Operator Preconditioning (OPC)

Ralf Hiptmair

Seminar for Applied Mathematics, ETH Zürich

One-World Numerical Analysis (OWNA) Seminar Series October 4, 2021 on ZOOM

Alle schwärmen von OPC: Aber welche Wirkung hat es?

OPC soll gesund, jung und schön machen – fast zu schön, um wahr zu sein, oder? Wir schauen uns den Stoff, der aus den Trauben

(www.womenshealth.de)

1

Finite element method (FEM)

Finite element method (FEM)

Boundary element method (BEM)

Finite element method (FEM)

Boundary element method (BEM)

Large sparse/compressed linear systems of equations Ax = b

Finite element method (FEM)

Boundary element method (BEM)

Large sparse/compressed linear systems of equations Ax = b

Finite element method (FEM)

Boundary element method (BEM)

Large sparse/compressed linear systems of equations Ax = b

Preconditioner for $\mathbf{A} \in \mathbb{R}^{n,n}$: Linear operator $\mathbf{C} : \mathbb{R}^n \to \mathbb{R}^n$,

 κ (CA) $\hat{=}$ spectral condition number

Linear variational problem: $(\ell \in V')$

 $u \in V$: $\mathbf{a}(u, v) = \ell(v) \quad \forall v \in V$.

(VP)

Linear variational problem: $(\ell \in V')$

$$u \in V$$
: $a(u, v) = \ell(v) \quad \forall v \in V$.

a : $V \times V \rightarrow \mathbb{C} \doteq$ bounded (sesqui-)linear form

(VP)

Linear variational problem: $(\ell \in V')$ $u \in V$: $a(u, v) = \ell(v) \quad \forall v \in V$. (VP) $a : V \times V \to \mathbb{C} \doteq$ bounded (sesqui-)linear form

 $\mathbf{a}(\cdot,\cdot) \quad \leftrightarrow \quad \text{linear operator} \quad A: V \to V' \ (A \in L(V, V')), \ \|A\| = \sup_{u,v} \frac{|\mathbf{a}(u,v)|}{\|u\|_V \|v\|_V} \ .$

Linear variational problem: $(\ell \in V')$ $u \in V$: $a(u, v) = \ell(v) \quad \forall v \in V$. (VP) $a : V \times V \to \mathbb{C} \doteq$ bounded (sesqui-)linear form

 $\mathbf{a}(\cdot,\cdot) \quad \leftrightarrow \quad \text{linear operator} \quad A: V \to V' \; (A \in L(V, V')), \; \|A\| = \sup_{u,v} \frac{|\mathbf{a}(u,v)|}{\|u\|_{V} \|v\|_{V}} \; .$

$$\sup_{\boldsymbol{v}\in\boldsymbol{V}}\frac{|\mathbf{a}(\boldsymbol{u},\boldsymbol{v})|}{\|\boldsymbol{v}\|_{\boldsymbol{V}}}\geq\gamma\|\boldsymbol{u}\|_{\boldsymbol{V}}\,\,\forall\boldsymbol{u}\in\boldsymbol{V}$$

Linear variational problem: $(\ell \in V')$ $u \in V$: $a(u, v) = \ell(v) \quad \forall v \in V$. (VP) $a: \textit{V} \times \textit{V} \rightarrow \mathbb{C} \triangleq$ bounded (sesqui-)linear form $a(\cdot, \cdot) \leftrightarrow \text{linear operator} A: V \to V' (A \in L(V, V')), ||A|| = \sup_{u,v} \frac{|a(u,v)|}{||u||_{v} \cdot ||V||_{v}}.$ $\sup_{v \in V} \frac{|\mathbf{a}(u, v)|}{\|v\|_{V}} \geq \gamma \|u\|_{V} \quad \forall u \in V \qquad \Leftrightarrow \qquad \|\mathbf{A}^{-1}\| \leq \gamma^{-1} .$

Linear variational problem: $(\ell \in V')$ $u \in V$: $a(u, v) = \ell(v) \quad \forall v \in V$. (VP) $a : V \times V \to \mathbb{C} \doteq$ bounded (sesqui-)linear form

 $\mathbf{a}(\cdot,\cdot) \quad \leftrightarrow \quad \text{linear operator} \quad A: V \to V' \; (A \in L(V, V')), \; \|A\| = \sup_{u,v} \frac{|\mathbf{a}(u,v)|}{\|u\|_V \|v\|_V} \; .$

$$\sup_{\boldsymbol{v}\in\boldsymbol{V}}\frac{|\mathbf{a}(\boldsymbol{u},\boldsymbol{v})|}{\|\boldsymbol{v}\|_{\boldsymbol{V}}}\geq\gamma\|\boldsymbol{u}\|_{\boldsymbol{V}}\,\,\forall\boldsymbol{u}\in\boldsymbol{V}\qquad\Leftrightarrow\qquad \left\|\boldsymbol{A}^{-1}\right\|\leq\gamma^{-1}\,.$$

 $(VP) \longrightarrow Ax = b, (A)_{ij} := a(b_j, b_i), A \in \mathbb{C}^{N,N}$

Linear variational problem: $(\ell \in V')$ $u \in V$: $a(u, v) = \ell(v) \quad \forall v \in V$. (VP) $a: \textit{V} \times \textit{V} \rightarrow \mathbb{C} \triangleq$ bounded (sesqui-)linear form $a(\cdot, \cdot) \leftrightarrow \text{linear operator} A: V \to V' (A \in L(V, V')), ||A|| = \sup_{v \in V} \frac{|a(u, v)|}{||u||_{v} ||v||_{v}}.$ $\sup_{v \in V} \frac{|\mathbf{a}(u, v)|}{\|V\|_{V}} \geq \gamma \|u\|_{V} \quad \forall u \in V \qquad \Leftrightarrow \qquad \|\mathbf{A}^{-1}\| \leq \gamma^{-1} .$ Replace $V \longrightarrow V_h := \text{Span} \{b_1, \dots, b_N\}, N := \dim V_h < \infty$,

 $(VP) \longrightarrow Ax = b, (A)_{ij} := a(b_j, b_i), A \in \mathbb{C}^{N,N}$

• V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $\bullet \quad A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h \quad (h\text{-uniformly}) \text{ stable}$

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h$ (*h*-uniformly) stable
 - Θ dim V_h = dim W_h =: N

h-uniform discrete inf-sup conditions, e.g.,

$$\exists c_A > 0: \quad \sup_{v_h \in V_h} \frac{|\mathbf{a}(u_h, v_h)|}{\|v_h\|_V} \ge c_A \|u_h\|_V \quad \forall u_h \in V_h, \ \forall h.$$

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $\bullet \quad A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h \quad (h\text{-uniformly}) \text{ stable}$
- Stable discrete duality pairing : sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \geq c_D \|w_h\|_W \quad \forall w_h \in W_h \ .$$

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that

•
$$A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h$$
 (*h*-uniformly) stable
• dim $V_h = \dim W_h =: N_h$

• Stable discrete duality pairing : sesqui-linear form $d \in L(V \times W, \mathbb{C})$

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $\bullet \quad A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h \quad (h\text{-uniformly}) \text{ stable}$
- Stable discrete duality pairing : sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \geq c_D \|w_h\|_W \quad \forall w_h \in W_h \ .$$

Spectral condition number

$$\kappa(\mathsf{D}^{-1}\mathsf{B}\mathsf{D}^{-H}\mathsf{A}) \leq \|A_h\| \, \|A_h^{-1}\| \, \, \|B_h\| \, \|B_h^{-1}\| \, rac{\|d\|^2}{c_D^2}$$

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $\bullet \quad A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h \quad (h\text{-uniformly}) \text{ stable}$
- Stable discrete duality pairing : sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \geq c_D \|w_h\|_W \quad \forall w_h \in W_h \ .$$

Spectral condition number

hber $\kappa(\mathbf{D}^{-1}\mathbf{B}\mathbf{D}^{-H}\mathbf{A}) \le ||A_h|| ||A_h^{-1}|| ||B_h|| ||B_h^{-1}|| \frac{||d||^2}{c_D^2}$ any Galerkin matrices

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $\bullet \quad A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h \quad (h\text{-uniformly}) \text{ stable}$
- Stable discrete duality pairing : sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \geq c_D \|w_h\|_W \quad \forall w_h \in W_h \ .$$

Spectral condition number

$$\kappa(\mathbf{D}^{-1}\mathbf{B}\mathbf{D}^{-H}\mathbf{A}) \le \|A_h\| \, \|A_h^{-1}\| \, \|B_h\| \, \|B_h^{-1}\| \, \|\frac{\|d\|}{c^2}$$

preconditioner

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $\bullet \quad A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h \quad (h\text{-uniformly}) \text{ stable}$
- Stable discrete duality pairing : sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \geq c_D \|w_h\|_W \quad \forall w_h \in W_h \ .$$

Spectral condition number

$$\kappa(D_h^{-1}B_hD_h^{-*}A_h) \leq \|A_h\| \, \|A_h^{-1}\| \, \, \|B_h\| \, \|B_h^{-1}\| \, rac{\|d\|^2}{c_D^2}$$

preconditioner

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $\bullet \quad A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h \quad (h\text{-uniformly}) \text{ stable}$
 - Θ dim V_h = dim W_h =: N
- Stable discrete duality pairing : sesqui-linear form $d \in L(V \times W, \mathbb{C})$

preconditioner

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \geq c_D \|w_h\|_W \quad \forall w_h \in W_h .$$

$$\kappa(\mathsf{A}^{H}\mathsf{C}^{H}\mathsf{C}\mathsf{A}) \leq \left(\|\mathcal{A}_{h}\| \, \|\mathcal{A}_{h}^{-1}\| \, \, \|\mathcal{B}_{h}\| \, \|\mathcal{B}_{h}^{-1}\| \, rac{\|d\|^{2}}{c_{D}^{2}}
ight)^{2}$$

 $\mathbf{C} = \mathbf{D}^{-1}\mathbf{B}\mathbf{D}^{-H}$

4

• V, W refl. Banach spaces, $A \in L(V, V')$, $B \in L(W, W')$ isomorphisms. • Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that • $A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h$ (*h*-uniformly) stable Θ dim V_h = dim W_h =: N • Stable discrete duality pairing : sesqui-linear form $d \in L(V \times W, \mathbb{C})$ $\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \geq c_D \|w_h\|_W \quad \forall w_h \in W_h .$ $\kappa(\mathbf{D}^{-1}\mathbf{B}\mathbf{D}^{-H}\mathbf{A}) \le \|A_h\| \, \|A_h^{-1}\| \, \|B_h\| \, \|B_h^{-1}\| \, \frac{\|d\|^2}{c^2}$ Spectral condition number $\mathbf{C} = \mathbf{D}^{-1}\mathbf{B}\mathbf{D}^{-H}$ preconditioner
The Plan

- (Simple) Abstract Framework
- Pinite Element Applications: Equivalent Operator Preconditioning
- 3 Boundary Element Applications: Calderón Preconditioning
- 4 Calderón Preconditioning for Screen Problems

What Next ?

- (Simple) Abstract Framework
- Pinite Element Applications: Equivalent Operator Preconditioning
- Boundary Element Applications: Calderón Preconditioning
- 4 Calderón Preconditioning for Screen Problems

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \geq c_D \|w_h\|_W \quad \forall w_h \in W_h \ .$$

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \ge c_D \|w_h\|_W \quad \forall w_h \in W_h$$

► $V \triangleq Hilbert space H$, inner product $(\cdot, \cdot)_H$, norm $\|\cdot\|_H$

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} rac{|d(v_h, w_h)|}{\|v_h\|_V} \geq c_D \|w_h\|_W \quad orall w_h \in W_h \ .$$

- ► $V \triangleq Hilbert space H$, inner product $(\cdot, \cdot)_H$, norm $\|\cdot\|_H$
- ▶ V_h $\hat{=}$ Galerkin trial/test space $H_h \subset H$, $N := \dim H_h < \infty$

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \ge c_D \|w_h\|_W \quad \forall w_h \in W_h$$

- ► $V \triangleq Hilbert space H$, inner product $(\cdot, \cdot)_H$, norm $\|\cdot\|_H$
- ▶ V_h $\hat{=}$ Galerkin trial/test space $H_h \subset H$, $N := \dim H_h < \infty$
- ▶ $A_h: H_h \mapsto H'_h$ induced by $a \in L(H \times H, \mathbb{C})$ with

$$\exists c_A > 0: \quad \sup_{v_h \in H_h} \frac{|a(u_h, v_h)|}{\|v_h\|_H} \ge c_A \|u_h\|_H \quad \forall u_h \in H_h, \forall h.$$

- V, W refl. Banach spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \ge c_D \|w_h\|_W \quad \forall w_h \in W_h$$

- ► $V \triangleq Hilbert space H$, inner product $(\cdot, \cdot)_H$, norm $\|\cdot\|_H$
- ▶ V_h $\hat{=}$ Galerkin trial/test space $H_h \subset H$, $N := \dim H_h < \infty$
- ▶ $A_h: H_h \mapsto H'_h$ induced by $a \in L(H \times H, \mathbb{C})$ with

$$\exists c_A > 0: \quad \sup_{v_h \in H_h} \frac{|a(u_h, v_h)|}{\|v_h\|_H} \ge c_A \|u_h\|_H \quad \forall u_h \in H_h, \forall h.$$

- *H*, *W* Hilbert spaces, $A \in L(H, H')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $H_h \subset H$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(H \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in H_h} rac{|d(v_h, w_h)|}{\|v_h\|_H} \geq c_D \|w_h\|_W \quad orall w_h \in W_h \ .$$

- ► $V \triangleq Hilbert space H$, inner product $(\cdot, \cdot)_H$, norm $\|\cdot\|_H$
- ▶ V_h \doteq Galerkin trial/test space $H_h \subset H$, $N := \dim H_h < \infty$
- ▶ $A_h: H_h \mapsto H'_h$ induced by $a \in L(H \times H, \mathbb{C})$ with

$$\exists c_A > 0: \quad \sup_{v_h \in H_h} \frac{|a(u_h, v_h)|}{\|v_h\|_H} \ge c_A \|u_h\|_H \quad \forall u_h \in H_h, \forall h.$$

- *H*, *W* Hilbert spaces, $A \in L(H, H')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $H_h \subset H$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(H \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in H_h} \frac{|d(v_h, w_h)|}{\|v_h\|_H} \geq c_D \|w_h\|_W \quad \forall w_h \in W_h$$

$$V = , W_h = ,$$

$$B$$

$$d(\cdot, \cdot)$$

- *H*, *W* Hilbert spaces, $A \in L(H, H')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $H_h \subset H$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(H \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in H_h} rac{|d(v_h, w_h)|}{\|v_h\|_H} \geq c_D \|w_h\|_W \quad orall w_h \in W_h$$

- *H*, *W* Hilbert spaces, $A \in L(H, H')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $H_h \subset H$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(H \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in H_h} \frac{|d(v_h, w_h)|}{\|v_h\|_H} \ge c_D \|w_h\|_W \quad \forall w_h \in W_h$$

$$V = H, \quad W_h = H_h,$$

$$B \in L(H, H') \quad \leftrightarrow \quad (\cdot, \cdot)_H$$

$$d(\cdot, \cdot)$$

- *H*, *W* Hilbert spaces, $A \in L(H, H')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $H_h \subset H$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(H \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in H_h} \frac{|d(v_h, w_h)|}{\|v_h\|_H} \ge c_D \|w_h\|_W \quad \forall w_h \in W_h$$

$$V = H, \quad W_h = H_h,$$

$$B \in L(H, H') \iff (\cdot, \cdot)_H$$

$$d(\cdot, \cdot) := (\cdot, \cdot)_H \quad [B = D!]$$

- *H*, *W* Hilbert spaces, $A \in L(H, H')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $H_h \subset H$, $W_h \subset W$ such that
 - $A_h := A_{|H_h} : H_h \mapsto H'_h, B_h := B_{|W_h} : W_h \mapsto W'_h$ (*h*-uniformly) stable • dim $H_h = \dim W_h =: N$
- Stable discrete duality pairing: sesqui-linear form $d \in L(H \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in H_h} rac{|d(v_h, w_h)|}{\|v_h\|_H} \geq c_D \|w_h\|_W \quad orall w_h \in W_h \ .$$

$$V = H, \quad W_h = H_h,$$

$$B \in L(H, H') \quad \leftrightarrow \quad (\cdot, \cdot)_H$$

$$d(\cdot, \cdot) := (\cdot, \cdot)_H \quad [B = D!]$$

9
$$\mathbf{B} = \mathbf{D} = \mathbf{D}^H$$
 (Gram matrix)

- *H*, *W* Hilbert spaces, $A \in L(H, H')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $H_h \subset H$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(H \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in H_h} rac{|d(v_h, w_h)|}{\|v_h\|_H} \geq c_D \|w_h\|_W \quad orall w_h \in W_h \; .$$

$$V = H, \quad W_h = H_h,$$

$$B \in L(H, H') \quad \leftrightarrow \quad (\cdot, \cdot)_H$$

$$d(\cdot, \cdot) := (\cdot, \cdot)_H \quad [B = D!]$$

$$B = D = D^{H} \text{ (Gram matrix)}$$

$$c_{D} = ||d|| = ||B_{h}|| = ||B_{h}^{-1}|| = 1$$

- *H*, *W* Hilbert spaces, $A \in L(H, H')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $H_h \subset H$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(H \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in H_h} rac{|d(v_h, w_h)|}{\|v_h\|_H} \geq c_D \|w_h\|_W \quad orall w_h \in W_h \ .$$

$$V = H, \quad W_h = H_h,$$

$$B \in L(H, H') \quad \leftrightarrow \quad (\cdot, \cdot)_H$$

$$d(\cdot, \cdot) := (\cdot, \cdot)_H \quad [B = D!]$$

$$B = D = D^{H} \text{ (Gram matrix)}$$

$$c_{D} = \|d\| = \|B_{h}\| = \|B_{h}^{-1}\| = 1$$

$$\kappa$$
(**D**⁻¹**BD**^{-H}**A**)

- *H*, *W* Hilbert spaces, $A \in L(H, H')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $H_h \subset H$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(H \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in H_h} rac{|d(v_h, w_h)|}{\|v_h\|_H} \geq c_D \|w_h\|_W \quad orall w_h \in W_h \ .$$

$$V = H, \quad W_h = H_h,$$

$$B \in L(H, H') \iff (\cdot, \cdot)_H$$

$$d(\cdot, \cdot) := (\cdot, \cdot)_H \quad [B = D!]$$

$$B = D = D^{H} \text{ (Gram matrix)}$$

$$c_{D} = \|d\| = \|B_{h}\| = \|B_{h}^{-1}\| = 1$$

 $\kappa(\mathbf{D}^{-1}\mathbf{B}\mathbf{D}^{-H}\mathbf{A}) = \kappa(\mathbf{B}^{-1}\mathbf{A})$

- *H*, *W* Hilbert spaces, $A \in L(H, H')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $H_h \subset H$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(H \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in H_h} rac{|d(v_h, w_h)|}{\|v_h\|_H} \geq c_D \|w_h\|_W \quad orall w_h \in W_h \ .$$

$$V = H, \quad W_h = H_h,$$

$$B \in L(H, H') \quad \leftrightarrow \quad (\cdot, \cdot)_H$$

$$d(\cdot, \cdot) := (\cdot, \cdot)_H \quad [B = D!]$$

$$B = D = D^{H} \text{ (Gram matrix)}$$

$$c_{D} = ||d|| = ||B_{h}|| = ||B_{h}^{-1}|| = 1$$

$$\kappa(\mathbf{D}^{-1}\mathbf{B}\mathbf{D}^{-H}\mathbf{A}) = \kappa(\mathbf{B}^{-1}\mathbf{A}) \le \|A_h\| \left\|A_h^{-1}\right\| = \frac{\|a\|}{c_A}$$

$$\kappa(\mathbf{D}^{-1}\mathbf{B}\mathbf{D}^{-H}\mathbf{A}) = \kappa(\mathbf{B}^{-1}\mathbf{A}) \le \|\mathbf{A}_h\| \left\|\mathbf{A}_h^{-1}\right\| = \frac{\|\mathbf{a}\|}{c_A}$$

- *H*, *W* Hilbert spaces, $A \in L(H, H')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $H_h \subset H$, $W_h \subset W$ such that
- Stable discrete duality pairing: sesqui-linear form $d \in L(H \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in H_h} rac{|d(v_h, w_h)|}{\|v_h\|_H} \geq c_D \|w_h\|_W \quad orall w_h \in W_h \ .$$

$$V = H, \quad W_h = H_h,$$

$$B \in L(H, H') \quad \leftrightarrow \quad (\cdot, \cdot)_H$$

$$d(\cdot, \cdot) := (\cdot, \cdot)_H \quad [B = D!]$$

$$B = D = D^{H} \text{ (Gram matrix)}$$

$$c_{D} = ||d|| = ||B_{h}|| = ||B_{h}^{-1}|| = 1$$

$$\kappa(\mathbf{D}^{-1}\mathbf{B}\mathbf{D}^{-H}\mathbf{A}) = \kappa(\mathbf{B}^{-1}\mathbf{A}) \le \|A_h\| \left\|A_h^{-1}\right\| = \frac{\|a\|}{c_A}$$

A joke: Do you know how a mathematician

A joke: Do you know how a mathematician

stove

A joke: Do you know how a mathematician

stove

A joke: Do you know how a mathematician

stove

Do you know how a mathematician ... A joke:

Stokes problemMixed magnetostatic problem $H = (H_0^1(\Omega))^d \times L_0^2(\Omega)$ $H = H_0(\operatorname{curl}; \Omega) \times H_0^1(\Omega)$ $a\left(\begin{pmatrix} \mathbf{u}\\ p\end{pmatrix}, \begin{pmatrix} \mathbf{v}\\ q\end{pmatrix}\right) = \begin{pmatrix} (\nabla \mathbf{u}, \nabla \mathbf{v})_0 + \\ (\operatorname{div} \mathbf{u}, q)_0 + \\ (\operatorname{div} \mathbf{v}, p)_0 \end{pmatrix}$ $a\left(\begin{pmatrix} \mathbf{u}\\ p\end{pmatrix}, \begin{pmatrix} \mathbf{v}\\ q\end{pmatrix}\right) = \begin{pmatrix} (\operatorname{curl} \mathbf{u}, \operatorname{curl} \mathbf{v})_0 + \\ (\mathbf{u}, \operatorname{grad} q)_0 + \\ (\mathbf{v}, \operatorname{grad} p)_0 \end{pmatrix}$

Assumption: Uniform LBB-condition for pairs of conforming FE spaces

Assumption: Uniform LBB-condition for pairs of conforming FE spaces

Eddy current problem in frequency domain ($\sigma > 0$):

 $H = H_0(\operatorname{curl}; \Omega)$, $c(\boldsymbol{u}, \boldsymbol{v}) = (\operatorname{curl} \boldsymbol{u}, \operatorname{curl} \boldsymbol{v})_0 + \imath \sigma (\boldsymbol{u}, \boldsymbol{v})_0$.

Eddy current problem in frequency domain ($\sigma > 0$):

 $H = H_0(\operatorname{curl}; \Omega)$, $c(u, v) = (\operatorname{curl} u, \operatorname{curl} v)_0 + \imath \sigma (u, v)_0$.

$$egin{aligned} & c(oldsymbol{u},oldsymbol{v}) \leq \left(\| \mathbf{curl}\,oldsymbol{u} \|_0^2 + \sigma \, \|oldsymbol{u}\|_0^2
ight)^rac{1}{2} \left(\| \mathbf{curl}\,oldsymbol{v} \|_0^2 + \sigma \, \|oldsymbol{v}\|_0^2 + \sigma \, \|oldsymbol{v}\|_0^2
ight)^rac{1}{2} \ , \ & |c(oldsymbol{u},oldsymbol{u})| \geq rac{1}{\sqrt{2}} (\| \mathbf{curl}\,oldsymbol{u} \|_0^2 + \sigma \, \|oldsymbol{u}\|_0^2) \ . \end{aligned}$$

Eddy current problem in frequency domain ($\sigma > 0$):

 $H = H_0(\operatorname{curl}; \Omega)$, $c(u, v) = (\operatorname{curl} u, \operatorname{curl} v)_0 + \imath \sigma (u, v)_0$.

$$egin{aligned} & c(oldsymbol{u},oldsymbol{v}) \leq \left(\| \mathbf{curl}\,oldsymbol{u} \|_0^2 + \sigma \, \|oldsymbol{u}\|_0^2
ight)^rac{1}{2} \left(\| \mathbf{curl}\,oldsymbol{v} \|_0^2 + \sigma \, \|oldsymbol{v}\|_0^2
ight)^rac{1}{2} \ , \ |c(oldsymbol{u},oldsymbol{u})| \geq rac{1}{\sqrt{2}} (\| \mathbf{curl}\,oldsymbol{u} \|_0^2 + \sigma \, \|oldsymbol{u}\|_0^2) \ . \end{aligned}$$

Galerkin discretization: edge finite elements on triangulation of Ω (\rightarrow **A**)

Eddy current problem in frequency domain ($\sigma > 0$):

 $H = H_0(\operatorname{curl}; \Omega)$, $c(u, v) = (\operatorname{curl} u, \operatorname{curl} v)_0 + \imath \sigma (u, v)_0$.

$$\begin{aligned} c(\boldsymbol{u},\boldsymbol{v}) &\leq \left(\|\mathbf{curl}\,\boldsymbol{u}\|_0^2 + \sigma \,\|\boldsymbol{u}\|_0^2 \right)^{\frac{1}{2}} \left(\|\mathbf{curl}\,\boldsymbol{v}\|_0^2 + \sigma \,\|\boldsymbol{v}\|_0^2 \right)^{\frac{1}{2}} ,\\ |c(\boldsymbol{u},\boldsymbol{u})| &\geq \frac{1}{\sqrt{2}} (\|\mathbf{curl}\,\boldsymbol{u}\|_0^2 + \sigma \,\|\boldsymbol{u}\|_0^2) . \end{aligned}$$

Galerkin discretization: edge finite elements on triangulation of Ω (\rightarrow **A**)

Preconditioner: Inverse of Galerkin matrix $(\rightarrow \mathbf{B})$ for $(\mathbf{u}, \mathbf{v})_{\mathcal{H}} := (\mathbf{curl} \, \mathbf{u}, \mathbf{curl} \, \mathbf{v})_0 + \sigma (\mathbf{u}, \mathbf{v})_0 , \quad \mathbf{u}, \mathbf{v} \in \mathbf{H}_0(\mathbf{curl}; \Omega) .$

Eddy current problem in frequency domain ($\sigma > 0$):

 $H = H_0(\operatorname{curl}; \Omega)$, $c(u, v) = (\operatorname{curl} u, \operatorname{curl} v)_0 + \imath \sigma (u, v)_0$.

$$\begin{aligned} c(\boldsymbol{u},\boldsymbol{v}) &\leq \left(\|\mathbf{curl}\,\boldsymbol{u}\|_0^2 + \sigma \,\|\boldsymbol{u}\|_0^2 \right)^{\frac{1}{2}} \left(\|\mathbf{curl}\,\boldsymbol{v}\|_0^2 + \sigma \,\|\boldsymbol{v}\|_0^2 \right)^{\frac{1}{2}} ,\\ |c(\boldsymbol{u},\boldsymbol{u})| &\geq \frac{1}{\sqrt{2}} (\|\mathbf{curl}\,\boldsymbol{u}\|_0^2 + \sigma \,\|\boldsymbol{u}\|_0^2) . \end{aligned}$$

Galerkin discretization: edge finite elements on triangulation of Ω (\rightarrow **A**)

Preconditioner: Inverse of Galerkin matrix ($\rightarrow B$) for $(\boldsymbol{u}, \boldsymbol{v})_{H} := (\operatorname{curl} \boldsymbol{u}, \operatorname{curl} \boldsymbol{v})_{0} + \sigma (\boldsymbol{u}, \boldsymbol{v})_{0}, \quad \boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{H}_{0}(\operatorname{curl}; \Omega).$

Abstract theory

$$\kappa(\mathbf{BA}) \leq \sqrt{2}$$
What Next ?

- (Simple) Abstract Framework
- 2 Finite Element Applications: Equivalent Operator Preconditioning
- 3 Boundary Element Applications: Calderón Preconditioning
- 4 Calderón Preconditioning for Screen Problems

ho Γ $\hat{=}$ boundary of a domain $\Omega \subset \mathbb{R}^3$, wave number k > 0

 $\succ \text{ Hilbert space } \boldsymbol{V} = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) := \{ \boldsymbol{\nu} \in H_{\mathbf{t}}^{-\frac{1}{2}}(\Gamma), \operatorname{div}_{\Gamma} \boldsymbol{\nu} \in H^{-\frac{1}{2}}(\Gamma) \}$

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{\boldsymbol{e}^{i\boldsymbol{k}|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y})\cdot\boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \mathrm{div}_{\Gamma}\boldsymbol{u}(\boldsymbol{y}) \, \mathrm{div}_{\Gamma}\boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}\boldsymbol{S}(\boldsymbol{y},\boldsymbol{x}) \, .$$

ho Γ $\hat{=}$ boundary of a domain $\Omega \subset \mathbb{R}^3$, wave number k > 0

 $\succ \text{ Hilbert space } \boldsymbol{V} = H^{-1/2}(\text{div}_{\Gamma}, \Gamma) := \{ \boldsymbol{v} \in H_{\mathbf{t}}^{-\frac{1}{2}}(\Gamma), \text{div}_{\Gamma} \boldsymbol{v} \in H^{-\frac{1}{2}}(\Gamma) \}$

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{e^{ik|\boldsymbol{\lambda}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x}) \, .$$

trace space of $\boldsymbol{H}(\operatorname{curl};\Omega)$

ho Γ $\hat{=}$ boundary of a domain $\Omega \subset \mathbb{R}^3$, wave number k > 0

 $\succ \text{ Hilbert space } \boldsymbol{V} = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) := \{ \boldsymbol{\nu} \in H_{\mathbf{t}}^{-\frac{1}{2}}(\Gamma), \operatorname{div}_{\Gamma} \boldsymbol{\nu} \in H^{-\frac{1}{2}}(\Gamma) \}$

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{e^{i\boldsymbol{k}|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x})$$

Galerkin discretization \succ surface edge/RWG elements (space V_h)

ho Γ $\hat{=}$ boundary of a domain $\Omega \subset \mathbb{R}^3$, wave number k > 0

 $\succ \text{ Hilbert space } \boldsymbol{V} = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) := \{ \boldsymbol{v} \in H_{\mathbf{t}}^{-\frac{1}{2}}(\Gamma), \operatorname{div}_{\Gamma} \boldsymbol{v} \in H^{-\frac{1}{2}}(\Gamma) \}$

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{e^{ik|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x}) \, .$$

Galerkin discretization \succ surface edge/RWG elements (space V_h)

ho Γ $\hat{=}$ boundary of a domain $\Omega \subset \mathbb{R}^3$, wave number k > 0

 $\succ \text{ Hilbert space } \boldsymbol{V} = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) := \{ \boldsymbol{v} \in H_{\mathbf{t}}^{-\frac{1}{2}}(\Gamma), \operatorname{div}_{\Gamma} \boldsymbol{v} \in H^{-\frac{1}{2}}(\Gamma) \}$

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{e^{i\boldsymbol{k}|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x})$$

Galerkin discretization \succ surface edge/RWG elements (space V_h)

ho Γ $\hat{=}$ boundary of a domain $\Omega \subset \mathbb{R}^3$, wave number k > 0

 $\succ \text{ Hilbert space } \boldsymbol{V} = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) := \{ \boldsymbol{\nu} \in H_{\mathbf{t}}^{-\frac{1}{2}}(\Gamma), \operatorname{div}_{\Gamma} \boldsymbol{\nu} \in H^{-\frac{1}{2}}(\Gamma) \}$

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{e^{i\boldsymbol{k}|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x})$$

Galerkin discretization \succ surface edge/RWG elements (space V_h)

If $k \neq$ interior resonant frequency of Ω , then $a_{|V_h}$ satisfies *h*-uniform inf-sup condition on sufficiently fine and shape regular meshes.

- *V*, *W* Hilbert spaces, $A \in L(V, V')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h$ (*h*-uniformly) stable • $\dim V_h = \dim W_h =: N$
- Stable discrete duality pairing: sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \geq c_D \|w_h\|_W \quad \forall w_h \in W_h \ .$$

- V, W Hilbert spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h$ (*h*-uniformly) stable • $\dim V_h = \dim W_h =: N$
- Stable discrete duality pairing: sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \geq c_D \|w_h\|_W \quad \forall w_h \in W_h \ .$$

- V, W Hilbert spaces, $A \in L(V, V'), B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h$ (*h*-uniformly) stable • $\dim V_h = \dim W_h =: N$
- Stable discrete duality pairing: sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \geq c_D \|w_h\|_W \quad \forall w_h \in W_h \ .$$

- *V*, *W* Hilbert spaces, $A \in L(V, V')$, $B \in L(W, W')$ isomorphisms.
- Finite dimensional trial/test spaces $V_h \subset V$, $W_h \subset W$ such that
 - $A_h := A_{|V_h} : V_h \mapsto V'_h, B_h := B_{|W_h} : W_h \mapsto W'_h$ (*h*-uniformly) stable • $\dim V_h = \dim W_h =: N$
- Stable discrete duality pairing: sesqui-linear form $d \in L(V \times W, \mathbb{C})$

$$\exists c_D > 0: \quad \sup_{v_h \in V_h} \frac{|d(v_h, w_h)|}{\|v_h\|_V} \ge c_D \|w_h\|_W \quad \forall w_h \in W_h .$$

$$\textbf{Thm.:} \qquad \exists c > 0: \sup_{\boldsymbol{v} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)} \frac{|\int_{\Gamma} \boldsymbol{u} \cdot (\bar{\boldsymbol{v}} \times \boldsymbol{n}) \, \mathrm{d}S|}{\|\boldsymbol{v}\|_{-\frac{1}{2}, \operatorname{div}_{\Gamma}}} \geq c \, \|\boldsymbol{u}\|_{-\frac{1}{2}, \operatorname{div}_{\Gamma}} \, \, \forall \boldsymbol{u} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$$

 $\blacktriangleright W = V = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$

 $\blacktriangleright W = V = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$

• operator $B: W \mapsto W'$ induced by same bilinear form $a(\cdot, \cdot)$

 $\text{Thm.:} \qquad \exists c > 0: \sup_{\boldsymbol{v} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)} \frac{|\int_{\Gamma} \boldsymbol{u} \cdot (\bar{\boldsymbol{v}} \times \boldsymbol{n}) \, \mathrm{d}\boldsymbol{S}|}{\|\boldsymbol{v}\|_{-\frac{1}{2}, \operatorname{div}_{\Gamma}}} \geq c \, \|\boldsymbol{u}\|_{-\frac{1}{2}, \operatorname{div}_{\Gamma}} \, \, \forall \boldsymbol{u} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$

- $\blacktriangleright W = V = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$
- ▶ operator $B: W \mapsto W'$ induced by same bilinear form $a(\cdot, \cdot)$
- Duality pairing $d(\boldsymbol{u}, \boldsymbol{v}) := \int_{\Gamma} \boldsymbol{u} \cdot (\bar{\boldsymbol{v}} \times \boldsymbol{n}) dS, \quad \boldsymbol{u}, \boldsymbol{v} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$

 $\textbf{Thm.:} \qquad \exists c > 0: \sup_{\boldsymbol{v} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)} \frac{|\int_{\Gamma} \boldsymbol{u} \cdot (\bar{\boldsymbol{v}} \times \boldsymbol{n}) \, \mathrm{d}\boldsymbol{S}|}{\|\boldsymbol{v}\|_{-\frac{1}{2}, \operatorname{div}_{\Gamma}}} \geq c \, \|\boldsymbol{u}\|_{-\frac{1}{2}, \operatorname{div}_{\Gamma}} \, \, \forall \boldsymbol{u} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$

 $\blacktriangleright W = V = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$

- operator $B: W \mapsto W'$ induced by same bilinear form $a(\cdot, \cdot)$
- Duality pairing $d(\boldsymbol{u}, \boldsymbol{v}) := \int_{\Gamma} \boldsymbol{u} \cdot (\bar{\boldsymbol{v}} \times \boldsymbol{n}) dS, \quad \boldsymbol{u}, \boldsymbol{v} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$

 $\textbf{Thm.:} \qquad \exists c > 0: \sup_{\boldsymbol{v} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)} \frac{|\int_{\Gamma} \boldsymbol{u} \cdot (\bar{\boldsymbol{v}} \times \boldsymbol{n}) \, \mathrm{d}\boldsymbol{S}|}{\|\boldsymbol{v}\|_{-\frac{1}{2}, \operatorname{div}_{\Gamma}}} \geq c \, \|\boldsymbol{u}\|_{-\frac{1}{2}, \operatorname{div}_{\Gamma}} \, \, \forall \boldsymbol{u} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$

- $\blacktriangleright W = V = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$
- operator $B: W \mapsto W'$ induced by same bilinear form $a(\cdot, \cdot)$
- ► Duality pairing $d(\boldsymbol{u}, \boldsymbol{v}) := \int_{\Gamma} \boldsymbol{u} \cdot (\bar{\boldsymbol{v}} \times \boldsymbol{n}) \, \mathrm{d}\boldsymbol{S}, \quad \boldsymbol{u}, \boldsymbol{v} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$
- "Temptation": $W_h = V_h$

 $\textbf{Thm.:} \qquad \exists c > 0: \sup_{\boldsymbol{v} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)} \frac{|\int_{\Gamma} \boldsymbol{u} \cdot (\bar{\boldsymbol{v}} \times \boldsymbol{n}) \, \mathrm{d}\boldsymbol{S}|}{\|\boldsymbol{v}\|_{-\frac{1}{2}, \operatorname{div}_{\Gamma}}} \ge c \, \|\boldsymbol{u}\|_{-\frac{1}{2}, \operatorname{div}_{\Gamma}} \, \, \forall \boldsymbol{u} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$

- $\blacktriangleright W = V = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$
- ▶ operator $B: W \mapsto W'$ induced by same bilinear form $a(\cdot, \cdot)$
- ► Duality pairing $d(\boldsymbol{u}, \boldsymbol{v}) := \int_{\Gamma} \boldsymbol{u} \cdot (\bar{\boldsymbol{v}} \times \boldsymbol{n}) dS, \quad \boldsymbol{u}, \boldsymbol{v} \in H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$
- "Temptation": $W_h = V_h$

This is flawed ! S. CHRISTIANSEN AND J.-C. NÉDÉLEC, A preconditioner for the electric field integral equation based on Calderón formulas, SIAM J. Numer. Anal., 40 (2002), pp. 1100–1135.

 \exists subspace $N_h \subset V_h$, C, c > 0: dim $N_h \ge c \dim V_h$ such that

$$\forall \boldsymbol{u}_h \in \boldsymbol{N}_h: \quad \sup_{\boldsymbol{v}_h \in \boldsymbol{V}_h} \frac{d(\boldsymbol{u}_h, \boldsymbol{v}_h)}{\|\boldsymbol{v}_h\|_{-\frac{1}{2}, \operatorname{div}_{\Gamma}}} \leq \boldsymbol{C} h^{1/2} \|\boldsymbol{u}_h\|_{-\frac{1}{2}, \operatorname{div}_{\Gamma}} \quad \Rightarrow \quad \boldsymbol{c}_D \to \boldsymbol{0} \quad \text{for} \quad h \to \boldsymbol{0} \; .$$

• $V = H^{-\frac{1}{2}}(\Gamma)$ (dual of trace space for $H^{1}(\Omega)$)

- $V = H^{-\frac{1}{2}}(\Gamma)$ (dual of trace space for $H^{1}(\Omega)$)
- Single layer boundary integral operator $A: V \mapsto V'$ for $-\Delta$

$$\longleftrightarrow \quad a(\varphi,\psi) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\mathbf{x}-\mathbf{y}|} \,\varphi(\mathbf{x}) \,\psi(\mathbf{y}) \,\mathrm{d}S(\mathbf{x},\mathbf{y}) \;.$$

- $V = H^{-\frac{1}{2}}(\Gamma)$ (dual of trace space for $H^{1}(\Omega)$)
- Single layer boundary integral operator $A: V \mapsto V'$ for $-\Delta$

$$\longleftrightarrow \quad a(\varphi,\psi) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\mathbf{x}-\mathbf{y}|} \,\varphi(\mathbf{x}) \,\psi(\mathbf{y}) \,\mathrm{d}S(\mathbf{x},\mathbf{y}) \;.$$

▶ Duality pairing between $V = H^{-\frac{1}{2}}(\Gamma)$ and $W = H^{\frac{1}{2}}(\Gamma)$:

- $V = H^{-\frac{1}{2}}(\Gamma)$ (dual of trace space for $H^{1}(\Omega)$)
- Single layer boundary integral operator $A: V \mapsto V'$ for $-\Delta$

$$\longleftrightarrow \quad a(\varphi,\psi) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\mathbf{x}-\mathbf{y}|} \,\varphi(\mathbf{x}) \,\psi(\mathbf{y}) \,\mathrm{d}S(\mathbf{x},\mathbf{y}) \;.$$

• Duality pairing between $V = H^{-\frac{1}{2}}(\Gamma)$ and $W = H^{\frac{1}{2}}(\Gamma)$:

$$d(u, v) := \int_{\Gamma} u v \, \mathrm{d}S$$
 b trivially stable

• Hypersingular boundary integral operator $B: W \to W'$

$$\leftrightarrow b(u,v) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \operatorname{curl}_{\Gamma} u(\mathbf{x}) \cdot \operatorname{curl}_{\Gamma} v(\mathbf{y}) \, \mathrm{d}S(\mathbf{x},\mathbf{y}) + \int_{\Gamma} u \, \mathrm{d}S \int_{\Gamma} v \, \mathrm{d}S \, .$$

- $V = H^{-\frac{1}{2}}(\Gamma)$ (dual of trace space for $H^{1}(\Omega)$)
- Single layer boundary integral operator $A: V \mapsto V'$ for $-\Delta$

$$\longleftrightarrow \quad a(\varphi,\psi) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\mathbf{x}-\mathbf{y}|} \,\varphi(\mathbf{x}) \,\psi(\mathbf{y}) \,\mathrm{d}S(\mathbf{x},\mathbf{y}) \;.$$

• Duality pairing between $V = H^{-\frac{1}{2}}(\Gamma)$ and $W = H^{\frac{1}{2}}(\Gamma)$:

$$d(u, v) := \int_{\Gamma} u v \, \mathrm{d}S$$
 Trivially stable

• Hypersingular boundary integral operator $B: W \to W'$

$$\leftrightarrow b(u,v) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \operatorname{curl}_{\Gamma} u(\mathbf{x}) \cdot \operatorname{curl}_{\Gamma} v(\mathbf{y}) \, \mathrm{d}S(\mathbf{x},\mathbf{y}) + \int_{\Gamma} u \, \mathrm{d}S \int_{\Gamma} v \, \mathrm{d}S \, .$$

Simplest Galerkin space: $V_h \doteq$ piecewise constants

- $V = H^{-\frac{1}{2}}(\Gamma)$ (dual of trace space for $H^{1}(\Omega)$)
- Single layer boundary integral operator $A: V \mapsto V'$ for $-\Delta$

$$\longleftrightarrow \quad a(\varphi,\psi) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \,\varphi(\mathbf{x}) \,\psi(\mathbf{y}) \,\mathrm{d}S(\mathbf{x},\mathbf{y}) \;.$$

• Duality pairing between $V = H^{-\frac{1}{2}}(\Gamma)$ and $W = H^{\frac{1}{2}}(\Gamma)$:

$$d(u, v) := \int_{\Gamma} u v \, \mathrm{d}S$$
 • trivially stable

• Hypersingular boundary integral operator $B: W \to W'$

$$\leftrightarrow b(u,v) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \operatorname{curl}_{\Gamma} u(\mathbf{x}) \cdot \operatorname{curl}_{\Gamma} v(\mathbf{y}) \, \mathrm{d}S(\mathbf{x},\mathbf{y}) + \int_{\Gamma} u \, \mathrm{d}S \int_{\Gamma} v \, \mathrm{d}S \, \mathrm{d}S$$

Simplest Galerkin space: $V_h \doteq$ piecewise constants

 $V_h \not\subset W \gg W_h = V_h$ not an option: What is W_h ?

- $V = H^{-\frac{1}{2}}(\Gamma)$ (dual of trace space for $H^{1}(\Omega)$)
- Single layer boundary integral operator $A: V \mapsto V'$ for $-\Delta$

$$\longleftrightarrow \quad a(\varphi,\psi) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \,\varphi(\mathbf{x}) \,\psi(\mathbf{y}) \,\mathrm{d}S(\mathbf{x},\mathbf{y}) \;.$$

• Duality pairing between $V = H^{-\frac{1}{2}}(\Gamma)$ and $W = H^{\frac{1}{2}}(\Gamma)$:

$$d(u, v) := \int_{\Gamma} u v \, \mathrm{d}S$$
 Trivially stable

• Hypersingular boundary integral operator $B: W \to W'$

Simplest Ga

$$\leftrightarrow b(u,v) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \operatorname{curl}_{\Gamma} u(\mathbf{x}) \cdot \operatorname{curl}_{\Gamma} v(\mathbf{y}) \, \mathrm{d}S(\mathbf{x},\mathbf{y}) + \int_{\Gamma} u \, \mathrm{d}S \int_{\Gamma} v \, \mathrm{d}S$$

Required dim $V_h = \dim W_h$, $W_h \subset C^0(\Gamma)$

 $V_h \not\subset W \gg W_h = V_h$ not an option: What is W_h ?

mesh ${\cal M}$	\leftrightarrow	dual mesh $\widetilde{\mathcal{M}}$
nodes	\leftrightarrow	cells
edges	\leftrightarrow	edges
cells	\leftrightarrow	nodes

mesh \mathcal{M}	\leftrightarrow	dual mesh $\widetilde{\mathcal{M}}$
nodes	\leftrightarrow	cells
edges	\leftrightarrow	edges
cells	\leftrightarrow	nodes

 $W_h \leftrightarrow \text{nodes of } \mathcal{M}$

For $V = H^{-\frac{1}{2}}(\Gamma)$:

For $V = W = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$: (\leftrightarrow electric field integral equation)

```
For V = W = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma): (\leftrightarrow electric field integral equation)

\downarrow^{h}

edge elements on \mathcal{M}
```

For $V = W = H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$: (\leftrightarrow electric field integral equation) $V_h \qquad \longleftrightarrow \qquad W_h$ $\uparrow \qquad \uparrow$ edge elements on $\mathcal{M} \qquad \longleftrightarrow$ edge elements on $\widetilde{\mathcal{M}}$ (?)

What Next ?

- (Simple) Abstract Framework
- 2 Finite Element Applications: Equivalent Operator Preconditioning
- 3 Boundary Element Applications: Calderón Preconditioning
- 4 Calderón Preconditioning for Screen Problems

Screen $\hat{=}$ open orientable surface

Screen $\hat{=}$ open orientable surface

"Reference Screen" = disk

 $\mathbb{D} := \{ \boldsymbol{x} \in \mathbb{R}^3 : \| \boldsymbol{x} \| = 1, \, x_3 = 0 \}$

Screen $\hat{=}$ open orientable surface

"Reference Screen" = disk

 $\mathbb{D} := \{ \boldsymbol{x} \in \mathbb{R}^3 : \| \boldsymbol{x} \| = 1, \, x_3 = 0 \}$

Scalar single layer boundary integral operator A : bilinear form

$$a(\varphi,\psi) := \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \, \varphi(\mathbf{x}) \, \psi(\mathbf{y}) \, \mathrm{d}S(\mathbf{x},\mathbf{y}) \;, \varphi, \psi \in \widetilde{H}^{-\frac{1}{2}}(\mathbb{D})$$

Screen $\hat{=}$ open orientable surface

"Reference Screen" = disk

 $\mathbb{D} := \{ \boldsymbol{x} \in \mathbb{R}^3 : \| \boldsymbol{x} \| = 1, \, x_3 = 0 \}$

Scalar single layer boundary integral operator A : bilinear form

$$a(\varphi,\psi) := \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \, \varphi(\mathbf{x}) \, \psi(\mathbf{y}) \, \mathrm{d}S(\mathbf{x},\mathbf{y}) \,, \varphi, \psi \in \widetilde{H}^{-\frac{1}{2}}(\mathbb{D})$$

► Trace space $V = \tilde{H}^{-\frac{1}{2}}(\mathbb{D})[=H_{00}^{-\frac{1}{2}}(\mathbb{D})] \subset H^{-\frac{1}{2}}(\mathbb{D})$, dense with strictly stronger norm

"Reference Screen" = disk

 $\mathbb{D} := \{ \boldsymbol{x} \in \mathbb{R}^3 : \| \boldsymbol{x} \| = 1, \, x_3 = 0 \}$

Scalar single layer boundary integral operator A : bilinear form

$$a(\varphi,\psi) := \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \, \varphi(\mathbf{x}) \, \psi(\mathbf{y}) \, \mathrm{d}S(\mathbf{x},\mathbf{y}) \,, \varphi, \psi \in \widetilde{H}^{-\frac{1}{2}}(\mathbb{D})$$

- ► Trace space $V = \tilde{H}^{-\frac{1}{2}}(\mathbb{D})[=H_{00}^{-\frac{1}{2}}(\mathbb{D})] \subset H^{-\frac{1}{2}}(\mathbb{D})$, dense with strictly stronger norm
- Hypersingular boundary integral operator \tilde{B} : bilinear form

$$(u,v)\mapsto \int_{\mathbb{D}}\int_{\mathbb{D}}\frac{1}{4\pi|\mathbf{x}-\mathbf{y}|}\operatorname{curl}_{\Gamma}u(\mathbf{x})\operatorname{curl}_{\Gamma}v(\mathbf{y})\,\mathrm{d}S(\mathbf{x},\mathbf{y})\;,\;u,v\in\widetilde{H}^{\frac{1}{2}}(\mathbb{D})\;.$$

"Reference Screen" = disk

 $\mathbb{D} := \{ \boldsymbol{x} \in \mathbb{R}^3 : \| \boldsymbol{x} \| = 1, \, x_3 = 0 \}$

Scalar single layer boundary integral operator A : bilinear form

$$a(\varphi,\psi) := \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \, \varphi(\mathbf{x}) \, \psi(\mathbf{y}) \, \mathrm{d}S(\mathbf{x},\mathbf{y}) \,, \varphi, \psi \in \widetilde{H}^{-\frac{1}{2}}(\mathbb{D})$$

- ► Trace space $V = \tilde{H}^{-\frac{1}{2}}(\mathbb{D})[=H_{00}^{-\frac{1}{2}}(\mathbb{D})] \subset H^{-\frac{1}{2}}(\mathbb{D})$, dense with strictly stronger norm ► Hypersingular boundary integral operator \tilde{B} : bilinear form
 - $(u,v)\mapsto \int_{\mathbb{T}^n}\int_{\mathbb{T}^n}\frac{1}{4\pi|\mathbf{x}-\mathbf{v}|}\operatorname{curl}_{\Gamma}u(\mathbf{x})\operatorname{curl}_{\Gamma}v(\mathbf{y})\,\mathrm{d}S(\mathbf{x},\mathbf{y})\,,\,u,v\in\widetilde{H}^{\frac{1}{2}}(\mathbb{D})\,.$

L²-duality:

$$\begin{array}{ll} & (\widetilde{H}^{-\frac{1}{2}}(\mathbb{D}))' = H^{\frac{1}{2}}(\mathbb{D}) \neq \widetilde{H}^{\frac{1}{2}}(\mathbb{D}) \\ & \text{NOTE} \quad \widetilde{H}^{\frac{1}{2}}(\mathbb{D}) \subset H^{\frac{1}{2}}(\mathbb{D}) \text{ dense with strictly stronger norm} \end{array}$$

"Reference Screen" = disk

 $\mathbb{D} := \{ \boldsymbol{x} \in \mathbb{R}^3 : \| \boldsymbol{x} \| = 1, \, x_3 = 0 \}$

Scalar single layer boundary integral operator A : bilinear form

$$a(\varphi,\psi) := \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{1}{4\pi |\mathbf{x} - \mathbf{y}|} \, \varphi(\mathbf{x}) \, \psi(\mathbf{y}) \, \mathrm{d}S(\mathbf{x},\mathbf{y}) \;, \varphi, \psi \in \widetilde{H}^{-\frac{1}{2}}(\mathbb{D})$$

- ► Trace space $V = \widetilde{H}^{-\frac{1}{2}}(\mathbb{D})[=H_{00}^{-\frac{1}{2}}(\mathbb{D})] \subset H^{-\frac{1}{2}}(\mathbb{D})$, dense with strictly stronger norm
- Hypersingular boundary integral operator \tilde{B} : bilinear form

$$(\underline{u},\underline{v})\mapsto \int_{\mathbb{D}}\int_{\mathbb{D}}\frac{1}{4\pi|\mathbf{x}-\mathbf{y}|}\operatorname{curl}_{\mathsf{F}}\underline{u}(\mathbf{x})\operatorname{curl}_{\mathsf{F}}\underline{v}(\mathbf{y})\,\mathrm{d}S(\mathbf{x},\mathbf{y})\,,\,\underline{u},\underline{v}\in\widetilde{H}^{\frac{1}{2}}(\mathbb{D}).$$

► *L*²-duality: $(\widetilde{H}^{-\frac{1}{2}}(\mathbb{D}))' = H^{\frac{1}{2}}(\mathbb{D}) \neq \widetilde{H}^{\frac{1}{2}}(\mathbb{D})$, **NOTE** $\widetilde{H}^{\frac{1}{2}}(\mathbb{D}) \subset H^{\frac{1}{2}}(\mathbb{D})$ dense with strictly stronger norm

? Bijective boundary integral operator $B: H^{\frac{1}{2}}(\mathbb{D}) \to \widetilde{H}^{-\frac{1}{2}}(\mathbb{D}) = (H^{\frac{1}{2}}(\mathbb{D}))'$

 $\leftrightarrow \quad \text{inf-sup-stable bounded bilinear form } b: H^{\frac{1}{2}}(\mathbb{D}) \times H^{\frac{1}{2}}(\mathbb{D}) \to \mathbb{R}$

? Bijective boundary integral operator $B: H^{\frac{1}{2}}(\mathbb{D}) \to \widetilde{H}^{-\frac{1}{2}}(\mathbb{D}) = (H^{\frac{1}{2}}(\mathbb{D}))'$

? Bijective boundary integral operator $B: H^{\frac{1}{2}}(\mathbb{D}) \to \widetilde{H}^{-\frac{1}{2}}(\mathbb{D}) = (H^{\frac{1}{2}}(\mathbb{D}))'$

 $\leftrightarrow \quad \text{inf-sup-stable bounded bilinear form } b: H^{\frac{1}{2}}(\mathbb{D}) \times H^{\frac{1}{2}}(\mathbb{D}) \to \mathbb{R}$

? Bijective boundary integral operator $B: H^{\frac{1}{2}}(\mathbb{D}) \to \widetilde{H}^{-\frac{1}{2}}(\mathbb{D}) = (H^{\frac{1}{2}}(\mathbb{D}))'$

 $\leftrightarrow \quad \text{inf-sup-stable bounded bilinear form } b: H^{\frac{1}{2}}(\mathbb{D}) \times H^{\frac{1}{2}}(\mathbb{D}) \to \mathbb{R}$

Thm. Equivalent inner product on $H^{\frac{1}{2}}(\mathbb{D})$: $b(u, v) := \frac{2}{\pi^2} \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{S(\mathbf{x}, \mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|} \operatorname{curl}_{\Gamma} u(\mathbf{x}) \cdot \operatorname{curl}_{\Gamma} v(\mathbf{y}) \, \mathrm{d}S(\mathbf{x}) \mathrm{d}S(\mathbf{y})$ $+ \frac{2}{\pi^2} \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{u(\mathbf{x})v(\mathbf{y})}{\omega(\mathbf{x})\omega(\mathbf{y})} \, \mathrm{d}S(\mathbf{x}) \mathrm{d}S(\mathbf{y}), \quad u, v \in H^{\frac{1}{2}}(\mathbb{D}),$ $S(\mathbf{x}, \mathbf{y}) := \tan^{-1} \left(\frac{\omega(\mathbf{x})\omega(\mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|} \right), \quad \mathbf{x} \neq \mathbf{y}, \quad \omega(\mathbf{z}) := \sqrt{1 - \|\mathbf{z}\|^2}.$

? Bijective boundary integral operator $B: H^{\frac{1}{2}}(\mathbb{D}) \to \widetilde{H}^{-\frac{1}{2}}(\mathbb{D}) = (H^{\frac{1}{2}}(\mathbb{D}))'$

 $\leftrightarrow \quad \text{inf-sup-stable bounded bilinear form } b: H^{\frac{1}{2}}(\mathbb{D}) \times H^{\frac{1}{2}}(\mathbb{D}) \to \mathbb{R}$

Thm. Equivalent inner product on $H^{\frac{1}{2}}(\mathbb{D})$: $b(u, v) := \frac{2}{\pi^2} \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{S(\mathbf{x}, \mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|} \operatorname{curl}_{\Gamma} u(\mathbf{x}) \cdot \operatorname{curl}_{\Gamma} v(\mathbf{y}) \, \mathrm{d}S(\mathbf{x}) \mathrm{d}S(\mathbf{y}) \\
+ \frac{2}{\pi^2} \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{u(\mathbf{x})v(\mathbf{y})}{\omega(\mathbf{x})\omega(\mathbf{y})} \, \mathrm{d}S(\mathbf{x}) \mathrm{d}S(\mathbf{y}), \quad u, v \in H^{\frac{1}{2}}(\mathbb{D}), \\
S(\mathbf{x}, \mathbf{y}) := \tan^{-1} \left(\frac{\omega(\mathbf{x})\omega(\mathbf{y})}{\|\mathbf{x} - \mathbf{y}\|} \right), \, \mathbf{x} \neq \mathbf{y}, \quad \omega(\mathbf{z}) := \sqrt{1 - \|\mathbf{z}\|^2}.$

Then:

(Adapted) dual-mesh-based Calderón preconditioning

► Hilbert space framework:

H, $H_h \subset H$, dim $H_h < \infty$

Hilbert space framework:

 $H, H_h \subset H, \dim H_h < \infty$

▶ $B \in L(H, H')$ isomorphism, $C \in L(H, H')$ compact,

► Hilbert space framework:

 $H, H_h \subset H, \dim H_h < \infty$

- ▶ $B \in L(H, H')$ isomorphism, $C \in L(H, H')$ compact,
- ▶ $A := B + C \in L(H, H')$ bijective,

Hilbert space framework:

 $H, H_h \subset H, \dim H_h < \infty$

- ▶ $B \in L(H, H')$ isomorphism, $C \in L(H, H')$ compact,
- ▶ $A := B + C \in L(H, H')$ bijective,
- ► $A_h := A_{|V_h} : H_h \mapsto H'_h, B_h := B_{|W_h} : H_h \mapsto H'_h$ (asymptotically) h-uniformly stable

- ► Hilbert space framework: $H, H_h \subset H, \dim H_h < \infty$
- ▶ $B \in L(H, H')$ isomorphism, $C \in L(H, H')$ compact,
- ► $A := B + C \in L(H, H')$ bijective,
- ► $A_h := A_{|V_h} : H_h \mapsto H'_h, B_h := B_{|W_h} : H_h \mapsto H'_h$ (asymptotically) h-uniformly stable

Thm.: **GMRES** in *H* for $\mathbf{B}^{-1}\mathbf{A}\mathbf{x} = \mathbf{B}^{-1}\mathbf{b}$ produces residuals $\mathbf{r}_0, \mathbf{r}_1, \dots$ with

$$\left(\frac{\|\mathbf{r}_k\|_H}{\|\mathbf{r}_0\|_H}\right)^{1/k} \leq \left\|\mathbf{A}^{-1}\mathbf{B}\right\|_H \left\|\mathbf{B}^{-1}\right\|_H \cdot \frac{1}{k} \sum_{j=1}^k \sigma_j(C) ,$$

- ► Hilbert space framework: $H, H_h \subset H, \dim H_h < \infty$
- ▶ $B \in L(H, H')$ isomorphism, $C \in L(H, H')$ compact,
- ► $A := B + C \in L(H, H')$ bijective,
- ► $A_h := A_{|V_h} : H_h \mapsto H'_h, B_h := B_{|W_h} : H_h \mapsto H'_h$ (asymptotically) h-uniformly stable

Thm.: **GMRES** in *H* for $\mathbf{B}^{-1}\mathbf{A}\mathbf{x} = \mathbf{B}^{-1}\mathbf{b}$ produces residuals $\mathbf{r}_0, \mathbf{r}_1, \dots$ with

$$\left(\frac{\|\mathbf{r}_{k}\|_{H}}{\|\mathbf{r}_{0}\|_{H}}\right)^{1/k} \leq \|\mathbf{A}^{-1}\mathbf{B}\|_{H} \|\mathbf{B}^{-1}\|_{H} \cdot \frac{1}{k} \sum_{j=1}^{k} \sigma_{j}(C) ,$$

$$\mathbf{A}, \mathbf{B} \triangleq \text{any Galerkin matrices} \qquad \text{singular values}$$

- ► Hilbert space framework: $H, H_h \subset H, \dim H_h < \infty$
- ▶ $B \in L(H, H')$ isomorphism, $C \in L(H, H')$ compact,
- ► $A := B + C \in L(H, H')$ bijective,
- ► $A_h := A_{|V_h} : H_h \mapsto H'_h, B_h := B_{|W_h} : H_h \mapsto H'_h$ (asymptotically) h-uniformly stable

- I. MORET, A note on the superlinear convergence of GMRES, SIAM J. Numer. Anal., 34 (1997), pp. 513–516.
- J. BLECHTA, Stability of linear GMRES convergence with respect to compact perturbations, SIAM J. Matrix Anal. Appl., 42 (2021), pp. 436–447.
 - O. AXELSSON AND J. KARÁTSON, *Mesh independent superlinear PCG rates via compact-equivalent operators*, SIAM J. Numer. Anal., 45 (2007), pp. 1495–1516.

O. AXELSSON, J. KARÁTSON, AND F. MAGOULÈS, *Superlinear convergence* using block preconditioners for the real system formulation of complex *Helmholtz equations*, J. Comput. Appl. Math., 340 (2018), pp. 424–431.

 $A, B \doteq$ any Galerkin matrices singular values

C compact $\blacktriangleright \sigma_j(C) \to 0$ for $j \to \infty$ \blacktriangleright asymptotically *super-linearly* convergent!

EFIE on Screens: Splitting
$\succ \Gamma \stackrel{c}{=} screen \ \Omega \subset \mathbb{R}^3, \text{ wave number } k > 0$ $\succ \text{ Hilbert space } H = \widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) \text{ [dense in } H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma), \text{ strictly stronger norm]}$

 $\triangleright \Gamma \stackrel{c}{=} screen \ \Omega \subset \mathbb{R}^3$, wave number k > 0

▷ Hilbert space $H = \tilde{H}^{-1/2}(\text{div}_{\Gamma}, \Gamma)$ [dense in $H^{-1/2}(\text{div}_{\Gamma}, \Gamma)$, strictly stronger norm]

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{e^{ik|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \mathrm{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \, \mathrm{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x}) \, .$$

 $\triangleright \Gamma \stackrel{\circ}{=} screen \ \Omega \subset \mathbb{R}^3$, wave number k > 0

▷ Hilbert space $H = \tilde{H}^{-1/2}(\text{div}_{\Gamma}, \Gamma)$ [dense in $H^{-1/2}(\text{div}_{\Gamma}, \Gamma)$, strictly stronger norm]

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{e^{ik|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \mathrm{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \, \mathrm{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x}) \, .$$

Galerkin discretization \succ from surface edge/RWG elements \rightarrow H_h

 $\triangleright \Gamma \stackrel{c}{=} screen \ \Omega \subset \mathbb{R}^3$, wave number k > 0

▷ Hilbert space $H = \tilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$ [dense in $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$, strictly stronger norm]

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{\boldsymbol{e}^{ik|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \mathrm{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \, \mathrm{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x}) \, .$$

Galerkin discretization \succ from surface edge/RWG elements \rightarrow H_h

a does not induce isomorphism on $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) = (\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma))'!$

 $\triangleright \Gamma \stackrel{\circ}{=} screen \ \Omega \subset \mathbb{R}^3$, wave number k > 0

▷ Hilbert space $H = \tilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$ [dense in $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$, strictly stronger norm]

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{\boldsymbol{e}^{ik|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x}) \, .$$

Galerkin discretization \succ from surface edge/RWG elements \rightarrow H_h

a does not induce isomorphism on $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) = (\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma))'!$

Tool: Hodge decomposition

 $\widetilde{H}^{-1/2}({\rm div}_{\Gamma},\Gamma)=X_0(\Gamma)\oplus X_{\bot}(\Gamma):={\rm curl}_{\Gamma}\widetilde{H}^{\frac{1}{2}}(\Omega)+{\rm grad}_{\Gamma}(\Delta_{\Gamma})^{-1}{\rm div}_{\Gamma}\widetilde{H}_*^{-\frac{1}{2}}(\Omega)\;.$

 $\triangleright \Gamma \stackrel{\circ}{=} screen \ \Omega \subset \mathbb{R}^3$, wave number k > 0

▷ Hilbert space $H = \tilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$ [dense in $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$, strictly stronger norm]

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{\boldsymbol{e}^{ik|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x}) \, .$$

Galerkin discretization \succ from surface edge/RWG elements \rightarrow H_h

a does not induce isomorphism on $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) = (\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma))'!$

Tool: Hodge decomposition

 $\widetilde{H}^{-1/2}({\rm div}_{\Gamma},\Gamma)=X_0(\Gamma)\oplus X_{\bot}(\Gamma):={\rm curl}_{\Gamma}\widetilde{H}^{\frac{1}{2}}(\Omega)+{\rm grad}_{\Gamma}(\Delta_{\Gamma})^{-1}{\rm div}_{\Gamma}\widetilde{H}_*^{-\frac{1}{2}}(\Omega)\;.$

 $\triangleright \Gamma \stackrel{\circ}{=} screen \ \Omega \subset \mathbb{R}^3$, wave number k > 0

▷ Hilbert space $H = \tilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$ [dense in $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$, strictly stronger norm]

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{\boldsymbol{e}^{ik|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x}) \, .$$

Galerkin discretization \succ from surface edge/RWG elements \rightarrow H_h

a does not induce isomorphism on $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) = (\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma))'!$

Tool: Hodge decomposition

$$\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma},\Gamma) = X_0(\Gamma) \oplus X_{\perp}(\Gamma) := \operatorname{curl}_{\Gamma} \widetilde{H}^{\frac{1}{2}}(\Omega) + \operatorname{grad}_{\Gamma}(\Delta_{\Gamma})^{-1} \operatorname{div}_{\Gamma} \widetilde{H}^{-\frac{1}{2}}_{*}(\Omega) \;.$$

 $\triangleright \Gamma \stackrel{\circ}{=} screen \ \Omega \subset \mathbb{R}^3$, wave number k > 0

▷ Hilbert space $H = \tilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$ [dense in $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$, strictly stronger norm]

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{\boldsymbol{e}^{ik|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x}) \, .$$

Galerkin discretization \succ from surface edge/RWG elements \rightarrow H_h

a does not induce isomorphism on $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) = (\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma))'!$

Tool: Hodge decomposition

$$\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma},\Gamma) = X_0(\Gamma) \oplus X_{\perp}(\Gamma) := \operatorname{curl}_{\Gamma} \widetilde{H}^{\frac{1}{2}}(\Omega) + \operatorname{grad}_{\Gamma}(\Delta_{\Gamma})^{-1} \operatorname{div}_{\Gamma} \widetilde{H}^{-\frac{1}{2}}_{*}(\Omega)$$
 .

 $\triangleright \Gamma \stackrel{\circ}{=} screen \ \Omega \subset \mathbb{R}^3$, wave number k > 0

▷ Hilbert space $H = \tilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$ [dense in $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$, strictly stronger norm]

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{\boldsymbol{e}^{ik|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x}) \, .$$

Galerkin discretization \succ from surface edge/RWG elements \rightarrow H_h

a does not induce isomorphism on $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) = (\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma))'!$

Tool: Hodge decomposition

$$\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma},\Gamma) = X_0(\Gamma) \oplus X_{\perp}(\Gamma) := \operatorname{curl}_{\Gamma} \widetilde{H}^{\frac{1}{2}}(\Omega) + \operatorname{grad}_{\Gamma}(\Delta_{\Gamma})^{-1} \operatorname{div}_{\Gamma} \widetilde{H}^{-\frac{1}{2}}_{*}(\Omega) \;.$$

 $\triangleright \Gamma \stackrel{c}{=} screen \ \Omega \subset \mathbb{R}^3$, wave number k > 0

▷ Hilbert space $H = \tilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$ [dense in $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma)$, strictly stronger norm]

$$\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) = \int_{\Gamma} \int_{\Gamma} \frac{\boldsymbol{e}^{ik|\boldsymbol{x}-\boldsymbol{y}|}}{4\pi|\boldsymbol{x}-\boldsymbol{y}|} \left(\boldsymbol{u}(\boldsymbol{y}) \cdot \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^2} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x})$$

Galerkin discretization \succ from surface edge/RWG elements \rightarrow H_h

a does not induce isomorphism on $H^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) = (\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma))'!$

Tool: Hodge decomposition

$$\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma},\Gamma) = X_0(\Gamma) \oplus X_{\perp}(\Gamma) := \operatorname{\mathbf{curl}}_{\Gamma} \widetilde{H}^{\frac{1}{2}}(\Omega) + \operatorname{\mathbf{grad}}_{\Gamma}(\Delta_{\Gamma})^{-1} \operatorname{div}_{\Gamma} \widetilde{H}^{-\frac{1}{2}}_{*}(\Omega) \;.$$

Projections: $\mathsf{P}_0: \widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) \to X_0, \, \mathsf{P}_{\perp}: \widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) \to X_{\perp}$

through Hodge decomposition

On \mathbb{D} : $\mathsf{D}^{-1} = \mathsf{B} := \operatorname{curl}_{\Gamma} \circ \overline{\mathsf{V}} \circ \operatorname{curl}_{\Gamma}' - k^2 \operatorname{grad} \circ (\Delta_{\Gamma})^{-1} \circ \overline{\mathsf{W}} \circ (\operatorname{grad} \circ (\Delta_{\Gamma})^{-1})'$.

Principal part:

$$a(u, v) = d(u, v) + \{\text{compact}\},$$

$$d(u, v) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |x - y|} \left(\mathsf{P}_{o} u(y) \cdot \mathsf{P}_{0} v(x) - \frac{1}{k^{2}} \operatorname{div}_{\Gamma} u(y) \operatorname{div}_{\Gamma} v(x) \right) dS(y, x) .$$
Inverse of $d \leftrightarrow \mathbb{D} : \widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) \to (\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma))'$
through Hodge decomposition
On \mathbb{D} : $\mathbb{D}^{-1} = \mathbb{B} := \operatorname{curl}_{\Gamma} \circ \overline{V} \circ \operatorname{curl}_{\Gamma}' - k^{2} \operatorname{grad} \circ (\Delta_{\Gamma})^{-1} \circ \overline{W} \circ (\operatorname{grad} \circ (\Delta_{\Gamma})^{-1})' .$
modified single layer/hypersingular BI-Ops.

Principal part:

$$a(\boldsymbol{u}, \boldsymbol{v}) = d(\boldsymbol{u}, \boldsymbol{v}) + \{\text{compact}\},$$

$$d(\boldsymbol{u}, \boldsymbol{v}) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\boldsymbol{x} - \boldsymbol{y}|} \left(\mathsf{P}_{o} \boldsymbol{u}(\boldsymbol{y}) \cdot \mathsf{P}_{0} \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^{2}} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y}, \boldsymbol{x}) \, .$$
Inverse of $d \leftrightarrow \mathsf{D} : \widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) \to (\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma))'$
through Hodge decomposition

On
$$\mathbb{D}$$
: $D^{-1} = B := \operatorname{curl}_{\Gamma} \circ \overline{V} \circ \operatorname{curl}'_{\Gamma} - k^2 \operatorname{grad} \circ (\Delta_{\Gamma})^{-1} \circ \overline{W} \circ (\operatorname{grad} \circ (\Delta_{\Gamma})^{-1})'$.
preconditioning operator

Principal part:

$$a(\boldsymbol{u}, \boldsymbol{v}) = d(\boldsymbol{u}, \boldsymbol{v}) + \{\text{compact}\},\$$

$$d(\boldsymbol{u}, \boldsymbol{v}) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\boldsymbol{x} - \boldsymbol{y}|} \left(\mathsf{P}_{o} \boldsymbol{u}(\boldsymbol{y}) \cdot \mathsf{P}_{0} \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^{2}} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) dS(\boldsymbol{y}, \boldsymbol{x}) .$$
Inverse of $d \leftrightarrow \mathbb{D} : \widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) \rightarrow (\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma))'$
through Hodge decomposition
On \mathbb{D} : $\mathbb{D}^{-1} = \mathsf{B} := \operatorname{curl}_{\Gamma} \circ \overline{\mathsf{V}} \circ \operatorname{curl}_{\Gamma}' - k^{2} \operatorname{grad} \circ (\Delta_{\Gamma})^{-1} \circ \overline{\mathsf{W}} \circ (\operatorname{grad} \circ (\Delta_{\Gamma})^{-1})' .$
preconditioning operator

Principal part:

$$a(\boldsymbol{u}, \boldsymbol{v}) = d(\boldsymbol{u}, \boldsymbol{v}) + \{\text{compact}\},$$

$$d(\boldsymbol{u}, \boldsymbol{v}) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\boldsymbol{x} - \boldsymbol{y}|} \left(\mathsf{P}_{o} \boldsymbol{u}(\boldsymbol{y}) \cdot \mathsf{P}_{0} \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^{2}} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) dS(\boldsymbol{y}, \boldsymbol{x}) .$$
Inverse of $d \leftrightarrow \mathbb{D} : \widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma) \rightarrow (\widetilde{H}^{-1/2}(\operatorname{div}_{\Gamma}, \Gamma))'$
through Hodge decomposition
On \mathbb{D} : $\mathbb{D}^{-1} = \mathsf{B} := \operatorname{curl}_{\Gamma} \circ \overline{\mathsf{V}} \circ \operatorname{curl}_{\Gamma}' - k^{2} \operatorname{grad} \circ (\Delta_{\Gamma})^{-1} \circ \overline{\mathsf{W}} \circ (\operatorname{grad} \circ (\Delta_{\Gamma})^{-1})' .$
preconditioning operator

 $h \rightarrow 0 \& k \rightarrow 0$ -robust OPC

Principal part: $a(\mathbf{u}, \mathbf{v}) = d(\mathbf{u}, \mathbf{v}) + \{\text{compact}\},\$ $d(\boldsymbol{u},\boldsymbol{v}) := \int_{\Gamma} \int_{\Gamma} \frac{1}{4\pi |\boldsymbol{x} - \boldsymbol{v}|} \left(\mathsf{P}_{o} \boldsymbol{u}(\boldsymbol{y}) \cdot \mathsf{P}_{0} \boldsymbol{v}(\boldsymbol{x}) - \frac{1}{k^{2}} \operatorname{div}_{\Gamma} \boldsymbol{u}(\boldsymbol{y}) \operatorname{div}_{\Gamma} \boldsymbol{v}(\boldsymbol{x}) \right) \, \mathrm{d}S(\boldsymbol{y},\boldsymbol{x}) \, .$ R. HIPTMAIR AND C. URZÚA-TORRES, Compact Equivalent Inverse of the Electric Field Integral Operator on Screens, Integral Equations Operator Theory, 92 (2020), p. Paper No. 9. R. HIPTMAIR AND C. URZÚA-TORRES, Preconditioning the EFIE on screens, Math. Models Methods Appl. Sci., 30 (2020), pp. 1705–1726. preconditioning operator

Mixed BE Galerkin discretization primal/dual meshes

 $h \rightarrow 0 \& k \rightarrow 0$ -robust OPC

In a nutshell ...:

In a nutshell ...:

▶ To solve: discretized operator equation Au = f for $A: V \to V'$

In a nutshell . . .:

- ► To solve: discretized operator equation Au = f for $A: V \to V'$
- ► Known: "preconditioning operator" $B: W \to W'$

In a nutshell . . .:

- ► To solve: discretized operator equation Au = f for $A: V \to V'$
- ► Known: "preconditioning operator" $B: W \to W'$
- ▶ Available: discretely stable (local) pairing $d: V \times W \rightarrow \mathbb{C}$

In a nutshell . . .:

- ► To solve: discretized operator equation Au = f for $A: V \to V'$
- ► Known: "preconditioning operator" $B: W \to W'$
- ▶ Available: discretely stable (local) pairing $d: V \times W \rightarrow \mathbb{C}$

Operator preconditioning possible

In a nutshell ...:

- ► To solve: discretized operator equation Au = f for $A: V \to V'$
- ► Known: "preconditioning operator" $B: W \to W'$
- ▶ Available: discretely stable (local) pairing $d: V \times W \rightarrow \mathbb{C}$

Operator preconditioning possible

General preconditioning paradigm

In a nutshell ...:

- ► To solve: discretized operator equation Au = f for $A: V \to V'$
- ► Known: "preconditioning operator" $B: W \to W'$
- ▶ Available: discretely stable (local) pairing $d: V \times W \rightarrow \mathbb{C}$

Operator preconditioning possible

- General preconditioning paradigm
 - Mesh-independent performance

In a nutshell ...:

- ► To solve: discretized operator equation Au = f for $A: V \to V'$
- ► Known: "preconditioning operator" $B: W \to W'$
- ▶ Available: discretely stable (local) pairing $d: V \times W \rightarrow \mathbb{C}$

Operator preconditioning possible

- General preconditioning paradigm
- Mesh-independent performance

(Often) inferior to tailored approaches

In a nutshell ...:

- ► To solve: discretized operator equation Au = f for $A: V \to V'$
- ► Known: "preconditioning operator" $B: W \to W'$
- ▶ Available: discretely stable (local) pairing $d: V \times W \rightarrow \mathbb{C}$

Operator preconditioning possible

- General preconditioning paradigm
- Mesh-independent performance

- (Often) inferior to tailored approaches
- Lack of robustness

In a nutshell ...:

- ► To solve: discretized operator equation Au = f for $A: V \to V'$
- ► Known: "preconditioning operator" $B: W \to W'$
- ▶ Available: discretely stable (local) pairing $d: V \times W \rightarrow \mathbb{C}$

Operator preconditioning possible

- General preconditioning paradigm
 - Mesh-independent performance

- (Often) inferior to tailored approaches
- Lack of robustness