The polynomial Szemerédi theorem and beyond

Borys Kuca

University of Jyväskylä

Mean ergodic theorem

Let (X, \mathcal{X}, μ, T) be an ergodic measure-preserving dynamical system and $f \in L^{2}(\mu)$. Then

$$
\frac{1}{N} \sum_{n=1}^{N} T^{n} f \rightarrow \int_{X} f \quad \text { in } \quad L^{2}(\mu)
$$

What if we replace the iterate n by $P(n)$ for some $P \in \mathbb{Z}[n]$? E.g.

Mean ergodic theorem

Let (X, \mathcal{X}, μ, T) be an ergodic measure-preserving dynamical system and $f \in L^{2}(\mu)$. Then

$$
\frac{1}{N} \sum_{n=1}^{N} T^{n} f \rightarrow \int_{X} f \quad \text { in } \quad L^{2}(\mu)
$$

What if we replace the iterate n by $P(n)$ for some $P \in \mathbb{Z}[n]$? E.g. $2 n$ or n^{2} ?

Failure of mean ergodic theorem for polynomial iterates

Consider $P(n)=2 n, X=\mathbb{Z} / 2 \mathbb{Z}, T x=x+1 \bmod 2$.
Then $T^{2}=I d$, and so $T^{2 n} f=f$ for every n. Hence

Now take $X=\mathbb{Z} / 3 \mathbb{Z}, T x=x+1 \bmod 3$. Then T^{2} is ergodic,
and so

Consider $P(n)=2 n, X=\mathbb{Z} / 2 \mathbb{Z}, T x=x+1 \bmod 2$.
Then $T^{2}=I d$, and so $T^{2 n} f=f$ for every n. Hence

$$
\frac{1}{N} \sum_{n=1}^{N} T^{2 n} f=f
$$

Now take $X=\mathbb{Z} / 3 \mathbb{Z}, T x=x+1 \bmod 3$. Then T^{2} is ergodic,
and so

Consider $P(n)=2 n, X=\mathbb{Z} / 2 \mathbb{Z}, T_{x}=x+1 \bmod 2$.
Then $T^{2}=l d$, and so $T^{2 n} f=f$ for every n. Hence

$$
\frac{1}{N} \sum_{n=1}^{N} T^{2 n} f=f
$$

Now take $X=\mathbb{Z} / 3 \mathbb{Z}, T x=x+1 \bmod 3$. Then T^{2} is ergodic, and so

$$
\frac{1}{N} \sum_{n=1}^{N} T^{2 n} f \rightarrow \int_{X} f:=\frac{f(0)+f(1)+f(2)}{3}
$$

in $L^{2}(\mu)$.

Failure of mean ergodic theorem for polynomial iterates

Consider $P(n)=n^{2}, X=\mathbb{Z} / 3 \mathbb{Z}, T x=x+1 \bmod 3$.

Note that

Consider $P(n)=n^{2}, X=\mathbb{Z} / 3 \mathbb{Z}, T x=x+1 \bmod 3$.
Note that

$$
n^{2}=\left\{\begin{array}{lll}
0 & \bmod 3 & \text { if } n=0 \quad \bmod 3 \\
1 & \bmod 3 & \text { if } n=1,2 \bmod 3
\end{array}\right.
$$

Consider $P(n)=n^{2}, X=\mathbb{Z} / 3 \mathbb{Z}, T x=x+1 \bmod 3$.
Note that

$$
n^{2}=\left\{\begin{array}{lll}
0 & \bmod 3 & \text { if } n=0 \quad \bmod 3 \\
1 & \bmod 3 & \text { if } n=1,2 \bmod 3
\end{array}\right.
$$

Hence

$$
\frac{1}{N} \sum_{n=1}^{N} T^{n^{2}} f(x) \rightarrow \frac{f(x)+2 f(x+1)}{3}
$$

in $L^{2}(\mu)$.

Let (X, \mathcal{X}, μ, T) be totally ergodic, i.e. T, T^{2}, T^{3}, \ldots are all ergodic.

For instance, an irrational translation on \mathbb{T} is totally ergodic.
Then

for any nonconstant polynomial $P \in \mathbb{Z}[n]$.

Let (X, \mathcal{X}, μ, T) be totally ergodic, i.e. T, T^{2}, T^{3}, \ldots are all ergodic.

For instance, an irrational translation on \mathbb{T} is totally ergodic.

Let (X, \mathcal{X}, μ, T) be totally ergodic, i.e. T, T^{2}, T^{3}, \ldots are all ergodic.

For instance, an irrational translation on \mathbb{T} is totally ergodic.
Then

$$
\frac{1}{N} \sum_{n=1}^{N} T^{P(n)} f \rightarrow \int_{X} f \quad \text { in } \quad L^{2}(\mu)
$$

for any nonconstant polynomial $P \in \mathbb{Z}[n]$.

Multiple ergodic averages with polynomial iterates

We will study averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k}
$$

where

O ($X, \mathcal{X}, \mu, T)$ is an invertible measure preserving dynamical

call such polynomials integral);

Multiple ergodic averages with polynomial iterates

We will study averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \ldots T^{P_{k}(n)} f_{k}
$$

where
(1) ($X, \mathcal{X}, \mu, T)$ is an invertible measure preserving dynamical system;
 call such polynomials integral);

Multiple ergodic averages with polynomial iterates

We will study averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \ldots T^{P_{k}(n)} f_{k}
$$

where
(1) (X, \mathcal{X}, μ, T) is an invertible measure preserving dynamical system;
(2) $P_{1}, \ldots, P_{k} \in \mathbb{Z}[n]$ are distinct polynomials with $P_{i}(0)=0$ (we call such polynomials integral);

Multiple ergodic averages with polynomial iterates

We will study averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \ldots T^{P_{k}(n)} f_{k}
$$

where
(1) (X, \mathcal{X}, μ, T) is an invertible measure preserving dynamical system;
(2) $P_{1}, \ldots, P_{k} \in \mathbb{Z}[n]$ are distinct polynomials with $P_{i}(0)=0$ (we call such polynomials integral);
(3) $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$.

Multiple ergodic averages with polynomial iterates

We will study averages

$$
\frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \ldots T^{P_{k}(n)} f_{k}
$$

where
(1) (X, \mathcal{X}, μ, T) is an invertible measure preserving dynamical system;
(2) $P_{1}, \ldots, P_{k} \in \mathbb{Z}[n]$ are distinct polynomials with $P_{i}(0)=0$ (we call such polynomials integral);
(3) $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$.

Furstenberg's proof of Szemerédi theorem

Theorem (Furstenberg 1977)

Let $k \in \mathbb{N},(X, \mathcal{X}, \mu, T)$ be a system and $A \in \mathcal{X}$ be a set with positive measure. Then

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-k n} A\right)>0
$$

As a corollary, there exists $n>0$ such that

$$
\mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-(k-1) n} A\right)>0 .
$$

In particular, there exists $x \in A$ such that

Furstenberg's proof of Szemerédi theorem

Theorem (Furstenberg 1977)

Let $k \in \mathbb{N},(X, \mathcal{X}, \mu, T)$ be a system and $A \in \mathcal{X}$ be a set with positive measure. Then

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-k n} A\right)>0
$$

As a corollary, there exists $n>0$ such that

$$
\mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-(k-1) n} A\right)>0 .
$$

In particular, there exists $x \in A$ such that

Furstenberg's proof of Szemerédi theorem

Theorem (Furstenberg 1977)

Let $k \in \mathbb{N},(X, \mathcal{X}, \mu, T)$ be a system and $A \in \mathcal{X}$ be a set with positive measure. Then

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-k n} A\right)>0
$$

As a corollary, there exists $n>0$ such that

$$
\mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-(k-1) n} A\right)>0
$$

In particular, there exists $x \in A$ such that

$$
x, T^{n} x, \ldots, T^{k n} x \in A
$$

Furstenberg's proof of Szemerédi theorem

Theorem (Furstenberg 1977)

Let $k \in \mathbb{N},(X, \mathcal{X}, \mu, T)$ be a system and $A \in \mathcal{X}$ be a set with positive measure. Then

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-k n} A\right)>0 .
$$

Theorem (Szemeredi 1975)

Let $k \geq 3$. Then each dense subset of \mathbb{N} contains a k-term
arithmetic progression

$$
m, m+n, \ldots, m+(k-1) n
$$

with $n \neq 0$

Furstenberg's proof of Szemerédi theorem

Theorem (Furstenberg 1977)

Let $k \in \mathbb{N},(X, \mathcal{X}, \mu, T)$ be a system and $A \in \mathcal{X}$ be a set with positive measure. Then

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-k n} A\right)>0 .
$$

Theorem (Szemerédi 1975)

Let $k \geq 3$. Then each dense subset of \mathbb{N} contains a k-term arithmetic progression

$$
m, m+n, \ldots, m+(k-1) n
$$

with $n \neq 0$.

Polynomial Szemerédi theorem

Theorem (Bergelson \& Leibman 1996)

Let P_{1}, \ldots, P_{k} be distinct integral polynomials and (X, \mathcal{X}, μ, T) be a system. Suppose that $A \in \mathcal{X}$ has positive measure. Then

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-P_{1}(n)} A \cap \cdots \cap T^{-P_{k}(n)} A\right)>0
$$

Corollary

Let P_{1}, \ldots, P_{k} be distinct integral polynomials. Then each dense subset of \mathbb{N} contains a polynomial progression of the form

$$
m, m+P_{1}(n)
$$

$$
m+P_{k}(n)
$$

Polynomial Szemerédi theorem

Theorem (Bergelson \& Leibman 1996)

Let P_{1}, \ldots, P_{k} be distinct integral polynomials and (X, \mathcal{X}, μ, T) be a system. Suppose that $A \in \mathcal{X}$ has positive measure. Then

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-P_{1}(n)} A \cap \cdots \cap T^{-P_{k}(n)} A\right)>0
$$

Corollary

Let P_{1}, \ldots, P_{k} be distinct integral polynomials. Then each dense subset of \mathbb{N} contains a polynomial progression of the form

$$
m, m+P_{1}(n), \ldots, m+P_{k}(n)
$$

with $n \neq 0$.

Convergence of multiple ergodic averages

Both Furstenberg as well as Bergelson and Leibman showed

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-P_{1}(n)} A \cap \cdots \cap T^{-P_{k}(n)} A\right)>0
$$

Does the limit exist?

Theorem (Host \& Kra 2005; Leibman 2005)
Let (X, \mathcal{X}, μ, T) be a system, P_{1}, \ldots, P_{k} be distinct integral polynomials and $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$. Then

converges in $L^{2}(\mu)$.

Convergence of multiple ergodic averages

Both Furstenberg as well as Bergelson and Leibman showed

$$
\liminf _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-P_{1}(n)} A \cap \cdots \cap T^{-P_{k}(n)} A\right)>0
$$

Does the limit exist?

Theorem (Host \& Kra 2005; Leibman 2005)

Let (X, \mathcal{X}, μ, T) be a system, P_{1}, \ldots, P_{k} be distinct integral polynomials and $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$. Then

$$
\frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \ldots T^{P_{k}(n)} f_{k}
$$

converges in $L^{2}(\mu)$.

Weak convergence

Strong convergence implies weak convergence, hence we have the following corollary.

Corollary

Let (X, \mathcal{X}, μ, T) be a system, P_{1}, \ldots, P_{k} be distinct integral polynomials and $f_{0}, \ldots, f_{k} \in L^{\infty}(\mu)$. Then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_{0} \cdot T^{P_{1}(n)} f_{1} \ldots T^{P_{k}(n)} f_{k}
$$

exists.

If $f_{0}=\ldots=f_{k}=1_{A}$ for $A \in \mathcal{X}$, then we get that

Weak convergence

Strong convergence implies weak convergence, hence we have the following corollary.

Corollary

Let (X, \mathcal{X}, μ, T) be a system, P_{1}, \ldots, P_{k} be distinct integral polynomials and $f_{0}, \ldots, f_{k} \in L^{\infty}(\mu)$. Then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_{0} \cdot T^{P_{1}(n)} f_{1} \ldots T^{P_{k}(n)} f_{k}
$$

exists.

If $f_{0}=\ldots=f_{k}=1_{A}$ for $A \in \mathcal{X}$, then we get that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \mu\left(A \cap T^{-P_{1}(n)} A \cap \cdots \cap T^{-P_{k}(n)} A\right)
$$

exists.

Factors

A factor of a system (X, \mathcal{X}, μ, T) is a T-invariant sub- σ-algebra \mathcal{Y}.
Equivalently, a factor of (X, \mathcal{X}, μ, T) is a system (Y, \mathcal{Y}, ν, S) together with a factor map $\pi: X \rightarrow Y$ satisfying

(2) $\pi \circ T=S \circ \pi$.

For instance, the translation

is a factor of the system

$$
\begin{aligned}
& T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2} \\
& (x, y) \mapsto(x+a, y+x),
\end{aligned}
$$

and the factor map is given by $\pi(x, y)=x$.

A factor of a system (X, \mathcal{X}, μ, T) is a T-invariant sub- σ-algebra \mathcal{Y}.
Equivalently, a factor of (X, \mathcal{X}, μ, T) is a system (Y, \mathcal{Y}, ν, S) together with a factor map $\pi: X \rightarrow Y$ satisfying
(1) $\nu=\mu \circ \pi^{-1}$;
(2) $\pi \circ T=S \circ \pi$.

For instance, the translation

is a factor of the system

and the factor map is given by $\pi(x, y)=x$.

A factor of a system (X, \mathcal{X}, μ, T) is a T-invariant sub- σ-algebra \mathcal{Y}.
Equivalently, a factor of (X, \mathcal{X}, μ, T) is a system (Y, \mathcal{Y}, ν, S) together with a factor map $\pi: X \rightarrow Y$ satisfying
(1) $\nu=\mu \circ \pi^{-1}$;
(2) $\pi \circ T=S \circ \pi$.

For instance, the translation

$$
\begin{aligned}
S: & \rightarrow \mathbb{T} \\
& x \mapsto x+a
\end{aligned}
$$

is a factor of the system

$$
\begin{aligned}
& T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2} \\
& (x, y) \mapsto(x+a, y+x),
\end{aligned}
$$

and the factor map is given by $\pi(x, y)=x$.

The idea behind Host-Kra proof

Theorem (Host \& Kra 2005)

Let (X, \mathcal{X}, μ, T) be a system, P_{1}, \ldots, P_{k} be distinct integral polynomials and $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$. Then the average

$$
\frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k}
$$

converges in $L^{2}(\mu)$.

For distinct integral polynomials P_{1}, \ldots, P_{k}, we want to find a well-structured factor \mathcal{Y} of (X, \mathcal{X}, μ, T) such that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Y}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Y}\right)
\end{aligned}
$$

The tower of Host-Kra factors
For an ergodic system (X, \mathcal{X}, μ, T), Host and Kra constructed a tower of factors

$$
\mathcal{Z}_{0} \subseteq \mathcal{Z}_{1} \subseteq \mathcal{Z}_{2} \subseteq \cdots \subseteq \mathcal{X}
$$

with the following property.

Theorem (Host \& Kra 2005)

Let (X, \mathcal{X}, μ, T) be ergodic, $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$ and $\mathcal{P}=\left\{P_{1}\right.$, be a family of distinct integral polynomials. Then there exists $s \in \mathbb{N}$, such that the $L^{2}(\mu)$ limits agree

We say that the factor \mathcal{Z}_{s} is characteristic for the family \mathcal{P} and the system (X, \mathcal{X}, μ, T).

Importantly, s depends only on P_{1}, \ldots, P_{k} but not on X or f_{1}, \ldots, f_{k}.

The tower of Host-Kra factors

For an ergodic system (X, \mathcal{X}, μ, T), Host and Kra constructed a tower of factors

$$
\mathcal{Z}_{0} \subseteq \mathcal{Z}_{1} \subseteq \mathcal{Z}_{2} \subseteq \cdots \subseteq \mathcal{X}
$$

with the following property.

Theorem (Host \& Kra 2005)

Let (X, \mathcal{X}, μ, T) be ergodic, $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$ and $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a family of distinct integral polynomials. Then there exists $s \in \mathbb{N}$, such that the $L^{2}(\mu)$ limits agree

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{s}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{s}\right)
\end{aligned}
$$

We say that the factor \mathcal{Z}_{s} is characteristic for the family \mathcal{P} and the $\operatorname{system}(X, \mathcal{X}, \mu, T)$.

The tower of Host-Kra factors

For an ergodic system (X, \mathcal{X}, μ, T), Host and Kra constructed a tower of factors

$$
\mathcal{Z}_{0} \subseteq \mathcal{Z}_{1} \subseteq \mathcal{Z}_{2} \subseteq \cdots \subseteq \mathcal{X}
$$

with the following property.

Theorem (Host \& Kra 2005)

Let (X, \mathcal{X}, μ, T) be ergodic, $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$ and $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a family of distinct integral polynomials. Then there exists $s \in \mathbb{N}$, such that the $L^{2}(\mu)$ limits agree

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{s}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{s}\right)
\end{aligned}
$$

We say that the factor \mathcal{Z}_{s} is characteristic for the family \mathcal{P} and the system (X, \mathcal{X}, μ, T).

The tower of Host-Kra factors

For an ergodic system (X, \mathcal{X}, μ, T), Host and Kra constructed a tower of factors

$$
\mathcal{Z}_{0} \subseteq \mathcal{Z}_{1} \subseteq \mathcal{Z}_{2} \subseteq \cdots \subseteq \mathcal{X}
$$

with the following property.

Theorem (Host \& Kra 2005)

Let (X, \mathcal{X}, μ, T) be ergodic, $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$ and $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a family of distinct integral polynomials. Then there exists $s \in \mathbb{N}$, such that the $L^{2}(\mu)$ limits agree

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{s}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{s}\right)
\end{aligned}
$$

We say that the factor \mathcal{Z}_{s} is characteristic for the family \mathcal{P} and the system (X, \mathcal{X}, μ, T).

Importantly, s depends only on P_{1}, \ldots, P_{k} but not on X or f_{1}, \ldots, f_{k}.

The structure of Host-Kra factors

The factor \mathcal{Z}_{0} of (X, \mathcal{X}, μ, T) is the σ-algebra of T-invariant sets.

The factor \mathcal{Z}_{1} of an ergodic system is the Kronecker factor, i.e. the factor generated by eigenfunctions of T
Equivalently, it is the maximal factor of X s.t. $\left(X, Z_{1}, \mu, T\right)$ is isomorphic to a rotation on a compact abelian group.

More generally, the factor \mathcal{Z}_{s} is an inverse limit of s-step nilsystems, i.e. systems of the form $(G / \Gamma, \mathcal{Y}, \nu, S)$, where
(1) G / Γ is an s-step nilmanifold, i.e. G is an s-step nilpotent Lie group and Γ is a cocompact lattice;
(2) \mathcal{V} is the Borel σ-algehra
(3) ν is the Haar measure;
(4) $S x=g x$ is a left multiplication map for some $g \in G$ (called nilrotation)

The structure of Host-Kra factors

The factor \mathcal{Z}_{0} of (X, \mathcal{X}, μ, T) is the σ-algebra of T-invariant sets.

The factor \mathcal{Z}_{1} of an ergodic system is the Kronecker factor, i.e. the factor generated by eigenfunctions of T.
Equivalently, it is the maximal factor of X s.t. $\left(X, \mathcal{Z}_{1}, \mu, T\right)$ is isomorphic to a rotation on a compact abelian group.

More generally, the factor \mathcal{Z}_{s} is an inverse limit of s-step nilsystems, i.e. systems of the form $(G / \Gamma, \mathcal{Y}, \nu, S)$, where: (1) G / Γ is an s-step nilmanifold, i.e. G is an s-step nilpotent Lie group and Γ is a cocompact lattice;
(2) \mathcal{Y} is the Borel σ-algebra:
(3) ν is the Haar measure;
(4) $S x=g x$ is a left multiplication map for some $g \in G$ (called nilrotation)

The factor \mathcal{Z}_{0} of (X, \mathcal{X}, μ, T) is the σ-algebra of T-invariant sets.
The factor \mathcal{Z}_{1} of an ergodic system is the Kronecker factor, i.e. the factor generated by eigenfunctions of T.
Equivalently, it is the maximal factor of X s.t. $\left(X, \mathcal{Z}_{1}, \mu, T\right)$ is isomorphic to a rotation on a compact abelian group.

More generally, the factor \mathcal{Z}_{s} is an inverse limit of s-step nilsystems, i.e. systems of the form $(G / \Gamma, \mathcal{Y}, \nu, S)$, where:
(1) G / Γ is an s-step nilmanifold, i.e. G is an s-step nilpotent Lie group and Γ is a cocompact lattice;
(2) \mathcal{Y} is the Borel σ-algebra;
(3) ν is the Haar measure;
(9) $S x=g x$ is a left multiplication map for some $g \in G$ (called nilrotation).

Examples of nilsystems

A translation $T x=x+a$ on $G / \Gamma=\mathbb{T}=\mathbb{R} / \mathbb{Z}$ defines a 1 -step nilsystem. An example of a 2 -step nilsystem is

This system can be realized as G / Γ for

Then T corresponds to the left multiplication by $g=\left(\begin{array}{lll}0 & 1 & a \\ 0 & 1 & a \\ 0 & 0 & 1\end{array}\right)$, which

Examples of nilsystems

A translation $T x=x+a$ on $G / \Gamma=\mathbb{T}=\mathbb{R} / \mathbb{Z}$ defines a 1-step nilsystem.
An example of a 2-step nilsystem is

$$
\begin{aligned}
& T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2} \\
& (x, y) \mapsto(x+a, y+x)
\end{aligned}
$$

This system can be realized as G / Γ for

Then T corresponds to the left multiplication by $g=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right.$

Examples of nilsystems

A translation $T_{x}=x+a$ on $G / \Gamma=\mathbb{T}=\mathbb{R} / \mathbb{Z}$ defines a 1-step nilsystem.
An example of a 2-step nilsystem is

$$
\begin{aligned}
& T: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2} \\
& (x, y) \mapsto(x+a, y+x)
\end{aligned}
$$

This system can be realized as G / Γ for

$$
G=\left(\begin{array}{lll}
1 & \mathbb{Z} & \mathbb{R} \\
0 & 1 & \mathbb{R} \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad \Gamma=\left(\begin{array}{ccc}
1 & \mathbb{Z} & \mathbb{Z} \\
0 & 1 & \mathbb{Z} \\
0 & 0 & 1
\end{array}\right)
$$

Then T corresponds to the left multiplication by $g=\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & a \\ 0 & 0 & 1\end{array}\right)$, which is:

$$
g\left(\begin{array}{lll}
1 & 0 & y \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & a \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & y \\
0 & 1 & x \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & y+x \\
0 & 1 & x+a \\
0 & 0 & 1
\end{array}\right) .
$$

A proof of the existence of the limit

The proof of the existence of

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \ldots T^{P_{k}(n)} f_{k}
$$

would go as follows:
(1) Some Host-Kra factor \mathcal{Z}_{s} is characteristic for the average, so we can assume that all the functions are \mathcal{Z}_{s}-measurable.
(a) The system can be approximated by an s-sten nilsystem
(3) The limit exists for nilsystems.

A proof of the existence of the limit

The proof of the existence of

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \ldots T^{P_{k}(n)} f_{k}
$$

would go as follows:
(1) Some Host-Kra factor \mathcal{Z}_{s} is characteristic for the average, so we can assume that all the functions are \mathcal{Z}_{s}-measurable.
(2) The system can be approximated by an s-step nilsystem
(3) The limit exists for nilsystems.

A proof of the existence of the limit

The proof of the existence of

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \ldots T^{P_{k}(n)} f_{k}
$$

would go as follows:
(1) Some Host-Kra factor \mathcal{Z}_{s} is characteristic for the average, so we can assume that all the functions are \mathcal{Z}_{s}-measurable.
(2) The system can be approximated by an s-step nilsystem.
(3) The limit exists for nilsystems.

A proof of the existence of the limit

The proof of the existence of

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \ldots T^{P_{k}(n)} f_{k}
$$

would go as follows:
(1) Some Host-Kra factor \mathcal{Z}_{s} is characteristic for the average, so we can assume that all the functions are \mathcal{Z}_{s}-measurable.
(2) The system can be approximated by an s-step nilsystem.
(3) The limit exists for nilsystems.

Host-Kra factors

Recall the equality

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{s}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{s}\right)
\end{aligned}
$$

Recall that \mathcal{Z}_{s} is a factor of \mathcal{Z}_{s+1} for each $s \in \mathbb{N}$.
What is the smallest s for which the equality holds?

Host-Kra factors

Recall the equality

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{s}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{s}\right)
\end{aligned}
$$

Recall that \mathcal{Z}_{s} is a factor of \mathcal{Z}_{s+1} for each $s \in \mathbb{N}$.
What is the smallest s for which the equality holds?

Question

For the rest of the talk, we assume that T is totally ergodic, i.e. T, T^{2}, T^{3}, \ldots are all ergodic.

Question

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a family of distinct integral polynomials. What is the smallest s such that the factor \mathcal{Z}_{s} is characteristic for \mathcal{P} for all totally ergodic systems?
Thus, we look for the smallest s such that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{s}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{s}\right)
\end{aligned}
$$

for all totally ergodic systems (X, \mathcal{X}, μ, T) and $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$.
This smallest s is called the complexity of \mathcal{P}.

Question

For the rest of the talk, we assume that T is totally ergodic, i.e. T, T^{2}, T^{3}, \ldots are all ergodic.

Question

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a family of distinct integral polynomials. What is the smallest s such that the factor \mathcal{Z}_{s} is characteristic for \mathcal{P} for all totally ergodic systems?
Thus, we look for the smallest such that

for all totally ergodic systems (X, \mathcal{X}, μ, T) and $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$.
This smallest s is called the complexity of \mathcal{P}.

Question

For the rest of the talk, we assume that T is totally ergodic, i.e. T, T^{2}, T^{3}, \ldots are all ergodic.

Question

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a family of distinct integral polynomials. What is the smallest s such that the factor \mathcal{Z}_{s} is characteristic for \mathcal{P} for all totally ergodic systems?

Thus, we look for the smallest s such that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{s}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{s}\right)
\end{aligned}
$$

for all totally ergodic systems (X, \mathcal{X}, μ, T) and $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$.
This smallest s is called the complexity of \mathcal{P}.

Question

For the rest of the talk, we assume that T is totally ergodic, i.e. T, T^{2}, T^{3}, \ldots are all ergodic.

Question

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a family of distinct integral polynomials. What is the smallest s such that the factor \mathcal{Z}_{s} is characteristic for \mathcal{P} for all totally ergodic systems?

Thus, we look for the smallest s such that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{s}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{s}\right)
\end{aligned}
$$

for all totally ergodic systems (X, \mathcal{X}, μ, T) and $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$.
This smallest s is called the complexity of \mathcal{P}.

Linearly independent polynomials

Theorem (Frantzikinakis \& Kra 2005)

The factor \mathcal{Z}_{0} is characteristic for linearly independent families such as $\left\{n, n^{2}, \ldots, n^{k}\right\}$. Thus,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdots T^{n^{k}} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{0}\right) \cdots T^{n^{k}} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{0}\right)
\end{aligned}
$$

whenever T is totally ergodic.
\mathcal{Z}_{0} is the σ-algebra \mathcal{I} of T-invariant sets, hence

Linearly independent polynomials

Theorem (Frantzikinakis \& Kra 2005)

The factor \mathcal{Z}_{0} is characteristic for linearly independent families such as $\left\{n, n^{2}, \ldots, n^{k}\right\}$. Thus,

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdots T^{n^{k}} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{0}\right) \cdots T^{n^{k}} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{0}\right)
\end{aligned}
$$

whenever T is totally ergodic.
\mathcal{Z}_{0} is the σ-algebra \mathcal{I} of T-invariant sets, hence

$$
T^{n^{i}} \mathbb{E}\left(f_{i} \mid \mathcal{Z}_{0}\right)=T^{n^{i}} \mathbb{E}\left(f_{i} \mid \mathcal{I}\right)=\mathbb{E}\left(f_{i} \mid \mathcal{I}\right)=\int_{X} f_{i}
$$

and so

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdots T^{n^{k}} f_{k}=\int_{X} f_{1} \cdots \int_{X} f_{k}
$$

Summary of known results

(1) Linearly independent families have complexity 0 (Frantzikinakis \& Kra 2005).
(3) The linear family $\{n, 2 n \ldots, k n\}$ has complexity $k-1$ (Host \& Kra 2005; Ziegler 2007).
© For any nonconstant integral polynomial P, the family $\{P(n), 2 P(n), \ldots, k P(n)\}$ has complexity $k-1$ (Frantzikinakis 2008)
(1) A classification for polynomial families of length 3 (Frantzikinakis 2008)
(0) Results when attention is restricted to nilsystems or Weyl systems (Bergelson, Leibman \& Lesigne 2007; Leibman 2009)

Summary of known results

(1) Linearly independent families have complexity 0
(Frantzikinakis \& Kra 2005).
(2) The linear family $\{n, 2 n \ldots, k n\}$ has complexity $k-1$ (Host \& Kra 2005; Ziegler 2007).
(3) For any nonconstant integral polynomial P, the family $\{P(n), 2 P(n), \ldots, k P(n)\}$ has complexity $k-1$
(Frantzikinakis 2008)
(a) A classification for polynomial families of length 3 (Frantzikinakis 2008)

5 Results when attention is restricted to nilsystems or Weyl systems (Bergelson, Leibman \& Lesigne 2007; Leibman 2009)

Summary of known results

(1) Linearly independent families have complexity 0 (Frantzikinakis \& Kra 2005).
(2) The linear family $\{n, 2 n \ldots, k n\}$ has complexity $k-1$ (Host \& Kra 2005; Ziegler 2007).
(3) For any nonconstant integral polynomial P, the family $\{P(n), 2 P(n), \ldots, k P(n)\}$ has complexity $k-1$
(Frantzikinakis 2008).

- A classification for polynomial families of length 3 (Frantzikinakis 2008)
© Results when attention is restricted to nilsystems or Weyl systems (Bergelson, Leibman \& Lesigne 2007; Leibman 2009)

Summary of known results

(1) Linearly independent families have complexity 0 (Frantzikinakis \& Kra 2005).
(2) The linear family $\{n, 2 n \ldots, k n\}$ has complexity $k-1$ (Host \& Kra 2005; Ziegler 2007).
(3) For any nonconstant integral polynomial P, the family $\{P(n), 2 P(n), \ldots, k P(n)\}$ has complexity $k-1$ (Frantzikinakis 2008).
(9) A classification for polynomial families of length 3 (Frantzikinakis 2008).
© Results when attention is restricted to nilsystems or Weyl systems (Bergelson, Leibman \& Lesigne 2007; Leibman 2009)

Summary of known results

(1) Linearly independent families have complexity 0 (Frantzikinakis \& Kra 2005).
(2) The linear family $\{n, 2 n \ldots, k n\}$ has complexity $k-1$ (Host \& Kra 2005; Ziegler 2007).
(3) For any nonconstant integral polynomial P, the family $\{P(n), 2 P(n), \ldots, k P(n)\}$ has complexity $k-1$
(Frantzikinakis 2008).
(9) A classification for polynomial families of length 3 (Frantzikinakis 2008).
(3) Results when attention is restricted to nilsystems or Weyl systems (Bergelson, Leibman \& Lesigne 2007; Leibman 2009).

The complexity of $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ is related to algebraic relations

$$
Q_{0}(m)+Q_{1}\left(m+P_{1}(n)\right)+\ldots+Q_{k}\left(m+P_{k}(n)\right)=0
$$

satisfied by the polynomial progression

$$
m, m+P_{1}(n), \ldots, m+P_{k}(n)
$$

Algebraic relations

An algebraic relation of degree s satisfied by $\left\{P_{1}, \ldots, P_{k}\right\}$ is a relation of the form

$$
Q_{0}(m)+Q_{1}\left(m+P_{1}(n)\right)+\ldots+Q_{k}\left(m+P_{k}(n)\right)=0
$$

where $\max _{i} \operatorname{deg} Q_{i}=s$.

For instance, the family $\left\{n, n^{2}, n+n^{2}\right\}$ satisfies one linear relation (up to scaling)

$$
m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0 .
$$

The family $\left\{n, 2 n, n^{2}\right\}$ satisfies any linear combination of the relations:

$$
\begin{aligned}
& m-2(m+n)+(m+2 n)=0 \text { and } \\
& \left(m^{2}+2 m\right)-2(m+n)^{2}+(m+2 n)^{2}-2\left(m+n^{2}\right)=0
\end{aligned}
$$

Algebraic relations

An algebraic relation of degree s satisfied by $\left\{P_{1}, \ldots, P_{k}\right\}$ is a relation of the form

$$
Q_{0}(m)+Q_{1}\left(m+P_{1}(n)\right)+\ldots+Q_{k}\left(m+P_{k}(n)\right)=0
$$

where $\max _{i} \operatorname{deg} Q_{i}=s$.
For instance, the family $\left\{n, n^{2}, n+n^{2}\right\}$ satisfies one linear relation (up to scaling):

$$
m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0 .
$$

The family $\left\{n, 2 n, n^{2}\right\}$ satisfies any linear combination of the relations:

$$
\begin{aligned}
& m-2(m+n)+(m+2 n)=0 \quad \text { and } \\
& \left(m^{2}+2 m\right)-2(m+n)^{2}+(m+2 n)^{2}-2\left(m+n^{2}\right)=0 .
\end{aligned}
$$

Algebraic relations

An algebraic relation of degree s satisfied by $\left\{P_{1}, \ldots, P_{k}\right\}$ is a relation of the form

$$
Q_{0}(m)+Q_{1}\left(m+P_{1}(n)\right)+\ldots+Q_{k}\left(m+P_{k}(n)\right)=0
$$

where $\max _{i} \operatorname{deg} Q_{i}=s$.
For instance, the family $\left\{n, n^{2}, n+n^{2}\right\}$ satisfies one linear relation (up to scaling):

$$
m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0 .
$$

The family $\left\{n, 2 n, n^{2}\right\}$ satisfies any linear combination of the relations:

$$
\begin{aligned}
& m-2(m+n)+(m+2 n)=0 \quad \text { and } \\
& \left(m^{2}+2 m\right)-2(m+n)^{2}+(m+2 n)^{2}-2\left(m+n^{2}\right)=0 .
\end{aligned}
$$

Complexity conjecture

Conjecture

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a family of distinct integral polynomials. The factor \mathcal{Z}_{s} is characteristic for \mathcal{P} iff \mathcal{P} satisfies no relation of degree $s+1$ or higher.

E.g., the conjecture is saying:

(1) \mathcal{Z}_{1} is characteristic for $\left\{n, n^{2}, n+n^{2}\right\}$ because of the relation
$m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0$.
(2) \mathcal{Z}_{2} is characteristic for $\left\{n, 2 n, n^{2}\right\}$ because of the relation

Complexity conjecture

Conjecture

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a family of distinct integral polynomials. The factor \mathcal{Z}_{s} is characteristic for \mathcal{P} iff \mathcal{P} satisfies no relation of degree $s+1$ or higher.
E.g., the conjecture is saying:
(1) \mathcal{Z}_{1} is characteristic for $\left\{n, n^{2}, n+n^{2}\right\}$ because of the relation

$$
m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0 .
$$

(2) \mathcal{Z}_{2} is characteristic for $\left\{n, 2 n, n^{2}\right\}$ because of the relation

$$
\left(m^{2}+2 m\right)-2(m+n)^{2}+(m+2 n)^{2}-2\left(m+n^{2}\right)=0
$$

Complexity conjecture

Conjecture

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a family of distinct integral polynomials. The factor \mathcal{Z}_{s} is characteristic for \mathcal{P} iff \mathcal{P} satisfies no relation of degree $s+1$ or higher.
E.g., the conjecture is saying:
(1) \mathcal{Z}_{1} is characteristic for $\left\{n, n^{2}, n+n^{2}\right\}$ because of the relation

$$
m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0 .
$$

(2) \mathcal{Z}_{2} is characteristic for $\left\{n, 2 n, n^{2}\right\}$ because of the relation

$$
\left(m^{2}+2 m\right)-2(m+n)^{2}+(m+2 n)^{2}-2\left(m+n^{2}\right)=0
$$

Why do algebraic relations matter?

It suffices to find the characteristic factor for the weak convergence, i.e. the smallest s for which

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_{0} \cdot T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} \mathbb{E}\left(f_{0} \mid \mathcal{Z}_{s}\right) \cdot T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{s}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{s}\right) ?
\end{aligned}
$$

Since T is measure-preserving, we can rewrite the integral as

Hence

Why do algebraic relations matter?

It suffices to find the characteristic factor for the weak convergence, i.e. the smallest s for which

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_{0} \cdot T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} \mathbb{E}\left(f_{0} \mid \mathcal{Z}_{s}\right) \cdot T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{s}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{s}\right) ?
\end{aligned}
$$

Since T is measure-preserving, we can rewrite the integral as

$$
\int_{X} f_{0} \cdot T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k}=\int_{X} T^{m} f_{0} \cdot T^{m+P_{1}(n)} f_{1} \cdots T^{m+P_{k}(n)} f_{k}
$$

Hence

Why do algebraic relations matter?

It suffices to find the characteristic factor for the weak convergence, i.e. the smallest s for which

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_{0} \cdot T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} \mathbb{E}\left(f_{0} \mid \mathcal{Z}_{s}\right) \cdot T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{s}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{s}\right) ?
\end{aligned}
$$

Since T is measure-preserving, we can rewrite the integral as

$$
\int_{X} f_{0} \cdot T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k}=\int_{X} T^{m} f_{0} \cdot T^{m+P_{1}(n)} f_{1} \cdots T^{m+P_{k}(n)} f_{k}
$$

Hence

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} f_{0} \cdot T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{m, n=1}^{N} \int_{X} T^{m} f_{0} \cdot T^{m+P_{1}(n)} f_{1} \cdots T^{m+P_{k}(n)} f_{k}
\end{aligned}
$$

Why do algebraic relations matter?

Consider the family $\mathcal{P}=\{n, 2 n, 3 n\}$ and note the algebraic relation

$$
m^{2}-3(m+n)^{2}+3(m+2 n)^{2}-(m+3 n)^{2}=0 .
$$

> Take nonzero $a \in \mathbb{T}$, let $e(y)=e^{2 \pi i y}$ and consider the expressions

Morally, we can express these exponentials as functions
where $f_{i}(x, y)=e\left(a c_{i} y\right)$ for some $c_{i} \in \mathbb{Z}$ and

Thus,

but

Why do algebraic relations matter?

Consider the family $\mathcal{P}=\{n, 2 n, 3 n\}$ and note the algebraic relation

$$
m^{2}-3(m+n)^{2}+3(m+2 n)^{2}-(m+3 n)^{2}=0 .
$$

Take nonzero $a \in \mathbb{T}$, let $e(y)=e^{2 \pi i y}$ and consider the expressions

$$
e\left(a m^{2}\right), e\left(-3 a(m+n)^{2}\right), e\left(3 a(m+2 n)^{2}\right), e\left(-a(m+3 n)^{2}\right)
$$

Morally, we can express these exponentials as functions
where $f_{i}(x, y)=e\left(a c_{i} y\right)$ for some $c_{i} \in \mathbb{Z}$ and

Thus,
but

Why do algebraic relations matter?

Consider the family $\mathcal{P}=\{n, 2 n, 3 n\}$ and note the algebraic relation

$$
m^{2}-3(m+n)^{2}+3(m+2 n)^{2}-(m+3 n)^{2}=0 .
$$

Take nonzero $a \in \mathbb{T}$, let $e(y)=e^{2 \pi i y}$ and consider the expressions

$$
e\left(a m^{2}\right), e\left(-3 a(m+n)^{2}\right), e\left(3 a(m+2 n)^{2}\right), e\left(-a(m+3 n)^{2}\right)
$$

Morally, we can express these exponentials as functions

$$
T^{m} f_{1}, T^{m+n} f_{2}, T^{m+2 n} f_{3}, T^{m+3 n} f_{4},
$$

where $f_{i}(x, y)=e\left(a c_{i} y\right)$ for some $c_{i} \in \mathbb{Z}$ and

$$
T(x, y)=(x+a, y+2 x+a) \quad \text { on } \quad \mathbb{T}^{2} .
$$

Thus,

Why do algebraic relations matter?

Consider the family $\mathcal{P}=\{n, 2 n, 3 n\}$ and note the algebraic relation

$$
m^{2}-3(m+n)^{2}+3(m+2 n)^{2}-(m+3 n)^{2}=0 .
$$

Take nonzero $a \in \mathbb{T}$, let $e(y)=e^{2 \pi i y}$ and consider the expressions

$$
e\left(a m^{2}\right), e\left(-3 a(m+n)^{2}\right), e\left(3 a(m+2 n)^{2}\right), e\left(-a(m+3 n)^{2}\right)
$$

Morally, we can express these exponentials as functions

$$
T^{m} f_{1}, T^{m+n} f_{2}, T^{m+2 n} f_{3}, T^{m+3 n} f_{4},
$$

where $f_{i}(x, y)=e\left(a c_{i} y\right)$ for some $c_{i} \in \mathbb{Z}$ and

$$
T(x, y)=(x+a, y+2 x+a) \quad \text { on } \quad \mathbb{T}^{2} .
$$

Thus,

$$
T^{m} f_{1} \cdot T^{m+n} f_{2} \cdot T^{m+2 n} f_{3} \cdot T^{m+3 n} f_{4}=1,
$$

but

Why do algebraic relations matter?

Consider the family $\mathcal{P}=\{n, 2 n, 3 n\}$ and note the algebraic relation

$$
m^{2}-3(m+n)^{2}+3(m+2 n)^{2}-(m+3 n)^{2}=0 .
$$

Take nonzero $a \in \mathbb{T}$, let $e(y)=e^{2 \pi i y}$ and consider the expressions

$$
e\left(a m^{2}\right), e\left(-3 a(m+n)^{2}\right), e\left(3 a(m+2 n)^{2}\right), e\left(-a(m+3 n)^{2}\right)
$$

Morally, we can express these exponentials as functions

$$
T^{m} f_{1}, T^{m+n} f_{2}, T^{m+2 n} f_{3}, T^{m+3 n} f_{4},
$$

where $f_{i}(x, y)=e\left(a c_{i} y\right)$ for some $c_{i} \in \mathbb{Z}$ and

$$
T(x, y)=(x+a, y+2 x+a) \quad \text { on } \quad \mathbb{T}^{2} .
$$

Thus,

$$
T^{m} f_{1} \cdot T^{m+n} f_{2} \cdot T^{m+2 n} f_{3} \cdot T^{m+3 n} f_{4}=1,
$$

but

$$
\mathbb{E}\left(f_{i} \mid \mathcal{Z}_{1}\right)(x, y)=\int_{\mathbb{T}} f_{i}\left(x, y^{\prime}\right) d y^{\prime}=\int_{\mathbb{T}} e\left(a c_{i} y^{\prime}\right) d y^{\prime}=0
$$

Why do algebraic relations matter?

Consider the family $\mathcal{P}=\{n, 2 n, 3 n\}$ and note the algebraic relation

$$
m^{2}-3(m+n)^{2}+3(m+2 n)^{2}-(m+3 n)^{2}=0 .
$$

Take nonzero $a \in \mathbb{T}$, let $e(y)=e^{2 \pi i y}$ and consider the expressions

$$
e\left(a m^{2}\right), e\left(-3 a(m+n)^{2}\right), e\left(3 a(m+2 n)^{2}\right), e\left(-a(m+3 n)^{2}\right)
$$

Morally, we can express these exponentials as functions

$$
T^{m} f_{1}, T^{m+n} f_{2}, T^{m+2 n} f_{3}, T^{m+3 n} f_{4},
$$

where $f_{i}(x, y)=e\left(a c_{i} y\right)$ for some $c_{i} \in \mathbb{Z}$ and

$$
T(x, y)=(x+a, y+2 x+a) \quad \text { on } \quad \mathbb{T}^{2} .
$$

Thus,

$$
T^{m} f_{1} \cdot T^{m+n} f_{2} \cdot T^{m+2 n} f_{3} \cdot T^{m+3 n} f_{4}=1,
$$

but

$$
\mathbb{E}\left(f_{i} \mid \mathcal{Z}_{1}\right)(x, y)=\int_{\mathbb{T}} f_{i}\left(x, y^{\prime}\right) d y^{\prime}=\int_{\mathbb{T}} e\left(a c_{i} y^{\prime}\right) d y^{\prime}=0
$$

and so

$$
T^{m} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{1}\right) \cdot T^{m+n} \mathbb{E}\left(f_{2} \mid \mathcal{Z}_{1}\right) \cdot T^{m+2 n} \mathbb{E}\left(f_{3} \mid \mathcal{Z}_{1}\right) \cdot T^{m+3 n} \mathbb{E}\left(f_{4} \mid \mathcal{Z}_{1}\right)=0
$$

Easy direction in the complexity conjecture

Conjecture

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a family of distinct integral polynomials. The factor \mathcal{Z}_{s} is characteristic for \mathcal{P} iff \mathcal{P} satisfies no relation of degree $s+1$ or higher.

Extending the previous example, we can show that if \mathcal{P} satisfies an algebraic relation of degree $s+1$, then there is a system (X, \mathcal{X}, μ, T) and functions $f_{0}, \ldots, f_{k} \in L^{\infty}(\mu)$ such that

$$
T^{m} f_{0} \cdot T^{m+P_{1}(n)} f_{1} \cdots T^{m+P_{k}(n)} f_{k}=1
$$

but $\mathbb{E}\left(f_{i} \mid \mathcal{Z}_{s}\right)=0$ for some $i=0, \ldots, k$.

Easy direction in the complexity conjecture

Conjecture

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a family of distinct integral polynomials. The factor \mathcal{Z}_{s} is characteristic for \mathcal{P} iff \mathcal{P} satisfies no relation of degree $s+1$ or higher.

Extending the previous example, we can show that if \mathcal{P} satisfies an algebraic relation of degree $s+1$, then there is a system (X, \mathcal{X}, μ, T) and functions $f_{0}, \ldots, f_{k} \in L^{\infty}(\mu)$ such that

$$
T^{m} f_{0} \cdot T^{m+P_{1}(n)} f_{1} \cdots T^{m+P_{k}(n)} f_{k}=1
$$

but $\mathbb{E}\left(f_{i} \mid \mathcal{Z}_{s}\right)=0$ for some $i=0, \ldots, k$.

Homogeneity

A homogeneous relation of degree s is a relation of the form

$$
a_{0} m^{s}+a_{1}\left(m+P_{1}(n)\right)^{s}+\ldots+a_{k}\left(m+P_{k}(n)\right)^{s}=0 .
$$

A family $\left\{P_{1}, \ldots, P_{k}\right\}$ is homogeneous if all the relations that it satisfies are sums of homogeneous relations.

For instance, the family $\left\{n, n^{2}, n+n^{2}\right\}$ satisfies only the relation $m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0$
(up to scaling), hence it is homogeneous.
The family $\left\{n, 2 n, n^{2}\right\}$ satisfies the nonhomogeneous relation $\left(m^{2}+2 m\right)-2(m+n)^{2}+(m+2 n)^{2}-2\left(m+n^{2}\right)=0$,

Homogeneity

A homogeneous relation of degree s is a relation of the form

$$
a_{0} m^{s}+a_{1}\left(m+P_{1}(n)\right)^{s}+\ldots+a_{k}\left(m+P_{k}(n)\right)^{s}=0 .
$$

A family $\left\{P_{1}, \ldots, P_{k}\right\}$ is homogeneous if all the relations that it satisfies are sums of homogeneous relations.

For instance, the family $\left\{n, n^{2}, n+n^{2}\right\}$ satisfies only the relation

$$
m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0
$$

(up to scaling), hence it is homogeneous.
The family $\left\{n, 2 n, n^{2}\right\}$ satisfies the nonhomogeneous relation

$$
\left(m^{2}+2 m\right)-2(m+n)^{2}+(m+2 n)^{2}-2\left(m+n^{2}\right)=0,
$$

Homogeneity

A homogeneous relation of degree s is a relation of the form

$$
a_{0} m^{s}+a_{1}\left(m+P_{1}(n)\right)^{s}+\ldots+a_{k}\left(m+P_{k}(n)\right)^{s}=0 .
$$

A family $\left\{P_{1}, \ldots, P_{k}\right\}$ is homogeneous if all the relations that it satisfies are sums of homogeneous relations.

For instance, the family $\left\{n, n^{2}, n+n^{2}\right\}$ satisfies only the relation

$$
m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0
$$

(up to scaling), hence it is homogeneous.
The family $\left\{n, 2 n, n^{2}\right\}$ satisfies the nonhomogeneous relation

$$
\left(m^{2}+2 m\right)-2(m+n)^{2}+(m+2 n)^{2}-2\left(m+n^{2}\right)=0,
$$

hence it is not homogeneous.

Complexity conjecture holds for homogeneous families

Conjecture

The factor \mathcal{Z}_{s} is characteristic for $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ iff \mathcal{P} satisfies no relation of degree $s+1$ or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families \mathcal{P}

Examples:

(1) \mathcal{Z}_{1} (Kronecker factor) is characteristic for $\mathcal{P}=\left\{n, n^{2}, n+n^{2}\right\}$ because it satisfies one homogeneous relation up to scaling:

$$
m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0
$$

(this example was previously proved by Frantzikinakis)
(2) \mathcal{Z}_{1} (Kronecker factor) is characteristic for $\mathcal{P}=\left\{n, 2 n, n^{3}, 2 n^{3}\right\}$
because it only satisfies linear combinations of two homogeneous relations
$m-2(m+n)-(m+2 n)=0$ and $\quad m-2\left(m+n^{3}\right)-\left(m+2 n^{3}\right)=0$.

Complexity conjecture holds for homogeneous families

Conjecture

The factor \mathcal{Z}_{s} is characteristic for $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ iff \mathcal{P} satisfies no relation of degree $s+1$ or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families \mathcal{P}.

Examples:

(1) \mathcal{Z}_{1} (Kronecker factor) is characteristic for $\mathcal{P}=\left\{n, n^{2}, n+n^{2}\right\}$ because it satisfies one homogeneous relation up to scaling:

$$
m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0
$$

(this example was previously proved by Frantzikinakis)
(2) \mathcal{Z}_{1} (Kronecker factor) is characteristic for $\mathcal{P}=\left\{n, 2 n, n^{3}, 2 n^{3}\right\}$
because it only satisfies linear combinations of two homogeneous relations
$m-2(m+n)-(m+2 n)=0$ and $\quad m-2\left(m+n^{3}\right)-\left(m+2 n^{3}\right)=0$.

Complexity conjecture holds for homogeneous families

Conjecture

The factor \mathcal{Z}_{s} is characteristic for $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ iff \mathcal{P} satisfies no relation of degree $s+1$ or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families \mathcal{P}.

Examples:

(1) \mathcal{Z}_{1} (Kronecker factor) is characteristic for $\mathcal{P}=\left\{n, n^{2}, n+n^{2}\right\}$ because it satisfies one homogeneous relation up to scaling:

$$
m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0
$$

(this example was previously proved by Frantzikinakis)
(2) \mathcal{Z}_{1} (Kronecker factor) is characteristic for $\mathcal{P}=\left\{n, 2 n, n^{3}, 2 n^{3}\right\}$
because it only satisfies linear combinations of two homogeneous
relations
$m-2(m+n)-(m+2 n)=0$ and $m-2\left(m+n^{3}\right)-\left(m+2 n^{3}\right)=0$.

Complexity conjecture holds for homogeneous families

Conjecture

The factor \mathcal{Z}_{s} is characteristic for $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ iff \mathcal{P} satisfies no relation of degree $s+1$ or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families \mathcal{P}.

Examples:

(1) \mathcal{Z}_{1} (Kronecker factor) is characteristic for $\mathcal{P}=\left\{n, n^{2}, n+n^{2}\right\}$ because it satisfies one homogeneous relation up to scaling:

$$
m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0
$$

(this example was previously proved by Frantzikinakis)
(2) \mathcal{Z}_{1} (Kronecker factor) is characteristic for $\mathcal{P}=\left\{n, 2 n, n^{3}, 2 n^{3}\right\}$ because it only satisfies linear combinations of two homogeneous relations

$$
m-2(m+n)-(m+2 n)=0 \quad \text { and } \quad m-2\left(m+n^{3}\right)-\left(m+2 n^{3}\right)=0 .
$$

Complexity conjecture holds for homogeneous families

Conjecture

The factor \mathcal{Z}_{s} is characteristic for $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ iff \mathcal{P} satisfies no relation of degree $s+1$ or higher.

Theorem (K. 2021)

The conjecture holds for all homogeneous families \mathcal{P}.

Examples:

(1) \mathcal{Z}_{1} (Kronecker factor) is characteristic for $\mathcal{P}=\left\{n, n^{2}, n+n^{2}\right\}$ because it satisfies one homogeneous relation up to scaling:

$$
m-(m+n)-\left(m+n^{2}\right)+\left(m+n+n^{2}\right)=0
$$

(this example was previously proved by Frantzikinakis)
(2) \mathcal{Z}_{1} (Kronecker factor) is characteristic for $\mathcal{P}=\left\{n, 2 n, n^{3}, 2 n^{3}\right\}$ because it only satisfies linear combinations of two homogeneous relations

$$
m-2(m+n)-(m+2 n)=0 \quad \text { and } \quad m-2\left(m+n^{3}\right)-\left(m+2 n^{3}\right)=0 .
$$

More examples of homogeneous families

(1) Linear families $\left\{a_{1} n, \ldots, a_{k} n\right\}$;
(2) Families $\left\{a_{1} P(n), \ldots, a_{k} P(n)\right\}$;
(3) Linearly independent families such as $\left\{n, n^{2}, \ldots, n^{k}\right\}$
(C) Families satisfying only linear relations
$a_{0} m+a_{1}\left(m+P_{1}(n)\right)+\ldots+a_{k}\left(m+P_{k}(n)\right)=0$
and no higher relations, such as $\left\{n, 2 n, n^{3}, 2 n^{3}\right\}$

More examples of homogeneous families

(1) Linear families $\left\{a_{1} n, \ldots, a_{k} n\right\}$;
(2) Families $\left\{a_{1} P(n), \ldots, a_{k} P(n)\right\}$;
(3) Linearly independent families such as $\left\{n, n^{2}, \ldots, n^{k}\right\}$
(9) Families satisfying only linear relations

$$
a_{0} m+a_{1}\left(m+P_{1}(n)\right)+\ldots+a_{k}\left(m+P_{k}(n)\right)=0
$$

and no higher relations, such as $\left\{n, 2 n, n^{3}, 2 n^{3}\right\}$.

Families satisfying only linear relations

Corollary (K. 2021)

Suppose that a family \mathcal{P} satisfies only linear relations

$$
a_{0} m+a_{1}\left(m+P_{1}(n)\right)+\ldots+a_{k}\left(m+P_{k}(n)\right)=0
$$

and no higher order relations. Then the Kronecker factor \mathcal{Z}_{1} is characteristic for \mathcal{P}, i.e.

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} f_{1} \cdots T^{P_{k}(n)} f_{k} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{1}\right) \cdots T^{P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{1}\right) \quad \text { in } \quad L^{2}(\mu)
\end{aligned}
$$

for every totally ergodic system (X, \mathcal{X}, μ, T) and $f_{1}, \ldots, f_{k} \in L^{\infty}(\mu)$.

Proof: reduction to nilsystems

(1) We use Host-Kra's result to replace

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} T^{m} f_{0} \cdot T^{m+P_{1}(n)} f_{1} \cdots T^{m+P_{k}(n)} f_{k}
$$

by
$\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} \int_{X} T^{m} \mathbb{E}\left(f_{0} \mid \mathcal{Z}_{s}\right) \cdot T^{m+P_{1}(n)} \mathbb{E}\left(f_{1} \mid \mathcal{Z}_{s}\right) \cdots T^{m+P_{k}(n)} \mathbb{E}\left(f_{k} \mid \mathcal{Z}_{s}\right)$
for some $s \in \mathbb{N}$.
(2) We approximate the system by a totally ergodic nilsystem G / Γ.
(3) For an ergodic element $a \in G$, we find the closures of

$$
\left(a^{m} x, a^{m+P_{1}(n)} x, \ldots, a^{m+P_{k}(n)} x\right)_{n, m \in \mathbb{N}}
$$

inside G^{k+1} / Γ^{k+1} for $x \in G / \Gamma$.

Closure of polynomial sequences

Let G / Γ be a nilmanifold and $g(n)=g_{0} g_{1}^{n} g_{2}^{n^{2}} \cdots g_{s}^{n^{s}}$ be a polynomial sequence on G which is irrational.

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a homogeneous family and

$$
g^{D}(m, n)=\left(g(m), g\left(m+P_{1}(n)\right), \ldots, g\left(m+P_{k}(n)\right)\right)
$$

My main result gives an explicit description of the closure of g^{P} inside the product nilmanifold $(G / \Gamma)^{k+1}$

This result works if and only if \mathcal{P} is homogeneous.

Closure of polynomial sequences

Let G / Γ be a nilmanifold and $g(n)=g_{0} g_{1}^{n} g_{2}^{n^{2}} \cdots g_{s}^{n^{s}}$ be a polynomial sequence on G which is irrational.

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a homogeneous family and

$$
g^{P}(m, n)=\left(g(m), g\left(m+P_{1}(n)\right), \ldots, g\left(m+P_{k}(n)\right)\right) .
$$

My main result gives an explicit description of the closure of g^{P} inside the product nilmanifold $(G / \Gamma)^{k+1}$

This result works if and only if \mathcal{P} is homogeneous.

Closure of polynomial sequences

Let G / Γ be a nilmanifold and $g(n)=g_{0} g_{1}^{n} g_{2}^{n^{2}} \cdots g_{s}^{n^{s}}$ be a polynomial sequence on G which is irrational.

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a homogeneous family and

$$
g^{P}(m, n)=\left(g(m), g\left(m+P_{1}(n)\right), \ldots, g\left(m+P_{k}(n)\right)\right) .
$$

My main result gives an explicit description of the closure of g^{P} inside the product nilmanifold $(G / \Gamma)^{k+1}$.

This result works if and only if \mathcal{P} is homogeneous.

Closure of polynomial sequences

Let G / Γ be a nilmanifold and $g(n)=g_{0} g_{1}^{n} g_{2}^{n^{2}} \cdots g_{s}^{n^{s}}$ be a polynomial sequence on G which is irrational.

Let $\mathcal{P}=\left\{P_{1}, \ldots, P_{k}\right\}$ be a homogeneous family and

$$
g^{P}(m, n)=\left(g(m), g\left(m+P_{1}(n)\right), \ldots, g\left(m+P_{k}(n)\right)\right) .
$$

My main result gives an explicit description of the closure of g^{P} inside the product nilmanifold $(G / \Gamma)^{k+1}$.

This result works if and only if \mathcal{P} is homogeneous.

Application: equality of limits

Corollary (K. 2021)

Let (X, \mathcal{X}, μ, T) be a totally ergodic system and $f_{1}, \ldots, f_{4} \in L^{\infty}(\mu)$. Then

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot T^{n^{3}} f_{3} \cdot T^{2 n^{3}} f_{4} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} T^{n} f_{1} \cdot T^{2 n} f_{2} \cdot \underset{r \in[N]}{\mathbb{E}} T^{r} f_{3} \cdot T^{2 r} f_{4}
\end{aligned}
$$

Application: Multiple recurrence

Khintchine's recurrence theorem says that for every $\varepsilon>0$, the set

$$
\left\{n \in \mathbb{N}: \mu\left(A \cap T^{-n} A\right)>\mu(A)^{2}-\varepsilon\right\}
$$

is syndetic (i.e. it has bounded gaps).
It was proved by Bergelson, Host, Kra \& Ruzsa that for ergodic systems, the set
is syndetic for $k \leq 3$, but this can fail for higher k.
A similar multiple recurrence property has been proved e.g. for: (1) $\left\{n, n^{2}, \ldots, n^{k}\right\}$ (Frantzikinakis \& Kra 2005);
(3) $\{P(n), Q(n), P(n)+Q(n)\}$ (Frantzikinakis 2008).

Application: Multiple recurrence

Khintchine's recurrence theorem says that for every $\varepsilon>0$, the set

$$
\left\{n \in \mathbb{N}: \mu\left(A \cap T^{-n} A\right)>\mu(A)^{2}-\varepsilon\right\}
$$

is syndetic (i.e. it has bounded gaps).
It was proved by Bergelson, Host, Kra \& Ruzsa that for ergodic systems, the set

$$
\left\{n \in \mathbb{N}: \mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-k n} A\right)>\mu(A)^{k+1}-\varepsilon\right\}
$$

is syndetic for $k \leq 3$, but this can fail for higher k.

Application: Multiple recurrence

Khintchine's recurrence theorem says that for every $\varepsilon>0$, the set

$$
\left\{n \in \mathbb{N}: \mu\left(A \cap T^{-n} A\right)>\mu(A)^{2}-\varepsilon\right\}
$$

is syndetic (i.e. it has bounded gaps).
It was proved by Bergelson, Host, Kra \& Ruzsa that for ergodic systems, the set

$$
\left\{n \in \mathbb{N}: \mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-k n} A\right)>\mu(A)^{k+1}-\varepsilon\right\}
$$

is syndetic for $k \leq 3$, but this can fail for higher k.
A similar multiple recurrence property has been proved e.g. for:
(1) $\left\{n, n^{2}, \ldots, n^{k}\right\}$ (Frantzikinakis \& Kra 2005);
(3) $\{P(n), Q(n), P(n)+Q(n)\}$ (Frantzikinakis 2008)

Application: Multiple recurrence

Khintchine's recurrence theorem says that for every $\varepsilon>0$, the set

$$
\left\{n \in \mathbb{N}: \mu\left(A \cap T^{-n} A\right)>\mu(A)^{2}-\varepsilon\right\}
$$

is syndetic (i.e. it has bounded gaps).
It was proved by Bergelson, Host, Kra \& Ruzsa that for ergodic systems, the set

$$
\left\{n \in \mathbb{N}: \mu\left(A \cap T^{-n} A \cap \cdots \cap T^{-k n} A\right)>\mu(A)^{k+1}-\varepsilon\right\}
$$

is syndetic for $k \leq 3$, but this can fail for higher k.
A similar multiple recurrence property has been proved e.g. for:
(1) $\left\{n, n^{2}, \ldots, n^{k}\right\}$ (Frantzikinakis \& Kra 2005);
(2) $\{P(n), Q(n), P(n)+Q(n)\}$ (Frantzikinakis 2008).

Multiple recurrence for families of complexity 1

Corollary (K. 2021)

Let P_{1}, \ldots, P_{k} be integral polynomials satisfying only linear relations (and some technical assumptions on the coefficients).
Let (X, \mathcal{X}, μ, T) be an ergodic system and $A \in \mathcal{X}$ have positive measure.
For every $\varepsilon>0$, the set

$$
\left\{n \in \mathbb{N}: \mu\left(A \cap T^{-P_{1}(n)} A \cap \cdots \cap T^{-P_{k}(n)} A\right)>\mu(A)^{k+1}-\varepsilon\right\}
$$

is syndetic.

Open questions

(1) Does the complexity conjecture hold for nonhomogeneous families?
(2) Is it true that the complexity of a family of k polynomials is at most $k-1$?

then is it true that max $\operatorname{deg} Q_{i} \leq k-1$?

- What about pointwise convergence?
(3) What if we look at polynomial iterates of several commuting transformations, so averages of the form

Open questions

(1) Does the complexity conjecture hold for nonhomogeneous families?
(2) Is it true that the complexity of a family of k polynomials is at most $k-1$?
(3) If

then is it true that maxdeg $Q_{i} \leq k-1$?

- What about pointwise convergence?
© What if we look at polynomial iterates of several commuting transformations, so averages of the form

Open questions

(1) Does the complexity conjecture hold for nonhomogeneous families?
(2) Is it true that the complexity of a family of k polynomials is at most $k-1$?
(3) If

$$
Q_{0}(m)+Q_{1}\left(m+P_{1}(n)\right)+\ldots+Q_{k}\left(m+P_{k}(n)\right)=0
$$

then is it true that maxdeg $Q_{i} \leq k-1$?
(1) What about pointwise convergence?
(0) What if we look at polynomial iterates of several commuting transformations, so averages of the form

Open questions

(1) Does the complexity conjecture hold for nonhomogeneous families?
(2) Is it true that the complexity of a family of k polynomials is at most $k-1$?
(3) If

$$
Q_{0}(m)+Q_{1}\left(m+P_{1}(n)\right)+\ldots+Q_{k}\left(m+P_{k}(n)\right)=0
$$

then is it true that max $\operatorname{deg} Q_{i} \leq k-1$?
(1) What about pointwise convergence?
(- What if we look at polynomial iterates of several commuting transformations, so averages of the form

Open questions

(1) Does the complexity conjecture hold for nonhomogeneous families?
(2) Is it true that the complexity of a family of k polynomials is at most $k-1$?
(3) If

$$
Q_{0}(m)+Q_{1}\left(m+P_{1}(n)\right)+\ldots+Q_{k}\left(m+P_{k}(n)\right)=0
$$

then is it true that max $\operatorname{deg} Q_{i} \leq k-1$?
(1) What about pointwise convergence?
(0) What if we look at polynomial iterates of several commuting transformations, so averages of the form

$$
\frac{1}{N} \sum_{n=1}^{N} T_{1}^{P_{1}(n)} f_{1} \cdots T_{k}^{P_{k}(n)} f_{k} ?
$$

