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I will discuss how fusion categories provide a valuable tool 
for lattice statistical mechanics

For many, the story of topological quantum computation began with

Parallel with great discoveries in knot theory,  closely related results came from 
integrable statistical mechanics, including quantum-group algebras and conformal 
field theory. Such interplay allowed the development of fusion categories. 

But when you read the paper, you see



The prehistory of the Delaney diagram
according to a statistical mechanic

2d classical lattice models

quantum spin/anyon chains

Anisotropic limit

continuum limit

conformal field theory

graphical descriptionF-K

T-L algebraic description

subfactors

Jones Knot-link invariants

Jones

Fusion categories

Moore-Seiberg
Too many to name

And the rest is history…

quantum groups

Leningrad+Jimbo

P-S



Today

2d classical lattice models,

Fusion categories

algebraic description

quantum spin/anyon chains

Ask not what I can do for fusion categories,
ask what fusion categories can do for me.



Fusion categories allow one to construct topological 
defects both on the lattice and in the continuum

The partition function in the presence of topological defects is independent of 
local deformations of the defects. Just need to keep track of how they 
branch/fuse, and how they wrap around cycles. Schematically:

Topological defects generate non-invertible/categorical/
generalized ``dualities’’ and symmetries. 

Working in a Hilbert-space formalism, the defect-line creation operators necessarily 
commute with the Hamiltonian/transfer matrix. 



Canonical example is pre-prehistory: 
Kramers-Wannier duality

The key to generalizing K-W duality is to write lattice models in terms of 
fusion categories. Enables one to derive exact results without integrability.



Two ways to proceed 
(both in a talk and in research)

Bonus: one model I focus on turns out to be rather interesting 
in its own right, and probably experimentally realizable

One (``math style”) is to set up the general structure, show all you can show, and then 
maybe work out some examples. 

In a sentence:  We use 3d Turaev-Viro-Barrett-Westbury to construct 2d 
classical lattice models, quantum spin/anyon chains and their topological 
defects in one fell swoop.

The ``physics style” is to work out some examples in detail and then try to say 
something more general. 

In a sentence:  We use topological defects to relate a quartet of spin chains and 
give exact results for their physical properties. 

Aasen, Fendley and Mong

Eck and Fendley



One of the nice things about studying statistical 
mechanics is the contact between formalism and reality. 

Rydberg-atom arrays provide a way of realizing all sorts of interesting phases in 
lattice models. The exceptional ability to tune interactions allows one to carefully 
examine these phases and the transitions between them.

In the Rydberg blockade, each site is effectively a two-state system that can be 
viewed as empty or as occupied by a hard-core boson. The blockade means that 
neighbouring (or more) sites cannot both be occupied. 

Such “quantum simulators” have already revealed much interesting physics in 
strongly interacting systems. One exciting example is quantum scars.

expt:  Lukin group
theory:  Turner, Michailidis,

Abanin, Serbyn, Papic



Key example today: 
The integrable Rydberg-blockade square ladder

Getting there requires formal work, which turns out very interesting in its own right.

We find a one-parameter family of integrable Hamiltonians.

This ladder is related to the XXZ chain by a non-invertible “duality”. It also turns out 
to possess an unusual non-invertible symmetry. 

We also map out a three-parameter phase diagram using the integrable line, a non-
invertible symmetry, perturbation theory and numerics. (won’t get to) 



Outline

1. Writing the XXZ chain in terms of an algebra

2. A quartet of Hamiltonians obeying this algebra, all integrable

3. Non-invertible mappings and symmetries

4. The physics of the integrable Rydberg-blockade ladder

• Three-state antiferromagnet

• Ising zigzag ladder

• Rydberg-blockade ladder



1. ``Equivalences’’ via algebras

Aka Tutte polynomial
Aka Potts model partition function

aka six-vertex model/XXZ chain



Temperley and Lieb wrote transfer matrices of different models in terms of operators 
obeying the same algebra. Their work yielded many “equivalences”, i.e. linear identities 
between partition functions of e.g. Potts, XXZ, loop models. 

The Temperley-Lieb algebra also underlies the Jones polynomial. 

By now, many generalizations are known, including (at least) one for each simple Lie 
algebra G and each positive integer k, known as       . These yield both more general 

knot and link invariants, and interesting (integrable) lattice models.

One of these is quite elegant and useful, but has escaped much attention…

``Equivalence/duality’’ here means a linear 
identity between partition functions



The XXZ chain, algebraically
The Hilbert space is a chain of L two-state systems (on half-integer-labelled sites).

Hamiltonian (with periodic boundary conditions) written in terms of Pauli matrices:

Write                                             ,  with generators                defined as 

These generators commute when far apart, and less obviously satisfy

A solution of the Yang-Baxter equation follows solely from this algebra.

Any such model is integrable for any D 
Maassarani



2. A quartet of ``equivalent’’ Hamiltonians

a.   Zig-zag Ising ladder

Odd sites:

Even sites:

Thus two transverse-field Ising chains coupled by interaction around each triangle.

Martina, Protogenov and Verbus;  Finch;  Braylovskaya, Finch and Frahm;  
Gils et al;  Aasen, Fendley and Mong;   Lootens, Verstraete et al

Symmetry is only                 , not U(1):   need to be careful with ”equivalence”!



Writing in terms of domain walls gives a graphical presentation via the
domain walls of 3-state Potts satisfying the chromatic algebra

b.   Three-state Potts antiferromagnetic chain

Impose ``zero temperature’’ constraint that adjacent states are different,  
i.e. with each state labelled A, B or C, then AA, BB or CC are forbidden,

while e.g. ABCBCABACACAB is allowed.

changes state at site j if allowed, e.g.

gives energy D if changing state at site j not allowed, e.g.

j

j+1j-1

Generalises old work on classical model at  D = – 1/2.
Baxter; Saleur; Cardy, Jacobsen & Sokal; Delfino

j

j+1j-1

Fendley and Krushkal



To go further, exploit the fact that the S-P algebra follows 
naturally from the projectors of the fusion category SU(2)

The                 fusion rules are a truncated version of SU(2). For                , stop at spin 2.

Fusion with spin 1: 

Encode these rules in pictures, where line indicates fusion with spin 1

A fusion category is comprised of ``objects’’ that obey ``fusion rules’’.

0 1 2

The fusion category gives other Hamiltonians whose generators obey same algebra! 

4



c.  Integrable Rydberg-blockade ladder

0 1 2

1  2  1  1  0  1  0  1  1  2  1   2  1  1  1  2

Interpret as a ladder:     0 is particle on top rung, 2 on bottom, 1 is empty rung

Rules mean at most one particle per square. The Rydberg blockade!

1211010112121112 -> ebeteteebebeeeb

Using category, can construct ``height’’ (RSOS/IRF) models with nice properties. 
For                with degrees of freedom 0,1,2 obeying   ,

adjacent heights on a chain must be adjacent on the diagram  

Allowed configuration is 

t e b



Integrable Rydberg-blockade ladder

+ e -

where        annihilates a plus state,        swaps                     ,  and           = 0, 1 

depending on which of                            is on rung j.

No U(1), but only                   from flipping              on odd rungs or on even rungs.    

Using the category, find                 so that

Be careful with ``equivalent’’: 



3. Non-invertible mappings and symmetries

To use (known) XXZ physics with the Rydberg-blockade ladder, utilise exact but non-
invertible maps. Fusion categories and orbifolds give all four maps explicitly. 

Find                            and the Hamiltonians ``commute’’ e.g.

Integrable Rydberg-blockade ladder

3-state antiferromagnet

XXZ chain

Ising zig-zag ladder

Non-invertible because e.g.                                where       flips all spins.

Thus               has zero eigenvalues, and maps only work in certain sectors. 
Can use twisted boundary conditions to get others. 



Describe non-invertible mappings/symmetries 
using topological defects

Topological defect-line creation operators necessarily commute with the 
Hamiltonian/transfer matrix. They generate ”dualities” when they map between 
different models, and “symmetries” when the models are the same. 

The quotes are because these operators are typically non-unitary. Sometimes 
they are not even invertible. 

Aasen, Fendley and Mong

Theory 1

2

A topological defect provides an interface between the 
two ``equivalent’’ theories. Partition function is 
independent of deformations of path.

Do not need to impose integrability for such symmetries/dualities to exist.



Fusion categories provide a key tool

Types of topological defects are labelled by objects in the Drinfeld centre.  

The construction via T-V-B-W ensures they have nice properties.

In particular, they are topological! Deform them without changing the physics.

Also guarantee that the defects themselves satisfy fusion rules and F moves.



Transfer matrix/Hamiltonian

Easiest to work in a (Euclidean) space time (i.e. classical) picture. Degrees of freedom are
``heights’’ living on the sites of some lattice, e.g.

Basis elements of Hilbert space are allowed height configurations along zig-zag line. 

for R rows and periodicity in vertical direction

Hamiltonian is then found in a limit where 

Transfer matrix T then adds rows with appropriate Boltzmann weights. 



Inserting a defect

The defects have a weight depending on the adjacent heights: 

In the presence of the defect, the partition function is modified to 

Defect-line
creation operator:



To make defects topological, they must satisfy 
defect commutation relations

For      to be invariant under deformations of the defect’s path: 

Then

=

=

,

=
In tensor networks, these have been 
dubbed ``pulling-through’’ conditions:         

Verstraete et al



a b

Each object in the category yields defect weights satisfying the commutation relations.  Akin 
to braiding, but can define without going off of surface (objects are in the Drinfeld centre).

Proof of defect commutation relations is essentially: 

Do not need to impose integrability.

However, many (almost all?) critical integrable models can be built using categories.

Label of type
of defect

r

Category generalization of 
6j symbols, i.e. F symbols



Two types of topological defects in Ising 

spin-flip defect:

a b

a

b

For Ising, fluctuating degrees of freedom on only half the sites:              

a
b

a
b

duality defect:

a a

b b

Couplings on one side of duality 
defect are dual values of those on 
the other!



By either the abstract manipulations or using the explicit defect weights, find

Use commutation relations to move defect around. Thus for any path, partition 
functions on a disc are related as

In a category,

Identities between partition functions with different 
defect configuations

c

d

d

d

g
g



Kramers-Wannier duality of ising is not invertible:

Micro to macro
Micro to macro: defects fuse in the same way as the corresponding objects

=

spin-flip defect

+

In Ising category and CFT: 



Branching and fusing
Another huge payoff is that the category setup makes it straightforward to 
define junctions of these topological defects 

Defining 

gives the junction commutation relation



Lattice to continuum:
Defects themselves satisfy F moves

A little more work then gives

t'

b

sr

a

t

b

sr

a
Ignore lattice!



Duality and modular transformations on the torus

Use these F-moves to give an easy  graphical proof of the Ising relation:

A general basis for the toroidal partition functions is 

Can use F-moves find modular transformations exactly as a linear transformation:

S T



Non-invertible ``self-duality’’ of the Rydberg ladder

Integrable Rydberg-blockade ladder

3-state antiferromagnet

XXZ chain

Ising zig-zag ladder

This symmetry generator is not invertible because                                    

The map       is associated with the spin-½ object of SU(2)  .  Since4

where       is associated with the spin-1 object. By construction,         

Because it maps a Hilbert space to itself, we call this symmetry a self-duality.  

Turns out                            , where R is        transformation of 3-state antiferromagnet.  



Non-invertible symmetries of the Rydberg ladder

Another non-invertible symmetry of the Rydberg-blockade ladder is a remnant of the 
U(1) symmetry of the XXZ chain. However, the map      annihilates the generator Q.

Integrable Rydberg-blockade ladder

3-state antiferromagnet

XXZ chain

Ising zig-zag ladder

This symmetry survives perturbation!

Instead, can map         via                                            . Result commutes with  

It acts non-trivially on only half of the Hilbert space. Explicitly,, 



4. The physics of the integrable line

Phase diagram of XXZ

D

Critical ground state survives all mappings:   all models are critical for

-1 0 1

Free
fermion

Heisenberg
ferromagnet

Heisenberg antiferro;
KT transition

Exact ferromagnetic
ground states

Antiferromagnetic
broken order

Critical phase 

The effective field theory of XXZ is a free massless boson of radius R, where                  

``Equivalent’’ models are all c =1 CFTs, but not the same ones!



Phase diagram of integrable Rydberg-blockade ladder

D
-1 1

KT transition

Exact ground states
- e e - e e - e e - e e - Three-phase coexistenceCritical line

We thus have located an exact critical line in the Rydberg-blockade ladder!

Its effective CFT is a c =1 orbifold with 

Gapless, 

Three ground states for all D > 1 !

As                  , three ground states are 
e + e + e + e + e + e +
+ e + e + e + e + e + e

No conventional symmetry relates them, but self-duality does. 

e e e e e e e e e e e e  



Off the integrable line

Small critical bubble!
First-order transition at phase 
coexistence plane, including  
t=w=0 self-dual line.

First-order transitions:  blue/dashed 
second-order:  red/solid

Lines from perturbations or 
exact; dots from ED

Ising^2 transition from  t + D large limit

Find both chiral and non-chiral Potts transitions



Conclusions

• Models defined from fusion categories build in exact topological defects

• Provides concrete realisation of some non-invertible symmetries and 
``dualities’’

• Exact results and phase diagram for the Rydberg-blockade ladder

• Make contact with experiment!?!

• This algebraic approach to XXZ useful for other things?
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