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Motivation

When solving short wave problems stated in unbounded domains by FEM, the main
challenges are:

The pollution error: the relative hp-FE error for Helmholtz problems in the
H1-seminorm, on a uniform hp-mesh, is bounded by

|u − uh|1
|u|1

≤ C1

(
kh
2p

)p

+ C2k
(

kh
2p

)2p

The truncation of the infinite domain

The accurate representation of curved geometries
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Time-harmonic elastic wave equation
We consider an isotropic linear homogeneous elastic medium into a domain Ω ⊂ R2 and
Γ = ∂Ω denoting the boundary of Ω;

Time-harmonic elastic wave problem consists of finding a function u : Ω → C× C satisfying
−ρω2u −∇ · σ(u) = 0 in Ω,

σ(u)n = i
[

E(1 − ν)

(1 + ν)(1 − 2ν)
kP(u · n)n +

E
2(1 + ν)

kS(u · t)t
]
+ g on Γ.

where

ρ > 0 is the (constant) material density and ω is the circular frequency

ν and E are the Poisson’s ratio and Young’s modulus, respectively (also constant)

g is a source term, with n and t denoting the outward unit normal and tangent vectors to Γ

kP and kS are the compressional (P) and shear (S) wave numbers, given by

kP = ω

√
ρ(1 + ν)(1 − 2ν)

E(1 − ν)
and kS = ω

√
2ρ(1 + ν)

E

Hooke’s law:

σ(u) =
Eν

(1 + ν)(1 − 2ν)
(∇ · u) I +

E
2(1 + ν)

(
∇u +∇u⊤

)
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Variational formulation

To derive a variational formulation for the time harmonic elastic problem, the
following usual Sobolev space V = H1(Ω)× H1(Ω) is introduced.
Let us multiply by the complex conjugate of a test function v ∈ V, integrating by
parts over Ω , and using the well known identity

σ(u) ·∇v̄ =
Eν

(1 + ν)(1 − 2ν)
(∇ · u)(∇ · v̄) +

E
(1 + ν)

∇u ·∇v̄ −
E

2(1 + ν)
(∇× u)(∇× v̄),

and taking into account the b.c., yields the following weak form:

Find u in V such that

−ω2ρ

∫
Ω

u · v̄ dΩ +
Eν

(1 + ν)(1 − 2ν)

∫
Ω
(∇ · u)(∇ · v̄) dΩ

+
E

(1 + ν)

∫
Ω
∇u ·∇v̄ dΩ−

E
2(1 + ν)

∫
Ω
(∇× u)(∇× v̄) dΩ

−i
∫
Γ

[
E(1 − ν)

(1 + ν)(1 − 2ν)
kP(u · n)(v̄ · n) +

E
2(1 + ν)

kS(u · t)(v̄ · t)
]

dΓ =

∫
Γ

g · v̄ dΓ,

for all v in V.

Existence and uniqueness :
Gårding’s inequality −→ Fredholm’s alternative + continuation arguments
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Reference triangle T̂
Barycentric coordinates and the linear blending map of Gordon & Hall

Let T̂ the reference element defined by,

T̂ := {ξ = (ξ1, ξ2) ∈ R2 : 0 ≤ ξ1 ≤ 1, 0 ≤ ξ2 ≤ 1 − ξ1}.

The barycentric coordinates relative to the reference element:

λ1(ξ1, ξ2) = ξ1, λ2(ξ1, ξ2) = ξ2, λ3(ξ1, ξ2) = 1 − ξ1 − ξ2.

Let consider the case of a triangular element with only one curved edge and assume it is edge
e1 = (q1 q2), given by its parametric form q = q(s), where 0 ≤ s ≤ 1, q(0) = q1 and
q(1) = q2 . A map denoted Φe and defined from T̂ to Te can be written as

Φe(ξ) = λ1(ξ)q1 + λ2(ξ)q2 + λ3(ξ)q3 +
λ1(ξ)λ2(ξ)

ξ2(1 − ξ2)
[q(ξ2)− ((1 − ξ2)q1 + ξ2q2)] .
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Bernstein polynomial basis on reference triangle T̂

Vertex based shape functions

ϕv
1(ξ) = λpv1

1 (ξ), ϕv
2(ξ) = λpv2

2 (ξ), ϕv
3(ξ) = λpv3

3 (ξ);

Edge based shape functions

ϕe1
k (ξ) =

(
pe1

k

)
λpe1−k

1 (ξ)λk
2(ξ), 1 ⩽ k ⩽ pe1 − 1;

ϕe2
k (ξ) =

(
pe2

k

)
λpe2−k

2 (ξ)λk
3(ξ), 1 ⩽ k ⩽ pe2 − 1;

ϕe3
k (ξ) =

(
pe3

k

)
λpe3−k

3 (ξ)λk
1(ξ), 1 ⩽ k ⩽ pe3 − 1;

Bubble based shape functions

ϕb
ij(ξ) =

(
pb

i + j

)(
i + j

i

)
λi

1(ξ)λ
j
2(ξ)λ

pb−i−j
3 (ξ), 1 ⩽ i + j ⩽ pb − 1;

(
m
k

)
:=

m!

k!(m − k)!
.
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Approximation by BBFEM

The approximated Bernstein-Bézier FE solution of the displacement field, denoted
by uh, can be written element-wise in the form

uh(x) =
3∑

i=1

ϕv
i (ξ)u

v
i +

3∑
k=1

p−1∑
i=1

ϕek
i (ξ)u

ek
i +

∑
1⩽i+j⩽p−1

ϕb
ij(ξ)u

b
ij

where uv
i , uek

i , ub
ij ∈ C2 are the unknown column vectors.

Bernstein polynomials form a partition of unity (pv = pe = pb = p)

Analytical rules apply in the case of constant coefficients and affine elements
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Bernstein polynomial basis on reference triangle T̂

The key technique to obtain a good performance from BBFEM is the use of static
condensation:

Remove interior modes from the resulting discrete algebraic system during the
assembling process;

Recover interior modes by solving small linear algebraic systems at an elemental level;

For a polynomial order p ≥ 3, the number of DoF per element is given by

ne
dof = 6 + 6(p − 1) + (p − 1)(p − 2)

Static condensation (Shur complement) is performed at the elemental level;
b = boundary modes, i = interior modes

 Ae
b,b Ae

b,i

Ae
i,b Ae

i,i


 Ue

b

Ue
i

 =

 Fe
b

Fe
i

 =⇒



Âe
bUe

b = F̂e
b

Ue
i = [Ae

i,i]
−1(Fe

i − Ae
i,bUe

b)

Âe
b = Ae

b,b − Ae
b,i[A

e
i,i]

−1Ae
i,b

F̂e
b = Fe

b − Ae
b,i[A

e
i,i]

−1Fe
i

Ae
i,i ∈ CN × CN , N = (p − 1)(p − 2)
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Measures of performance

The accuracy of BBFEM is assessed by the following L2 error

ε2 =
∥uh − u∥L2(Ω)

∥u∥L2(Ω)

× 100%.

The wave resolution is measured by the parameter

τS = λS

√
ndof

|Ω| ,

giving the numbers of DoF per λS. Here |Ω| is the surface area of Ω.

The condition number is evaluated using the metric

κ =
|| |A| |A−1| |x̂| + |A−1| |b| ||∞

||x̂||∞
.
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Shear wave scattering
Description of the Benchmark

The first benchmark problem deals with the elastic wave
scattering problem, in which an incident shear plane wave

uin = −ikS exp (ikSx) ey

travelling from the left to the right along the horizontal
direction and impinging on a circular rigid body of radius a.

The analytical solution : (given in the polar coordinate system (er, et))

ur =

∞∑
ν=0

(
εν iνkPJ′ν(kPr) + kPAνH′

ν(kPr) + νBν
Hν(kPr)

r

)
cos(νθ)

ut =
∞∑
ν=0

−
(
εν iνν

Jν(kPr)
r

+ νAν
Hν(kPr)

r
+ BνkSH′

ν(kSr)
)
sin(νθ),

where
Jν and J′ν are, respectively, the Bessel function of the first kind and order ν, and its first derivative.
Hν and H′

ν are, respectively, the Hankel function of the first kind and order ν, and its first derivative.
The sequence {εν} is defined by ε0 = 1, and εν = 2 for all ν ≥ 1.
The constants Aν , Bν are chosen such that u = 0 on Γs.
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Shear wave scattering
Contour plot

In this benchmark problem, for numerical experiments, the parameter a is taken
equal to 1, and the elastic properties of the medium are taken to be those of
Aluminum: E = 69 × 109N/m2 , ν = 0.32 and ρ = 2700kg/m3, which corresponds
to the shear waves speed cS = 3111.29m/s.

Figure: Contour plot of |Re(uh)| at f = 4.0 × 104Hz.

ICMS@Strathclyde Solvers for frequency-domain wave problems and applications 20-24 June 2022 12 / 20



DRAFT
Introduction Mathematical model BBFEM approximation Numerical results

Shear wave scattering
h-convergence analysis

To investigate the h-convergence analysis of BBFEM, a sequence of five gradually
refined mesh grids are considered, with typical examples shown below.

Figure: Examples of unstructured mesh grids used in the wave scattering problem;
from left to right: M1 (h = 0.54a), M3 (h = 0.20a) and M5 (h = 0.13a).
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Shear wave scattering
Error analysis: h-refinement
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Figure: L2 error versus τS (S wave stress); h-refinement for different values of the
polynomial order p: (a) f = 10, 000 Hz, (a) f = 20, 000 Hz and (c) f = 40, 000 Hz.

This method enables the recovery of an asymptotically algebraic decay of the L2

error which scales as τ−p−1
S .
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Shear wave scattering
Error analysis: p-refinement

All the numerical experiments are performed on mesh grid with h = 0.20a , with the
frequencies 10,000Hz, 20,000Hz and 40,000Hz.
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(b)

Figure: L2 error versus the polynomial order for different frequencies; p-refinement
with M3 (h = 0.20a).

As expected, and since these benchmark tests make use of smooth analytical
solutions, an exponential convergence is achieved.
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Elastic transmission problem
Description of the Benchmark / p-adaptivity

Transmission of elastic plane waves through an inhomogeneous elastic cylinder with
radius r = a, embedded in an infinite homogeneous elastic medium.

-2 -1 0 1 2

-2

-1

0

1

2

Use a p-adaptive analysis in which

k(1)
S h1

p1
⋍ γ

k(2)
S h2

p2
, with γ =

1
2

(
1 +

k(2)
S

k(1)
S

)
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Elastic transmission problem
Description of the Benchmark

The analytical solution in this case is given in the polar coordinate system by{
u1 = u1rer + u1θeθ
u2 = u2rer + u2θeθ

where

u1r =

+∞∑
m=0

(
−mεmim

Jm(k
(1)
S r)

r
+ Amk(1)

P Ḣ(1)
m (k(1)

P r)− mBm
H(1)

m (k(1)
S r)

r

)
sin(mθ)

u1θ =

+∞∑
m=0

(
−εmimk(1)

S J′m(k
(1)
S r) + mAm

H(1)
m (k(1)

P r)
r

− Bmk(1)
S Ḣ(1)

m (k(1)
S r)

)
cos(mθ)

u2r =

+∞∑
m=0

(
Cmk(2)

P J′m(k
(2)
P r)− mDm

Jm(k
(2)
S r)

r

)
sin(mθ)

u2θ =

+∞∑
m=0

(
mCm

Jm(k
(2)
P r)
r

− Dmk(2)
S J′m(k

(2)
S r)

)
cos(mθ)

where k(1)
P and k(1)

S are the compressional and shear wave numbers, respectively, in the medium.
k(2)

P and k(2)
S are the compressional and shear wave numbers, respectively, in the cylinder.
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Elastic transmission problem
p-adaptive analysis

Figure: Contour plots of |Re(uh)| at f = 4.0 × 104 Hz; elastic waves transmission; τS

= 6.10 and k(2)
S /k(1)

S = 2: (left) P incident wave, (right) S incident wave.
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Elastic transmission problem
p-adaptive analysis

Uniform p-refinement Non uniform p-refinement
f p ndof nnz ε2[%] κA (p1, p2) ndof nnz ε2[%] κA

4 12,206 262,589 5.75 0.99e+4 (3,4) 9,702 180,369 6.47 0.95e+4
6 19498 610779 3.07e-3 0.14e+5 (4,6) 14490 372723 1.19e-2 0.11e+5

10 kHz 8 26,790 1,102,377 2.07e-5 0.25e+5 (5,8) 19,278 634,869 1.85e-4 0.18e+5
10 34,082 1,737,383 1.32e-6 0.10e+6 (7,10) 26,570 1,123,283 1.05e-6 0.10e+6
12 41,374 2,515,797 5.50e-6 0.10e+7 (8,12) 31,358 1,549,765 9.63e-8 0.10e+7
4 12,206 262,589 97.25 0.24e+4 (3,4) 9,702 180,369 97.28 0.20e+4
6 19,498 610,779 0.75 0.25e+4 (4,6) 14,490 372723 0.75 0.25e+4

20 kHz 8 26,790 1,102,377 1.07e-2 0.61e+4 (5,8) 19,278 634,869 1.07e-2 0.59e+4
10 34,082 1,737,383 2.92e-4 0.57e+5 (7,10) 26,570 1,123,283 2.92e-4 0.57e+5
12 41,374 2,515,797 6.38e-6 0.73e+6 (8,12) 31,358 1,549,765 6.30e-6 0.73e+6
8 26,790 1,102,377 72.77 0.55e+6 (5,8) 19,278 634,869 72.66 0.55e+6
10 34,082 1,737,383 2.27 0.58e+6 (7,10) 26,570 1,123,283 2.27 0.58e+6

40 kHz 12 41,374 2,515,797 5.51e-2 0.10e+8 (8,12) 31,358 1,549,765 5.51e-2 0.10e+8
14 48,666 3,437,619 3.11e-3 0.19e+9 (9,14) 36,146 2,046,039 3.52e-3 0.19e+9

Table: S-wave scattering, k(2)
S /k(1)

S = 4.
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Thank you!
Continued talk

Part II - Bernstein-Bézier H(curl)–conforming FEM efficient solver for
time-harmonic electromagnetic wave problems in media with interfaces
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