’)=0

(this example was previously proved by Frantzikinakis)

@ Z; (Kronecker factor) is characteristic for P = {n, 2n, n3, 2n%}
because it only satisfies linear combinations of two homogeneous
relations

m—2(m+n)—(m+2n)=0 and m—2(m+n®)—(m+2n®) =0.
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Complexity conjecture holds for homogeneous families

The factor Zs is characteristic for P = {Px, ..., Py} iff P satisfies no
relation of degree s + 1 or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families P.

Examples:

@ Z; (Kronecker factor) is characteristic for P = {n, n? n+ n?}
because it satisfies one homogeneous relation up to scaling:

m—(m+n)—m+nr)+(m+n+n’)=0

(this example was previously proved by Frantzikinakis)

@ Z; (Kronecker factor) is characteristic for P = {n, 2n, n3, 2n%}
because it only satisfies linear combinations of two homogeneous
relations

m—2(m+n)—(m+2n)=0 and m—2(m+n®)—(m+2n®) =0.
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More examples of homogeneous families

@ Linear families {ain, ..., axn};
@ Families {a1P(n),...,axP(n)};
© Linearly independent families such as {n, n?, ... nk}
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More examples of homogeneous families

@ Linear families {ain, ..., axn};
@ Families {a1P(n),...,axP(n)};
© Linearly independent families such as {n, n?, ... nk}

@ Families satisfying only linear relations
aom + al(m + Pl(n)) + ...+ ak(m + Pk(n)) =0

and no higher relations, such as {n, 2n, n3, 2n3}.
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Families satisfying only linear relations

Corollary (K. 2021)

Suppose that a family P satisfies only linear relations

agm + ai(m+ P1(n)) + ...+ ak(m+ Px(n)) =0

and no higher order relations. Then the Kronecker factor Z; is
characteristic for P, i.e.

N
.1 i n
J:&MVEJTyﬂ)ﬁ~-Tﬂ(”k
1 N
= lim =Y TAWE(f|Z) - THDE(f|Z) n 1P
Nllm Nn:1 (] Z1) (f|21) in ()

for every totally ergodic system (X, X, p, T) and
fir... o€ L®(p).
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Proof: reduction to nilsystems

@ We use Host-Kra's result to replace

jim fz / Tmfy . TmHP) g L TP

lim *Z/ TE(f|Z,) - TP E(R|Z,) - - TP B(£ | 24)

for some s € N.
@ We approximate the system by a totally ergodic nilsystem G/T.
@ For an ergodic element a € G, we find the closures of

(a'"x, am Py a’"+Pk(”)x)
n,meN

inside GK*1 /I +1 for x € G/T.
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Closure of polynomial sequences

Let G/T be a nilmanifold and g(n) = gogl”g2”2 .- gl be a
polynomial sequence on G which is irrational.
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Closure of polynomial sequences

Let G/T be a nilmanifold and g(n) = gogl”g2”2 .- gl be a
polynomial sequence on G which is irrational.

Let P = {P1,..., P} be a homogeneous family and

g"(m,n) = (g(m), g(m+ Py(n), ..., g(m+ Pi(n))).
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Closure of polynomial sequences

Let G/T be a nilmanifold and g(n) = gogl”g2”2 .- gl be a
polynomial sequence on G which is irrational.

Let P = {P1,..., P} be a homogeneous family and

g"(m,n) = (g(m), g(m+ Py(n), ..., g(m+ Pi(n))).

My main result gives an explicit description of the closure of g”
inside the product nilmanifold (G/I)**1.
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Closure of polynomial sequences

Let G/T be a nilmanifold and g(n) = gogl”g2”2 .- gl be a
polynomial sequence on G which is irrational.

Let P = {P1,..., P} be a homogeneous family and

g"(m,n) = (g(m), g(m+ Py(n), ..., g(m+ Pi(n))).

My main result gives an explicit description of the closure of g”

inside the product nilmanifold (G/I)**1.

This result works if and only if P is homogeneous.
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Application: equality of limits

Corollary (K. 2021)

Let (X, X, u, T) be a totally ergodic system and
fi,...,fa € L>(pn). Then

lim —ZT"f T2 T™f - T27f,

= lim —ZT”ﬁ T2, - E, T'fs- T*f
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Application: Multiple recurrence

Khintchine's recurrence theorem says that for every € > 0, the set
{neN: (AN T "A) > u(A)? — &}

is syndetic (i.e. it has bounded gaps).
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Application: Multiple recurrence

Khintchine's recurrence theorem says that for every € > 0, the set
{neN: (AN T "A) > u(A)? — &}
is syndetic (i.e. it has bounded gaps).

It was proved by Bergelson, Host, Kra & Ruzsa that for ergodic
systems, the set

(neN:W(ANT"AN--- AT KA) > p(A)F -}

is syndetic for k < 3, but this can fail for higher k.
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Application: Multiple recurrence

Khintchine's recurrence theorem says that for every € > 0, the set
{neN: (AN T "A) > u(A)? — &}
is syndetic (i.e. it has bounded gaps).

It was proved by Bergelson, Host, Kra & Ruzsa that for ergodic
systems, the set

(neN:W(ANT"AN--- AT KA) > p(A)F -}
is syndetic for k < 3, but this can fail for higher k.

A similar multiple recurrence property has been proved e.g. for:
@ {n, n?, ..., nk} (Frantzikinakis & Kra 2005);
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Application: Multiple recurrence

Khintchine's recurrence theorem says that for every € > 0, the set
{neN: (AN T "A) > u(A)? — &}
is syndetic (i.e. it has bounded gaps).

It was proved by Bergelson, Host, Kra & Ruzsa that for ergodic
systems, the set

(neN:W(ANT"AN--- AT KA) > p(A)F -}
is syndetic for k < 3, but this can fail for higher k.

A similar multiple recurrence property has been proved e.g. for:
@ {n, n?, ..., nk} (Frantzikinakis & Kra 2005);
@ {P(n),Q(n), P(n)+ Q(n)} (Frantzikinakis 2008).
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Multiple recurrence for families of complexity 1

Corollary (K. 2021)

Let P1,..., Py be integral polynomials satisfying only linear
relations (and some technical assumptions on the coefficients).
Let (X, X, u, T) be an ergodic system and A € X have positive
measure.

For every € > 0, the set

{neN:pANTPMAN...A TP ) > A+ — ¢}

is syndetic.
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Open questions

@ Does the complexity conjecture hold for nonhomogeneous
families?
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Open questions

@ Does the complexity conjecture hold for nonhomogeneous
families?

@ Is it true that the complexity of a family of k polynomials is at
most k — 17
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Open questions

@ Does the complexity conjecture hold for nonhomogeneous
families?

@ Is it true that the complexity of a family of k polynomials is at
most k — 17

Q If
Qo(m) + Qu(m + P1(n)) + ...+ Q(m+ Pk(n)) =0,

then is it true that maxdeg Q; < k — 17
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Open questions

@ Does the complexity conjecture hold for nonhomogeneous
families?

@ Is it true that the complexity of a family of k polynomials is at
most k — 17

Q If
Qo(m) + Qu(m + P1(n)) + ...+ Q(m+ Pk(n)) =0,

then is it true that maxdeg Q; < k — 17

@ What about pointwise convergence?
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Open questions

@ Does the complexity conjecture hold for nonhomogeneous
families?

@ Is it true that the complexity of a family of k polynomials is at
most k — 17

Q If
Qo(m) + Qu(m + P1(n)) + ...+ Q(m+ Pk(n)) =0,

then is it true that maxdeg Q; < k — 17

@ What about pointwise convergence?

© What if we look at polynomial iterates of several commuting
transformations, so averages of the form

N

1 n n
Nz T1P1( )fl . TkPk( )fk?

n=1
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