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Objectives of this talk
Provide a black box solver that will e�iciently solve:

Ax = b; A ∈ Rn×n; b ∈ Rn.

Matrix A is:

I of very high order n

I symmetric positive definite

I sparse (i.e., finite element discretization of PDE)

I ill-conditioned

I already assembled.

Algebraic

Domain Decomposition w/ spectral coarse space (GenEO).

i.e., PCG with a preconditioner H that approximates A−1 with
solutions to subproblems in subdomains and a coarse problem.
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Algebraic Subdomains
Partition of Ω = J1, nK (set of all indices in Rn)

Ω =
N⋃
s=1

Ωs; with Ωs ⊂ Ω for any s = 1,… ,N .

Minimal overlap assumption
For (i, j) ∈ J1, nK2:

Aij 6= 0⇒ (∃ s ∈ J1,NK such that {i, j} ⊂ Ωs) .

→ Excludes block-Jacobi preconditioners.

Restriction Operators Rs ∈ {0; 1}ns×n; ns = #Ωs

Ωs Ω.
Rs>

Rs
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One-level abstract Schwarz preconditioner
Local solver for each s = 1,… ,N

Ãs ∈ Rns×ns is an spsd matrix, and Ãs † is the pseudo-inverse of Ãs.

One-level preconditioner

H :=
N∑
s=1

Rs>Ãs †Rs.

Examples

I Additive Schwarz if Ãs = RsARs>,

I Inexact Schwarz if Ãs = incomplete factorization(RsARs>),

I Neumann Neumann if Ãs is the Neumann matrix.
Nicole Spillane – AWG: Algebraic DD 4/29



Abstract DD Abstract GenEO New matrix A+ and its GenEO preconditioners AWG preconditioners Numerical Results

Two-level abstract Schwarz preconditioner for Ã
Ingredients

I H: one-level preconditioner,

I R0: coarse restriction operator (lines of R0: coarse basis V 0),

I R0ÃR0>: coarse problem.

Additive two-level preconditioner

Had := H + R0>(R0ÃR0>)−1R0,

Hybrid two-level preconditioner

Hhyb := ΠHΠ>+R0>(R0ÃR0>)−1R0, Π := I−R0>(R0ÃR0>)−1R0Ã.

Remark: Π is an Ã-orthogonal projection operator.
Nicole Spillane – AWG: Algebraic DD 5/29
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Coarse Spaces of the GenEO family
I In each subdomain, 1 or 2 generalized eigenvalue problems.
I Eigenvectors corresponding to eigenvalues smaller than a

chosen threshold τ form the basis for the coarse space V 0.
I Guaranteed convergence of PCG:

λmin < λ(HadA) < λmax with λmin and λmaxchosen by user.

I If τ grows, larger coarse space, smaller condition number of
prec. operator and faster convergence (in iterations).

It all relies on this Assumption
There exist Ns ∈ Rns×ns and N ′ such that:

N∑
s=1

〈x,Rs>NsRsx〉 6 N ′〈x,Ax〉 ∀ x ∈ Rn with Ns spsd ∀ s.

→ Do this algebraically ?
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A few references

N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, and R. Scheichl.
Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps.
Numer. Math., 126(4):741–770, 2014.

R. Haferssas, P. Jolivet, and F. Nataf.
An additive Schwarz method type theory for Lions’s algorithm and a symmetrized optimized restricted additive
Schwarz method.
SIAM Journal on Scientific Computing, 39(4):A1345–A1365, 2017.

N. Spillane.
An abstract theory of domain decomposition methods with coarse spaces of the GenEO family.
working paper or preprint, 2021.

H. Al Daas, H. A., and P. Jolivet.
A Robust Algebraic Multilevel Domain Decomposition Preconditioner For Sparse Symmetric Positive Definite Matrices.
arXiv preprint, arXiv:2109.05908, 2021.

A. Heinlein, C. Hochmuth, and A. Klawonn.
Fully algebraic two-level overlapping Schwarz preconditioners for elasticity problems.
Numerical Mathematics and Advanced Applications, ENUMATH 2019, 2021.

N. Bootland, V. Dolean, I. G. Graham, C. Ma, and R. Scheichl.
Overlapping Schwarz methods with GenEO coarse spaces for indefinite and non-self-adjoint problems.
arXiv preprint, arXiv:2110.13537, 2021.
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Let’s relax the spli�ing assumption

Symmetric spli�ing of A
Assume that there exists a family of symmetric (possibly indefinite)
matrices Bs ∈ Rns×ns for s = 1,… ,N such that

A =
N∑
s=1

Rs>BsRs.

Possible choice of matrice Bs

Let B ∈ Rn×n be defined by its entries

Bij :=

{
Aij

#{s;{i,j}⊂Ωs} if Aij 6= 0,
0 otherwise.

Then, for s = 1,… ,N , let Bs := RsBRs>.

← Algebraic construction !
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A spli�ing of the spli�ing
Recall that A =

∑N
s=1 R

s>BsRs.
1. Diagonalize Bs (for each s = 1,… ,N)

Bs = VsΛsVs>; with Vs orthogonal and Λsdiagonal.

2. Separate positive and non-positive eigenvalues of Bs

Λs =
(
Λs
− 0
0 Λs

+

)
, Vs =

[
Vs
−|Vs

+
]
, Λs

+ is spd, −Λs
− is spsd.

3. For each s = 1,… ,N , define (in Rns×ns ):

As
+ := Vs

+Λ
s
+V

s
+
> and As

− := −Vs
−Λ

s
−V

s
−
>.

By definition:

I Bs = As
+ − As

− ,

I As
− is spsd,

I As
+ is spsd.

Nicole Spillane – AWG: Algebraic DD 9/29
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Definition of A+

New global matrices A+ and A−

A+ :=
N∑
s=1

Rs>As
+R

s, and A− :=
N∑
s=1

Rs>As
−R

s.

Properties:

1. A = A+ − A−

(A =
∑N

s=1 R
s>BsRs =

∑N
s=1 R

s>(As
+ − As

−)Rs = A+ − A−).

2. A− is spsd

(indeed: A− = −
∑N

s=1 R
s>Vs

−Λ
s
−Vs
−
>Rs).

3. A+ is spd

(indeed: 〈x,A+x〉 > 〈x,Ax〉 ∀x).

Remark: spli�ing of A+ with spsd local matrices

N∑
s=1

〈x,Rs>NsRsx〉 6 N ′〈x,A+x〉 with N ′ = 1 and Ns = As
+ spsd.

→ The GenEO theory applies to A+ !

Nicole Spillane – AWG: Algebraic DD 10/29
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Recap: Definition of A+

1. Algebraic spli�ing of A with symmetric matrices:

A =
N∑
s=1

Rs>BsRs.

2. For each s = 1,… ,N , spli�ing of Bs into

Bs = As
+ − As

− with As
+ and As

− spsd.

3. Assemble As
+ into a global matrix

A+ :=
N∑
s=1

Rs>As
+R

s.

A+ is spd and the GenEO theory applies
→ Two-level preconditioners for A+ with adaptive spectral bounds.

Nicole Spillane – AWG: Algebraic DD 11/29
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One-level preconditioners for A+ =
∑N

s=1R
s>As

+Rs.

Definition

I Exact local Solvers:

HAS
+ :=

N∑
s=1

Rs>(RsA+Rs>)−1Rs,

I Neumann-Neumann:

HNN :=
N∑
s=1

Rs>Ds(As
+)
†DsRs,

with Ds a partition of unity (i.e., I =
∑N

s=1 R
s >DsRs).

I Other choices possible. . .

Nicole Spillane – AWG: Algebraic DD 12/29
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Two-level preconditioners for A+ with GenEO
Let τ > 1, the coarse space for A+

(
=
∑N

s=1 R
s>As

+Rs
)

is

V 0(τ ) :=
N∑
s=1

span

Rs>ys; (λs, ys)︸ ︷︷ ︸
∈R+×Rns

solution of (1) and λs < τ−1

 ,

where the generalized eigenvalue problem is

(Ds)−1As
+(D

s)−1ys = λsRsA+Rs>ys; w/ Ds: partition of unity. (1)

Spectral bounds with N (A+): coloring constant for A+

1/τ 6 λ(HAS
+,hybA+) 6 N (A+),

1/((1 + 2N (A+))τ ) 6 λ(HAS
+,adA+) 6 N (A+) + 1,

1 6 λ(HNN
hybA+) 6 N (A+)τ .

Nicole Spillane – AWG: Algebraic DD 13/29
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AWG (Algebraic Woodbury GenEO) as a solver
Theorem for A− = A+ − A

n− = rank(A−) 6
N∑
s=1

ns − n

and hopefully rank(A−)� n.

Woodbury matrix identity for A = A+ − A−
If A− = V−Λ−V>− with Λ− spd and V− full-rank

A−1 = A−1+ + A−1+ V−
(
Λ−1− − V>−A

−1
+ V−

)−1
︸ ︷︷ ︸

at most n−iterations of PCG

V>−A
−1
+ ,

→ Possible to approximate x = A−1b by solving at most (n− + 2)
linear systems with A+ for which a good preconditioner is known.

Nicole Spillane – AWG: Algebraic DD 14/29
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First AWG preconditioner for A

AWG preconditioner for A with inexact coarse space
Given a preconditioner H2 for A+ such that the eigenvalues of H2A+

are in the interval [λmin(H2A+),λmax(H2A+)]. Let

H3,inex := H2 + A−1+ V−
(
Λ−1− − V>−A

−1
+ V−

)−1
V>−A

−1
+ .

The eigenvalues of the new preconditioned operator satisfy

min(1,λmin(H2A+)) 6 λ(H3,inexA) 6 max(1,λmax(H2A+)).

For the proof, recall that

A−1 = A−1+ + A−1+ V−
(
Λ−1− − V>−A

−1
+ V−

)−1
V>−A

−1
+ .

Nicole Spillane – AWG: Algebraic DD 15/29
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Toward two more AWG preconditioners for A

Lemma:
range

(
A−1+ V−

)
= range

(
A−1V−

)
,

since, by definition, A = A+ − V−Λ−V>−.

Definition of an A-orthogonal projection operator:

Π3 := I−W(W>AW)−1W>A, with range(W) = range(A−1+ V−).

Property:
range(Π3) = Ker (A−) so AΠ3 = A+Π3.

"Corollary":
Good preconditioners for A once restricted to range(Π3) are known.
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Additive and Hybrid AWG preconditioners
Definition
Given a preconditioner H2 for A+ such that the eigenvalues of H2A+

are in the interval [λmin(H2A+),λmax(H2A+)]. Let

H3,ad := H2 +W(W>AW)−1W> (Additive AWG preconditioner),

H3,hyb := Π3H2Π
>
3 +W(W>AW)−1W> (Hybrid AWG preconditioner).

Spectral bounds
min(1,λmin(H2A+)) 6 λ(H3,hybA) 6 max(1,λmax(H2A+)),

min(1,λmin(H2A+)) 6 λ(H3,adA) 6 (λmax(H2A+) + 1).

These are abstract DD preconditioners with two coarse spaces

I One in H2 computed by GenEO for A+. It includes range(V−).
I The second is range(W) = range(A−1+ V−).
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Some remarks on implementation
1. In the spli�ing of Bs, only the non-positive eigenvalues Λs

− and
eigenvectors Vs

− are computed.
2. A− = V−Λ−V>− if:

V− = [R1>V1
− | … |RN>VN

−]; Λ− = diag(Λ1
−, …ΛN

−).
3. The computation of A−1+ V− is one of the bo�lenecks of the

algorithm. Currently solved with PCG for each column of V−.
4.

As
+ = Bs − Vs

−Λ
s
−V

s
−
> = (I− Vs

−V
s
−
>)Bs(I− Vs

−V
s
−
>)

which also implies that

As
+
† = (I− Vs

−V
s
−
>)Bs†(I− Vs

−V
s
−
>).

Since Bs is symmetric, it can be factorized using MUMPS.
5.

RsA+Rs> = RsARs> + RsA−Rs>,

And (RsA+Rs>)−1 is computed by the Woodbury matrix
identity.

Nicole Spillane – AWG: Algebraic DD 18/29
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Our code (collaboration with Loïc Gouarin)
I Available on Github:

https://github.com/gouarin/GenEO
I Implemented in petsc4py, a Python port to the PETSc libraries

L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo.
Parallel distributed computing using python.
Advances in Water Resources, 34(9):1124–1139, 2011.

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D.
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Numerical Results (1/9): Testcase

I Two-dimensional linear elasticity on ω = [0, 3]× [0, 3],

I Poisson’s ratio ν = 0.3, Young’s modulus: see Figure,

I discretized by Q1 finite elements,

I regular mesh of size h = 1/21 so that n = 8064,

I Partition into N = 9 unit squares, overlap only on boundaries,

I PCG solves (for A and A+) up to rel. residual tolerance of 10−10.

I In GenEO τ = 10.

Dark: E = E1 = 1011 (harder material)
Light : E = E2 = 107 (so�er material).
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Numerical Results (2/9):
κ: condition number of preconditioned operator; It : iteration count;
#V0: dim of GenEO coarse space; n−: rank of A−.

κ It #V0 n−
New AWG preconditioners:
H3,ad with H2 = HNN

hyb 9.09 26 57 48
H3,ad with H2 = HAS

+,hyb 12.3 25 57 48
H3,ad with H2 = HAS

+,ad 16.8 31 57 48
H3,hyb with H2 = HNN

hyb 9.09 27 57 48
H3,hyb with H2 = HAS

+,hyb 12.2 25 57 48
H3,hyb with H2 = HAS

+,ad 16.7 29 57 48
Non-algebraic methods:
Hybrid AS + GenEO (τ = 10) 26.5 43 55 0
Additive AS + GenEO (τ = 10) 50.0 58 55 0
BNN with GenEO (τ = 0.1) 11.1 29 55 0
One-level AS 34772 > 150 0 0

HAS
+ :=

N∑
s=1

Rs>(RsA+Rs>)−1Rs ; HNN :=
N∑
s=1

Rs>Ds(As
+)
†DsRs ,

H3,ad := H2 +W(W>AW)−1W>; H3,hyb := Π3H2Π
>
3 +W(W>AW)−1W>.
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Numerical Results (3/9) - Spectrum of GenEO gevp

Twenty smallest non-zero eigenvalues for GenEO gevp

(Ds)−1As
+(D

s)−1ys = λsRsA+Rs>ys; for Ds partition of unity.

→ There is a gap.
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Numerical Results (4/9) – GenEO eigenvectors

The first eight vectors correspond to a zero eigenvalue in the GenEO
eigenproblem, i.e., to a negative eigenvalue λs− of Bs. The last vector
corresponds to the first non-zero eigenvalue (λs])8 in the GenEO
eigenproblem.
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Numerical Results (5/9) – Influence of ν
From now on the preconditioner is H3,ad with H2 = HNN

hyb and τ = 10.
AWG

ν κ It #V0 n−
0.20 19.7 33 21 12
0.30 20.3 32 29 19
0.35 18.6 32 47 25
0.40 25.8 39 98 70
0.45 27.1 29 115 110
0.49 16.8 25 362 357

Classical GenEO (not algebraic)

ν κ It #V0 n−
0.20 17.2 33 21 0
0.30 17.6 36 21 0
0.35 19.1 37 21 0
0.40 20.1 39 24 0
0.45 33.7 46 28 0
0.49 34.9 51 94 0

I ν: Poisson’s ratio,

I κ: condition number of preconditioned operator,

I It : number of iterations,

I #V0: dimension of GenEO coarse space,

I n− = rank(A−): dimension of second coarse space.
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Numerical Results (6/9) – Influence of E

AWG
(E1, E2) κ It #V0 n−
(105, 1011) 10.8 22 95 75
(107, 1011) 10.8 23 95 75
(109, 1011) 10.4 24 94 73
(1011, 1011) 12.2 29 35 19
(1011, 109) 8.0 26 59 48
(1011, 107) 9.0 26 57 48
(1011, 105) 8.4 29 57 48

Classical GenEO
κ It #V0 n−
8.6 23 90 0
8.6 26 87 0
8.5 25 85 0
13.7 32 28 0
11.2 30 52 0
11.1 29 55 0
12.7 30 55 0

I E1: Young’s modulus in the dark layers, E2 elsewhere,

I κ: condition number of preconditioned operator,

I It : number of iterations,

I #V0: dimension of GenEO coarse space,

I n− = rank(A−): dimension of second coarse space.
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Numerical Results (7/9) - influence of rtol
ν = 0.3

rtol κ It #V0 n−
10−10 9.0 26 57 48
10−2 9.0 27 57 48
0.05 11.1 31 57 48
0.1 12.2 32 57 48
0.5 400.8 40 57 48
0.9 706.8 64 57 48

ν = 0.4
κ It #V0 n−

9.4 29 100 74
9.4 30 100 74

12.0 33 100 74
17.4 36 100 74

1563.3 88 100 74
2142.1 100 100 74

I rtol: relative residual accuracy up to which the linear systems
with A+ preconditioned by H2 are solved during the setup of
the second coarse basis W.

I κ: condition number of preconditioned operator,

I It : number of iterations,

I #V0: dimension of GenEO coarse space,

I n− = rank(A−): dimension of second coarse space.
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Numerical Results (8/9) – Weak scalability Testcase

I N ∈ {2; 4; 8; 15; 29} (number of unit-square subdomains),
I ω = [N , 1],
I h = 1/14 (mesh size),
I ν = 0.3 (Poisson’s ratio),

I E =
{

E1 = 1011 if y ∈ [1/7; 2/7] ∪ [3/7; 4/7],
E2 = 107 otherwise,

I H3,ad with H2 = HNN
hyb and τ = 10,

I rtol = 10−10 (relative residual tolerance for the linear solves
with A+ and the linear solve with A).
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Numerical Results (9/9) – Weak scalability results

AWG
N κ It #V0 n−
2 12.6 15 8 8
4 9.8 16 26 20
8 9.0 15 62 44
15 8.8 15 125 86
29 8.7 17 251 170

Classical GenEO
N κ It #V0 n−
2 9.5 15 7 0
4 11.9 19 19 0
8 12.6 23 43 0
15 12.8 27 85 0
29 12.8 28 169 0

I N : number of subdomains (also proportional to problem size),

I κ: condition number of preconditioned operator,

I It : number of iterations,

I #V0: dimension of GenEO coarse space,

I n− = rank(A−): dimension of second coarse space.
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Conclusion – we introduced:

I a new algebraic spli�ing A =
∑N

s=1 R
s>BsRs (Bs symmetric).

I A+ and its preconditioners with adaptive spectral bounds,

I a new formula for A−1 based on the Woodbury matrix identity
applied to A viewed as a modification of A+,

I new fully algebraic preconditioners for A with adaptive
spectral bounds and two coarse spaces (one rather expensive).

N. Spillane.
Toward a new fully algebraic preconditioner for symmetric positive definite problems.
h�ps://hal.archives-ouvertes.fr/hal-03187092, 2021.

L. Gouarin and N. Spillane.
Fully algebraic domain decomposition preconditioners with adaptive spectral bounds.
h�ps://hal.archives-ouvertes.fr/hal-03258644, 2021.
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