Frequency-domain Bernstein-Bézier finite element solver for modelling short waves Part I - Application to elastic wave simulations

N. Benatia¹, A. El Kacimi¹, O. Laghrouche², M. El Alaoui Talibi³, J. Trevelyan⁴

¹Cadi Ayyad University, ²Heriot-Watt University, ³Mohammed VI Polytechnic, ⁴Durham University

Introduction O	Mathematical model	BBFEM approximation	Numerical results
Outline			

When solving short wave problems stated in unbounded domains by FEM, the main challenges are:

• The pollution error: the relative hp-FE error for Helmholtz problems in the H^1 -seminorm, on a uniform hp-mesh, is bounded by

$$\frac{|u-u_h|_1}{|u|_1} \le C_1 \left(\frac{kh}{2p}\right)^p + C_2 k \left(\frac{kh}{2p}\right)^{2p}$$

- The truncation of the infinite domain
- The accurate representation of curved geometries

Time-harmonic elastic wave equation

We consider an isotropic linear homogeneous elastic medium into a domain $\Omega \subset \mathbb{R}^2$ and $\Gamma = \partial \Omega$ denoting the boundary of Ω ;

Time-harmonic elastic wave problem consists of finding a function $u: \Omega \to \mathbb{C} \times \mathbb{C}$ satisfying

$$\begin{cases} -\rho\omega^2 \boldsymbol{u} - \boldsymbol{\nabla} \cdot \boldsymbol{\sigma}(\boldsymbol{u}) = 0 \quad \text{in} \quad \Omega, \\ \boldsymbol{\sigma}(\boldsymbol{u})\boldsymbol{n} = \mathrm{i} \left[\frac{E(1-\nu)}{(1+\nu)(1-2\nu)} k_P(\boldsymbol{u} \cdot \boldsymbol{n})\boldsymbol{n} + \frac{E}{2(1+\nu)} k_S(\boldsymbol{u} \cdot \boldsymbol{t})\boldsymbol{t} \right] + \boldsymbol{g} \quad \text{on} \quad \Gamma. \end{cases}$$

where

- $\rho > 0$ is the (constant) material density and ω is the circular frequency
- ν and *E* are the Poisson's ratio and Young's modulus, respectively (also constant)
- g is a source term, with n and t denoting the outward unit normal and tangent vectors to Γ
- k_P and k_S are the compressional (P) and shear (S) wave numbers, given by

$$k_P = \omega \sqrt{\frac{\rho(1+\nu)(1-2\nu)}{E(1-\nu)}}$$
 and $k_S = \omega \sqrt{\frac{2\rho(1+\nu)}{E}}$

Hooke's law:

$$\boldsymbol{\sigma}(\boldsymbol{u}) = \frac{E\nu}{(1+\nu)(1-2\nu)} \left(\boldsymbol{\nabla} \cdot \boldsymbol{u}\right) \boldsymbol{I} + \frac{E}{2(1+\nu)} \left(\boldsymbol{\nabla} \boldsymbol{u} + \boldsymbol{\nabla} \boldsymbol{u}^{\top}\right)$$

Inti		

Mathematical model

BBFEM approximation

Variational formulation

To derive a variational formulation for the time harmonic elastic problem, the following usual Sobolev space $V = H^1(\Omega) \times H^1(\Omega)$ is introduced. Let us multiply by the complex conjugate of a test function $v \in V$, integrating by parts over Ω , and using the well known identity

$$\boldsymbol{\sigma}(\boldsymbol{u})\cdot\boldsymbol{\nabla}\bar{\boldsymbol{v}}=\frac{E\nu}{(1+\nu)(1-2\nu)}(\boldsymbol{\nabla}\cdot\boldsymbol{u})(\boldsymbol{\nabla}\cdot\bar{\boldsymbol{v}})+\frac{E}{(1+\nu)}\boldsymbol{\nabla}\boldsymbol{u}\cdot\boldsymbol{\nabla}\bar{\boldsymbol{v}}-\frac{E}{2(1+\nu)}(\boldsymbol{\nabla}\times\boldsymbol{u})(\boldsymbol{\nabla}\times\bar{\boldsymbol{v}}),$$

and taking into account the b.c., yields the following weak form:

$$\begin{cases} \text{Find } \boldsymbol{u} \text{ in } \boldsymbol{V} \text{ such that} \\ -\omega^2 \rho \int_{\Omega} \boldsymbol{u} \cdot \bar{\boldsymbol{v}} \, d\Omega \, + \frac{E\nu}{(1+\nu)(1-2\nu)} \int_{\Omega} (\boldsymbol{\nabla} \cdot \boldsymbol{u}) (\boldsymbol{\nabla} \cdot \bar{\boldsymbol{v}}) \, d\Omega \\ + \frac{E}{(1+\nu)} \int_{\Omega} \boldsymbol{\nabla} \boldsymbol{u} \cdot \boldsymbol{\nabla} \bar{\boldsymbol{v}} \, d\Omega - \frac{E}{2(1+\nu)} \int_{\Omega} (\boldsymbol{\nabla} \times \boldsymbol{u}) (\boldsymbol{\nabla} \times \bar{\boldsymbol{v}}) \, d\Omega \\ - \mathrm{i} \int_{\Gamma} \left[\frac{E(1-\nu)}{(1+\nu)(1-2\nu)} k_P(\boldsymbol{u} \cdot \boldsymbol{n}) (\bar{\boldsymbol{v}} \cdot \boldsymbol{n}) + \frac{E}{2(1+\nu)} k_S(\boldsymbol{u} \cdot \boldsymbol{t}) (\bar{\boldsymbol{v}} \cdot \boldsymbol{t}) \right] \, d\Gamma = \int_{\Gamma} \boldsymbol{g} \cdot \bar{\boldsymbol{v}} \, d\Gamma, \\ \text{for all } \boldsymbol{v} \text{ in } \boldsymbol{V}. \end{cases}$$

Existence and uniqueness :

Gårding's inequality \longrightarrow Fredholm's alternative + continuation arguments

ICMS@Strathclyde

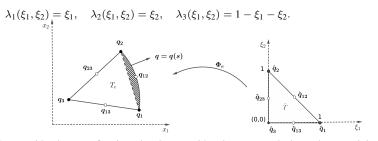
イロン イボン イモン イモン

Introduction O	Mathematical model	BBFEM approximation	Numerical results
	triangle \hat{T} inates and the linear blending ma	up of Gordon & Hall	

Let \hat{T} the reference element defined by,

 $\hat{T} := \{ \xi = (\xi_1, \xi_2) \in \mathbb{R}^2 : 0 \le \xi_1 \le 1, 0 \le \xi_2 \le 1 - \xi_1 \}.$

The barycentric coordinates relative to the reference element:



Let consider the case of a triangular element with only one curved edge and assume it is edge $e_1 = (q_1 q_2)$, given by its parametric form q = q(s), where $0 \le s \le 1$, $q(0) = q_1$ and $q(1) = q_2$. A map denoted Φ_e and defined from \hat{T} to T_e can be written as

$$\Phi_e(\boldsymbol{\xi}) = \lambda_1(\boldsymbol{\xi})\boldsymbol{q}_1 + \lambda_2(\boldsymbol{\xi})\boldsymbol{q}_2 + \lambda_3(\boldsymbol{\xi})\boldsymbol{q}_3 + \frac{\lambda_1(\boldsymbol{\xi})\lambda_2(\boldsymbol{\xi})}{\xi_2(1-\xi_2)} \left[\boldsymbol{q}(\xi_2) - ((1-\xi_2)\boldsymbol{q}_1 + \xi_2\boldsymbol{q}_2)\right].$$

Introduction O	Mathematical model	BBFEM approximation ○●○○	Numerical results
	1 . 11 .	C (* 1	$\hat{\mathbf{T}}$

Bernstein polynomial basis on reference triangle *T*

Vertex based shape functions

$$\phi_1^{\scriptscriptstyle V}(\boldsymbol{\xi}) = \lambda_1^{p^{\nu_1}}(\boldsymbol{\xi}), \quad \phi_2^{\scriptscriptstyle V}(\boldsymbol{\xi}) = \lambda_2^{p^{\nu_2}}(\boldsymbol{\xi}), \quad \phi_3^{\scriptscriptstyle V}(\boldsymbol{\xi}) = \lambda_3^{p^{\nu_3}}(\boldsymbol{\xi});$$

• Edge based shape functions

$$\begin{split} \phi_k^{e_1}(\boldsymbol{\xi}) &= \binom{p^{e_1}}{k} \lambda_1^{p^{e_1}-k}(\boldsymbol{\xi}) \lambda_2^k(\boldsymbol{\xi}), \quad 1 \leqslant k \leqslant p^{e_1}-1; \\ \phi_k^{e_2}(\boldsymbol{\xi}) &= \binom{p^{e_2}}{k} \lambda_2^{p^{e_2}-k}(\boldsymbol{\xi}) \lambda_3^k(\boldsymbol{\xi}), \quad 1 \leqslant k \leqslant p^{e_2}-1; \\ \phi_k^{e_3}(\boldsymbol{\xi}) &= \binom{p^{e_3}}{k} \lambda_3^{p^{e_3}-k}(\boldsymbol{\xi}) \lambda_1^k(\boldsymbol{\xi}), \quad 1 \leqslant k \leqslant p^{e_3}-1; \end{split}$$

Bubble based shape functions

$$\phi_{ij}^{b}(\boldsymbol{\xi}) = \begin{pmatrix} p^{b} \\ i+j \end{pmatrix} \begin{pmatrix} i+j \\ i \end{pmatrix} \lambda_{1}^{i}(\boldsymbol{\xi}) \lambda_{2}^{j}(\boldsymbol{\xi}) \lambda_{3}^{p^{b}-i-j}(\boldsymbol{\xi}), \quad 1 \leqslant i+j \leqslant p^{b}-1;$$

$$\binom{m}{k} := \frac{m!}{k!(m-k)!}$$

Introduction O	Mathematical model	BBFEM approximation	Numerical results
Approximation	n by BBFEM		

The approximated Bernstein-Bézier FE solution of the displacement field, denoted by u_h , can be written element-wise in the form

$$\boldsymbol{u}_{h}(\boldsymbol{x}) = \sum_{i=1}^{3} \phi_{i}^{v}(\boldsymbol{\xi}) \boldsymbol{u}_{i}^{v} + \sum_{k=1}^{3} \sum_{i=1}^{p-1} \phi_{i}^{e_{k}}(\boldsymbol{\xi}) \boldsymbol{u}_{i}^{e_{k}} + \sum_{1 \leq i+j \leq p-1} \phi_{ij}^{b}(\boldsymbol{\xi}) \boldsymbol{u}_{ij}^{b}$$

where $\boldsymbol{u}_{i}^{v}, \boldsymbol{u}_{i}^{e_{k}}, \boldsymbol{u}_{ij}^{b} \in \mathbb{C}^{2}$ are the unknown column vectors.

- Bernstein polynomials form a partition of unity $(p^v = p^e = p^b = p)$
- Analytical rules apply in the case of constant coefficients and affine elements

イロン イボン イモン イモン

The key technique to obtain a good performance from BBFEM is the use of static condensation:

- Remove interior modes from the resulting discrete algebraic system during the assembling process;
- Recover interior modes by solving small linear algebraic systems at an elemental level;

For a polynomial order $p \ge 3$, the number of DoF per element is given by

$$n_{dof}^e = 6 + 6(p-1) + (p-1)(p-2)$$

Static condensation (Shur complement) is performed at the elemental level; b = boundary modes, i = interior modes

$$\begin{pmatrix} A_{b,b}^{e} & A_{b,i}^{e} \\ \hline A_{i,b}^{e} & A_{i,i}^{e} \end{pmatrix} \begin{pmatrix} U_{b}^{e} \\ \hline U_{i}^{e} \end{pmatrix} = \begin{pmatrix} F_{b}^{e} \\ \hline F_{i}^{e} \end{pmatrix} \Longrightarrow \begin{cases} \hat{A}_{b}^{e} U_{b}^{e} = \hat{F}_{b}^{e} \\ U_{i}^{e} = [A_{i,i}^{e}]^{-1} (F_{i}^{e} - A_{i,b}^{e} U_{b}^{e}) \\ \hat{A}_{b}^{e} = A_{b,b}^{e} - A_{b,i}^{e} [A_{i,i}^{e}]^{-1} A_{i,b}^{e} \\ \hat{F}_{b}^{e} = F_{b}^{e} - A_{b,i}^{e} [A_{i,i}^{e}]^{-1} F_{i}^{e} \end{cases}$$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

Introduction O	Mathematical model	BBFEM approximation	Numerical results
Measures	of performance		

• The accuracy of BBFEM is assessed by the following L^2 error

$$\varepsilon_2 = \frac{\|\boldsymbol{u}_h - \boldsymbol{u}\|_{L^2(\Omega)}}{\|\boldsymbol{u}\|_{L^2(\Omega)}} \times 100\%.$$

• The wave resolution is measured by the parameter

$$au_S = \lambda_S \sqrt{rac{n_{
m dof}}{|\Omega|}},$$

giving the numbers of DoF per λ_s . Here $|\Omega|$ is the surface area of Ω .

• The condition number is evaluated using the metric

$$\kappa = \frac{|||A||A^{-1}||\hat{x}| + |A^{-1}||b|||_{\infty}}{||\hat{x}||_{\infty}}.$$

In			io	n
0	a			

Mathematical model

BBFEM approximation

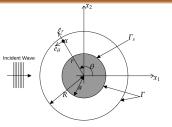
Shear wave scattering

Description of the Benchmark

The first benchmark problem deals with the elastic wave scattering problem, in which an incident shear plane wave

$$\mathbf{u}^{\mathrm{in}} = -\mathrm{i}k_{\mathrm{S}}\exp\left(\mathrm{i}k_{\mathrm{S}}x\right)\mathbf{e}_{y}$$

travelling from the left to the right along the horizontal direction and impinging on a circular rigid body of radius *a*.



The analytical solution : (given in the polar coordinate system (e_r, e_t))

$$u_{r} = \sum_{\nu=0}^{\infty} \left(\varepsilon_{\nu} i^{\nu} k_{P} J_{\nu}'(k_{P}r) + k_{P} A_{\nu} H_{\nu}'(k_{P}r) + \nu B_{\nu} \frac{H_{\nu}(k_{P}r)}{r} \right) \cos(\nu\theta)$$

$$u_{t} = \sum_{\nu=0}^{\infty} - \left(\varepsilon_{\nu} i^{\nu} \nu \frac{J_{\nu}(k_{P}r)}{r} + \nu A_{\nu} \frac{H_{\nu}(k_{P}r)}{r} + B_{\nu} k_{S} H_{\nu}'(k_{S}r) \right) \sin(\nu\theta),$$

where

- J_{ν} and J'_{ν} are, respectively, the Bessel function of the first kind and order ν , and its first derivative.
- H_{ν} and H'_{ν} are, respectively, the Hankel function of the first kind and order ν , and its first derivative.
- The sequence {ε_ν} is defined by ε₀ = 1, and ε_ν = 2 for all ν ≥ 1.
 The constant A − B − cm above such that n = 0 cm Γ.

The constants A_{ν} , B_{ν} are chosen such that u = 0 on Γ_s .

ICMS@Strathclyde

Introduction O	Mathematical model	BBFEM approximation	Numerical results
Shear wav	e scattering		

Contour plot

In this benchmark problem, for numerical experiments, the parameter *a* is taken equal to 1, and the elastic properties of the medium are taken to be those of Aluminum: $E = 69 \times 10^{9}$ N/m², $\nu = 0.32$ and $\rho = 2700$ kg/m³, which corresponds to the shear waves speed $c_{\rm S} = 3111.2$ 9m/s.

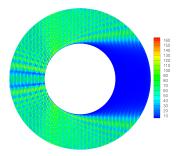


Figure: Contour plot of $|\text{Re}(\boldsymbol{u}_h)|$ at $f = 4.0 \times 10^4$ Hz.

Introduction O	Mathematical model	BBFEM approximation	Numerical results
Shear way	ve scattering		
$h_{-convergence}$ an	alveie		

To investigate the *h*-convergence analysis of BBFEM, a sequence of five gradually refined mesh grids are considered, with typical examples shown below.

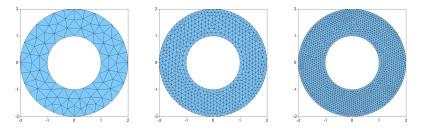


Figure: Examples of unstructured mesh grids used in the wave scattering problem; from left to right: M_1 (h = 0.54a), M_3 (h = 0.20a) and M_5 (h = 0.13a).

Shear wave scattering

Error analysis: h-refinement

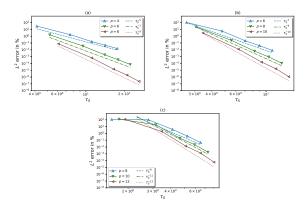


Figure: L^2 error versus τ_s (S wave stress); *h*-refinement for different values of the polynomial order *p*: (a) f = 10,000 Hz, (a) f = 20,000 Hz and (c) f = 40,000 Hz.

This method enables the recovery of an asymptotically algebraic decay of the L^2 error which scales as τ_s^{-p-1} .

ICMS@Strathclyde

Introduction O	Mathematical model	BBFEM approximation	Numerical results
Shear way	ve scattering		

Error analysis: p-refinement

All the numerical experiments are performed on mesh grid with h = 0.20a, with the frequencies 10,000Hz, 20,000Hz and 40,000Hz.

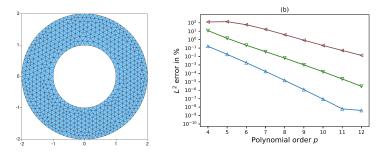


Figure: L^2 error versus the polynomial order for different frequencies; *p*-refinement with M_3 (h = 0.20a).

As expected, and since these benchmark tests make use of smooth analytical solutions, an exponential convergence is achieved.

ICMS@Strathclyde

solvers for frequency-domain wave problems and applications

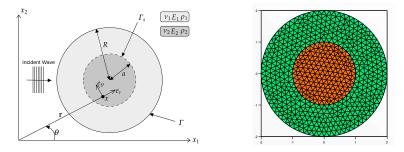
T _m				
	uu	10	U.	
\cap				

BBFEM approximation

Elastic transmission problem

Description of the Benchmark / p-adaptivity

Transmission of elastic plane waves through an inhomogeneous elastic cylinder with radius r = a, embedded in an infinite homogeneous elastic medium.



Use a *p*-adaptive analysis in which

$$\frac{k_{\rm S}^{(1)}h_1}{p_1} \simeq \gamma \frac{k_{\rm S}^{(2)}h_2}{p_2}, \quad \text{with} \quad \gamma = \frac{1}{2} \left(1 + \frac{k_{\rm S}^{(2)}}{k_{\rm S}^{(1)}} \right)$$

Introduction O	Mathematical model	BBFEM approximation	Numerical results
Elastic tran	asmission problen	1	
The analytica	, č	in the polar coordinate system by $_{1r}\mathbf{e}_r + u_{1\theta}\mathbf{e}_{\theta}$ $_{2r}\mathbf{e}_r + \mathbf{u}_{2\theta}\mathbf{e}_{\theta}$	
where $\mathbf{u}_{1r} = \sum_{m=1}^{+\infty}$	$\sum_{0}^{\infty} \left(-m\varepsilon_m i^m \frac{J_m(k_S^{(1)}r)}{r} + A_m k_P^{(1)} \right)$	$\frac{1}{m}\dot{H}_{m}^{(1)}(k_{p}^{(1)}r) - mB_{m}\frac{H_{m}^{(1)}(k_{S}^{(1)}r)}{r}\right)$	$\sin(m\theta)$
$\mathbf{u}_{1 heta} = \sum_{m=1}^{+\infty}$	$\sum_{0}^{\infty} \left(-\varepsilon_m i^m k_S^{(1)} J'_m(k_S^{(1)}r) + mA_n \right)$	$n\frac{H_m^{(1)}(k_P^{(1)}r)}{r} - B_m k_S^{(1)} \dot{H}_m^{(1)}(k_S^{(1)}r)$	$\int \cos(m\theta)$
$\mathbf{u}_{2r} = \sum_{m=1}^{+\infty}$	$\sum_{0}^{\infty} \left(C_m k_P^{(2)} J'_m(k_P^{(2)} r) - m D_m \frac{J_m}{2} \right)$	$\left(\frac{k_{S}^{(2)}r)}{r}\right)\sin(m\theta)$	
$\mathbf{u}_{2 heta} = \sum_{m=1}^{+\infty}$	$\sum_{0}^{\infty} \left(mC_m \frac{J_m(k_P^{(2)}r)}{r} - D_m k_S^{(2)} J_r' \right)$	$\left(n_n(k_S^{(2)}r) \right) \cos(m\theta)$	

where $k_{\rm P}^{(1)}$ and $k_{\rm S}^{(1)}$ are the compressional and shear wave numbers, respectively, in the medium. $k_{\rm P}^{(2)}$ and $k_{\rm S}^{(2)}$ are the compressional and shear wave numbers, respectively, in the cylinder.

Mathematical model

BBFEM approximation

Numerical results

Elastic transmission problem

p-adaptive analysis

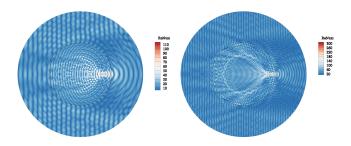


Figure: Contour plots of $|\text{Re}(\boldsymbol{u}_h)|$ at $f = 4.0 \times 10^4$ Hz; elastic waves transmission; $\tau_S = 6.10$ and $k_S^{(2)}/k_S^{(1)} = 2$: (left) P incident wave, (right) S incident wave.

Image: A match the second s

Elastic transmission problem

p-adaptive analysis

	Uniform <i>p</i> -refinement				Non uniform <i>p</i> -refinement					
f	р	$n_{\rm dof}$	nnz	$\varepsilon_2[\%]$	κ_A	(p_1, p_2)	n _{dof}	nnz	$\varepsilon_2[\%]$	κ_A
10 kHz	4	12,206	262,589	5.75	0.99e+4	(3,4)	9,702	180,369	6.47	0.95e+4
	6	19498	610779	3.07e-3	0.14e+5	(4,6)	14490	372723	1.19e-2	0.11e+5
	8	26,790	1,102,377	2.07e-5	0.25e+5	(5,8)	19,278	634,869	1.85e-4	0.18e+5
	10	34,082	1,737,383	1.32e-6	0.10e+6	(7,10)	26,570	1,123,283	1.05e-6	0.10e+6
	12	41,374	2,515,797	5.50e-6	0.10e+7	(8,12)	31,358	1,549,765	9.63e-8	0.10e+7
20 kHz	4	12,206	262,589	97.25	0.24e+4	(3,4)	9,702	180,369	97.28	0.20e+4
	6	19,498	610,779	0.75	0.25e+4	(4,6)	14,490	372723	0.75	0.25e+4
	8	26,790	1,102,377	1.07e-2	0.61e+4	(5,8)	19,278	634,869	1.07e-2	0.59e+4
	10	34,082	1,737,383	2.92e-4	0.57e+5	(7,10)	26,570	1,123,283	2.92e-4	0.57e+5
	12	41,374	2,515,797	6.38e-6	0.73e+6	(8,12)	31,358	1,549,765	6.30e-6	0.73e+6
	8	26,790	1,102,377	72.77	0.55e+6	(5,8)	19,278	634,869	72.66	0.55e+6
40 kHz	10	34,082	1,737,383	2.27	0.58e+6	(7,10)	26,570	1,123,283	2.27	0.58e+6
	12	41,374	2,515,797	5.51e-2	0.10e+8	(8,12)	31,358	1,549,765	5.51e-2	0.10e+8
	14	48,666	3,437,619	3.11e-3	0.19e+9	(9,14)	36,146	2,046,039	3.52e-3	0.19e+9

Table: S-wave scattering, $k_{\rm S}^{(2)}/k_{\rm S}^{(1)}=4$.

Introduction O	Mathematical model	BBFEM approximation	Numerical results
Thank you! Continued talk			

Part II - Bernstein-Bézier *H*(*curl*)**–conforming FEM efficient solver for** time-harmonic electromagnetic wave problems in media with interfaces