Counting wildly ramified quartic extensions with fixed automorphism group

Sebastian Monnet

Mass

K / \mathbb{Q}_{2} finite field extension

S set of quartic field extensions of K

The pre-mass of S is

$$
\begin{aligned}
\tilde{m}(S):= & \sum_{L \in S} \frac{1}{\# \operatorname{Aut}(L / K) \cdot q^{v_{K}\left(d_{L K}\right)}} \quad \text { Discriminant valuation } \\
& \text { Size of residue fieldd } \# ⿷_{K}
\end{aligned}
$$

Application to arithmetic statistics

Theorem (Bhargava-Shankar-Wang): We have

$$
\mathbb{P}\left(E_{\mathfrak{p}} \in S\right)=\frac{\tilde{m}(S)}{\tilde{m}(\text { everything })}
$$

Completion at \mathfrak{p}

Set of quartic extensions of $F_{\mathfrak{p}}$

Serre's mass formula

$\Sigma:=\{$ totally ramified quartic $L / K\} / \cong$

Theorem (Serre): We have

$$
\tilde{m}(\Sigma)=q^{-3}
$$

Fixed Galois group

Finite group

$$
\Sigma^{G}:=\{L \in \Sigma: \operatorname{Aut}(L / K) \cong G\}
$$

Goal: Find a formula for $\tilde{m}\left(\Sigma^{G}\right)$

Applications:

- S_{4}-quartics with prescribed norms
- Upcoming work by Newton-Varma
- Extending base field

My approach

$$
\begin{aligned}
& \Sigma_{m}^{G}:=\left\{L \in \Sigma^{G}: v_{K}\left(d_{L K K}\right)=m\right\} \\
& \text { Then } \tilde{m}\left(\Sigma^{G}\right)=\frac{1}{\# G} \cdot \sum_{m} \frac{\# \Sigma_{m}^{G}}{q^{m}}
\end{aligned}
$$

So suffices to find $\# \Sigma_{m}^{G}$ and then add up

Four cases

Formula for $\# \Sigma_{m}^{\{1\}}$

$$
\begin{gathered}
\# \Sigma_{m}^{\{1\}}=q^{\left\lfloor\frac{m}{3}\right\rfloor-1}(q-1)\left(1+\mathbb{1}_{6 \mid m} \cdot\left(\frac{1-2 q}{3 q}\right)\right) \\
\left(4 \leq m \leq 6 e_{K}+2 \text { even }\right)
\end{gathered}
$$

Formula for $\# \Sigma_{m}^{C_{4}}$

$6 \leq m \leq 6 e_{K}+2$ even $\Longrightarrow \# \Sigma_{m}^{C_{4}}$ is the sum of:
(1) $\mathbb{1}_{8 \leq m \leq 5 e_{K}-2} \cdot \mathbb{1}_{m \equiv 3}(\bmod 5) \cdot 2 q^{\frac{3 m-14}{10}}(q-1)$.
(2) $\mathbb{1}_{4 e_{K}+4 \leq m \leq 5 e_{K}+2} \cdot 2 q^{\frac{m}{2}-e_{K}-2}(q-1)$.
(3) $\mathbb{1}_{5 e_{K}<m \leq 8 e_{K}} \cdot \mathbb{1}_{m \equiv 2 e_{K}}(\bmod 3) \cdot 2 q^{\frac{4 e_{K}+m}{6}-1}\left(1+\mathbb{1}_{m \leq 8 e_{K}-6 t_{0}}\right)\left(q-1-\mathbb{1}_{m=8 e_{K}-6 t_{0}+6}\right)$.
(4) $\mathbb{1}_{10 \leq m \leq 5 e_{K}} \cdot 2(q-1)\left(q^{\left\lfloor\frac{3 m}{10}\right\rfloor-1}-q^{\max \left\{\left\lceil\frac{m+2}{4}\right\rceil, \frac{m}{2}-e_{K}\right\}-2}\right)$.

Only other case:

$$
\# \Sigma_{8 e_{K}+3}^{C_{4}}= \begin{cases}4 q^{2 e_{K}} & \text { if }-1 \in K^{\times 2} \\ 2 q^{2 e_{K}} & \text { if } K(\sqrt{-1}) / K \text { is quadratic and totally ramified, } \\ 0 \quad \text { if } K(\sqrt{-1}) / K \text { is quadratic and unramified. }\end{cases}
$$

