
Lattice Reduction & Attacks
Lab

Martin R. Albrecht
27 July 2022

In this lab, we will make intensive use of FPLLL and FPyLLL.

FPLLL is a C++11 library for operating on lattices using floating
point arithmetic. It implements Gram-Schmidt orthogonalisation,
LLL, BKZ, BKZ 2.01, Slide reduction2 and Self-Dual BKZ3. 1 Yuanmi Chen and Phong Q. Nguyen.

“BKZ 2.0: Better Lattice Security Es-
timates”. In: ASIACRYPT 2011. Ed. by
Dong Hoon Lee and Xiaoyun Wang.
Vol. 7073. LNCS. Springer, Heidelberg,
Dec. 2011, pp. 1–20. DOI : 10.1007/978-
3-642-25385-0_1.
2 Nicolas Gama and Phong Q. Nguyen.
“Finding short lattice vectors within
Mordell’s inequality”. In: 40th ACM
STOC. ed. by Richard E. Ladner and
Cynthia Dwork. ACM Press, May 2008,
pp. 207–216. DOI : 10.1145/1374376.
1374408.
3 Daniele Micciancio and Michael
Walter. Practical, Predictable Lattice
Basis Reduction. Cryptology ePrint
Archive, Report 2015/1123. https:
//eprint.iacr.org/2015/1123. 2015.

FPyLLL is a Python wrapper and extension of FPLLL, making its
data structures and algorithms available in Python and SageMath.
It also (re-)implements some algorithms in Python to make their
internals easily accessible, a feature we will make use of.

G6K is C++ library & Python wrapper that implements lattice
sieving. This tutorial should use G6K but it does not come by
default with SageMath. Thus, to avoid spending all our time
installing it, this lab uses only FPLLL/FPyLLL. Feel encouraged to
try these exercised with G6K later, which builds on FPyLLL.

Introduction

In this lab, we ask you to experiment with LLL and BKZ as imple-
mented in FPyLLL. We start with a little tutorial on how to use this
library. To start, we first import the fpylll API into Sage’s main
namespace:
from fpylll import *

Integer Matrices

To experiment, we generate a q-ary lattice of dimension 100 and de-
terminant q50 where q is a 30-bit prime. Before we sample our basis,
we set the random seed to ensure we can reproduce our experiments
later.
set_random_seed(1337)
A = IntegerMatrix.random(100, "qary", k=50, bits=30)

Remark 1. Objects and functions in Python/Sage can be interrogated to
learn more about them such as what parameters they accept (for functions)
or (often) their documentation.

Gram–Schmidt Orthogonalisation

To run LLL we have two choices. We can either run the high-level
LLL.reduction() function or we can create the appropriate hier-
archy of objects “by hand”. That is, algorithms are represented by

https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1145/1374376.1374408
https://doi.org/10.1145/1374376.1374408
https://eprint.iacr.org/2015/1123
https://eprint.iacr.org/2015/1123
https://sagemath.org
https://doc.sagemath.org/html/en/tutorial/tour_help.html

LATTICE REDUCTION & ATTACKS LAB 2

objects with which we can interact. As this exercise is about dealing
with those internal objects, we are going to pursue this strategy. We,
hence, first create a MatGSO object, which takes care of computing
the Gram-Schmidt orthogonalisation. A MatGSO object stores the
following information:

• An integral basis B,

• the Gram–Schmidt coefficients µi,j =
⟨
bi,b∗

j

⟩
/∥b∗

j∥2 for i > j,

• the coefficients ri,j =
⟨
bi,b∗

j

⟩
= µi,j · rj,j for i ≥ j

It holds that: B = R × Q = (µ × D) × (D−1 × B∗) where Q
is orthonormal, R is lower triangular and B∗ is the Gram-Schmidt
orthogonalisation.

We choose the floating point type (≈ bits of precision) used to
represent the Gram-Schmidt coefficients as native double, which is
fastest and fine up to dimension 170 or so. If you choose mpfr for
arbitrary precision, you must call FPLLL.set_precision(prec)
before constructing your object M, i.e. precision is global!
M = GSO.Mat(A, float_type="d")

When we said “internal”, we meant it. Note that M is lazy, i.e. the
Gram–Schmidt orthogonalisation is only computed/updated when
needed. For example, as of now, none of the coefficients are mean-
ingful:
M.get_r(0,0)

0.0

To get meaningful results, we need to trigger the appropriate
computation. To compute the complete GSO, run:
_ = M.update_gso()

This is better:
M.get_r(0,0)/A[0].norm()^2

1.0

You can call update_gso at construction time with:
M = GSO.Mat(A, float_type="d", update=True)

Remark 2. FP(y)LLL also supports GSO objects for Gram matrices, i.e. in
lieu of a basis.

LLL

We can now create an LLL object which operates on GSO objects. All
operations performed on GSO objects, e.g. M, are automatically also
applied to the underlying integer matrix, e.g. A.
L = LLL.Reduction(M, delta=0.99, eta=0.501, flags=LLL.VERBOSE)

Now that we have an LLL object, we can call it, i.e. run the al-
gorithm. Note that you can specify a range of rows on which to
perform LLL.

LATTICE REDUCTION & ATTACKS LAB 3

L(0, 0, 10)

Entering LLL
delta = 0.99
eta = 0.501
precision = 53
exact_dot_product = 0
row_expo = 0
early_red = 0
siegel_cond = 0
long_in_babai = 0
Discovering vector 2/10 cputime=0
Discovering vector 3/10 cputime=0
Discovering vector 4/10 cputime=0
Discovering vector 5/10 cputime=0
Discovering vector 6/10 cputime=0
Discovering vector 7/10 cputime=0
Discovering vector 8/10 cputime=0
Discovering vector 9/10 cputime=0
Discovering vector 10/10 cputime=0
End of LLL: success

That’s maybe a bit verbose, let’s continue to the end without all
that feedback:
L = LLL.Reduction(M, delta=0.99, eta=0.501)
L()

If our LLL implementation is any good, then ∥µi,j∥ ≤ η should
hold for all i > j. Let’s check:
all([abs(M.get_mu(i,j)) <= 0.501 for i in range(M.d) for j in range(i)])

True

We also want to check if we made progress on A:
A[0].norm()^2

57755566272.00001

BKZ

Calling BKZ works similarly: there is a high-level function BKZ.reduction()

and a BKZ object BKZ.Reduction. However, in addition there are
also several implementations of the BKZ algorithm in
fpylll.algorithms

These are re-implementations of BKZ-syle algorithms in Python
which makes them rather hackable, i.e. we can modify different
parts of the algorithms relatively easily. To use those, we first have to
import them. We opt for BKZ 2.0:4 4 See here for a simple implementation

of BKZ.
from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

BKZ 2.0 takes a lot of parameters, such as:

block_size the block size

strategies we explain this one below

flags verbosity, early abort, etc.

max_loops limit the number of tours

auto_abort heuristic, stop when the average slope of log(∥b∗i ∥)
does not decrease fast enough

https://github.com/fplll/fpylll/blob/master/src/fpylll/algorithms/simple_bkz.py

LATTICE REDUCTION & ATTACKS LAB 4

gh_factor heuristic, if set then the enumeration bound will be set
to this factor times the Gaussian Heuristic.

It gets old fast passing these around one-by-one. Thus, FPLLL and
FPyLLL introduce an object BKZ.Param to collect such parameters:
flags = BKZ.AUTO_ABORT|BKZ.MAX_LOOPS|BKZ.GH_BND
params = BKZ.Param(60, strategies=BKZ.DEFAULT_STRATEGY,

max_loops=4,
flags=flags)

The parameter strategies takes a list of “reduction strategies” or
a filename for a JSON file containing such strategies. For each block
size these strategies determine what pruning coefficients are used
and what kind of recursive preprocessing is applied before enumera-
tion. The strategies in BKZ.DEFAULT_STRATEGY were computed using
fplll’s strategizer.
strategies = load_strategies_json(BKZ.DEFAULT_STRATEGY)
print(strategies[60])

Strategy< 60, (40), 0.30-0.53, {}>

That last line means that for block size 60 we are preprocessing
with block size 40 and our pruning parameters are such that enumer-
ation succeeds with probability between 29% and 50% depending
on the target enumeration radius. Still, constructing such parameter
objects gets old, too, we can simply call:
params = BKZ.EasyParam(60, max_loops=4)

Finally, let’s call BKZ-60 on our example lattice:
bkz = BKZ2(A) # or
bkz = BKZ2(GSO.Mat(A)) # or
bkz = BKZ2(LLL.Reduction(GSO.Mat(A)))

_ = bkz(params)

Lattice Reduction

In this exercise, we ask you to verify various predictions made about
lattice reduction using the implementations available in FPyLLL.

root-Hermite factors

Recall that lattice reduction returns vectors such that

∥v∥ = δd−1 · Vol(Λ)1/d

where δ is the root-Hermite factor which depends on the algorithm.
For LLL it is δ0 ≈ 1.0219 and for BKZ-k it is

δ0 ≈
(

k

2πe
(πk)

1
k

) 1
2(k−1)

.

Experimentally measure root-Hermite factors for various bases and
algorithms.

https://github.com/fplll/strategizer

LATTICE REDUCTION & ATTACKS LAB 5

GS norms & Geometric series assumption

Schnorr’s geometric series assumption (GSA) states that the norms
of the Gram-Schmidt vectors after lattice reduction satisfy

∥b∗
i ∥ = αβ

(d−1−2i)/2 · Vol(Λ)1/d for some 0 < αβ < 1

and αβ = GH(β)
1/(β−1).

Check how well this assumption holds for various block sizes of
BKZ. That is, running several tours of BKZ 2.0, plot the logs of Gram-
Schmidt norms agains the GSA after each tour. You have several
options to get to those norms:

• Check out the dump_gso_filename option for BKZ.Param.

• Set up BKZ parameters to run one tour only an measure between
BKZ calls.

• Inherit from fpylll.algorithms.bkz2.BKZReduction and add
the functionality to plot after each tour.

To plot you can simply call line() to plot, e.g.
kwds = {"color": "lightgrey", "dpi":150r, "thickness":2}
line(zip(range(10),prime_range(30)), **kwds)

Primal Attack

For varying parameters (n, q, χe) determine the BKZ block size
required to break LWE instances corresponding to these parameters
and compare your predict with experimental evidence. You may use
the following lattice basis generator to run those experiments.
def lwe_instancef(n=20, q=7681, Xe=2, Xs=None, m=None):

m = n if m is None else m
Xs = Xe if Xs is None else Xs
s = random_vector(ZZ, n, x=-Xs, y=Xs+1)
e = random_vector(ZZ, m, x=-Xe, y=Xe+1)
A = random_matrix(GF(q), m, n)
b = A*s + e
B = block_matrix(

[
[q*identity_matrix(ZZ, m), 0, 0],
[A.T.lift(),identity_matrix(ZZ, n),0],
[matrix(ZZ,1,m,b).lift(), 0, Xe],

LATTICE REDUCTION & ATTACKS LAB 6

])
return B

B = lwe_instancef()

LATTICE REDUCTION & ATTACKS LAB 7

Example Solutions

root-Hermite factors

-*- coding: utf-8 -*-
from fpylll import *

deltaf = lambda b: (b/(2*pi*e) * (pi*b)^(1/b))^(1/(2*b-1))
fmt = "n: %3d, bits: %2d, β: %2d, δ_0: %.4f, " \

+ "pred: 2^%5.2f, real: 2^%5.2f"

N = (50, 70, 90, 110, 130)
BETAS = (2, 20, 50, 60)
q = 7681

ntrials = 8
for n in N:

for beta in BETAS:
if beta > n:

continue
delta = 1.0219 if beta == 2 else deltaf(beta)
n_pred = float(delta^(n-1) * q^(1/2))
n_real = []
for i in range(ntrials):

A = IntegerMatrix.random(n, "qary", k=n/2, q=q)
if beta == 2:

LLL.reduction(A)
else:

BKZ.reduction(A, BKZ.EasyParam(block_size=beta))
n_real.append(A[0].norm())

n_real = sum(n_real)/ntrials
print(fmt%(n, bits, beta, delta,

log(n_pred,2), log(n_real,2)))

n: 50, bits: 20, β: 2, δ_0: 1.0219, pred: 2^ 7.98, real: 2^ 7.73
n: 50, bits: 20, β: 20, δ_0: 1.0094, pred: 2^ 7.11, real: 2^ 7.40
n: 50, bits: 20, β: 50, δ_0: 1.0119, pred: 2^ 7.29, real: 2^ 7.31
n: 70, bits: 20, β: 2, δ_0: 1.0219, pred: 2^ 8.61, real: 2^ 8.53
n: 70, bits: 20, β: 20, δ_0: 1.0094, pred: 2^ 7.38, real: 2^ 7.82
n: 70, bits: 20, β: 50, δ_0: 1.0119, pred: 2^ 7.64, real: 2^ 7.56
n: 70, bits: 20, β: 60, δ_0: 1.0114, pred: 2^ 7.58, real: 2^ 7.54
n: 90, bits: 20, β: 2, δ_0: 1.0219, pred: 2^ 9.24, real: 2^ 8.96
n: 90, bits: 20, β: 20, δ_0: 1.0094, pred: 2^ 7.65, real: 2^ 8.27
n: 90, bits: 20, β: 50, δ_0: 1.0119, pred: 2^ 7.98, real: 2^ 7.93
n: 90, bits: 20, β: 60, δ_0: 1.0114, pred: 2^ 7.90, real: 2^ 7.87
n: 110, bits: 20, β: 2, δ_0: 1.0219, pred: 2^ 9.86, real: 2^ 9.62
n: 110, bits: 20, β: 20, δ_0: 1.0094, pred: 2^ 7.92, real: 2^ 8.72
n: 110, bits: 20, β: 50, δ_0: 1.0119, pred: 2^ 8.32, real: 2^ 8.26
n: 110, bits: 20, β: 60, δ_0: 1.0114, pred: 2^ 8.23, real: 2^ 8.19
n: 130, bits: 20, β: 2, δ_0: 1.0219, pred: 2^10.49, real: 2^10.41
n: 130, bits: 20, β: 20, δ_0: 1.0094, pred: 2^ 8.19, real: 2^ 9.10
n: 130, bits: 20, β: 50, δ_0: 1.0119, pred: 2^ 8.66, real: 2^ 8.64
n: 130, bits: 20, β: 60, δ_0: 1.0114, pred: 2^ 8.56, real: 2^ 8.50

GS norms & Geometric series assumption

dump_gso_filename

-*- coding: utf-8 -*-
from fpylll import *

set_random_seed(1)
n, bits = 120, 40
A = IntegerMatrix.random(n, "qary", k=n/2, bits=bits)
beta = 60
tours = 8

LATTICE REDUCTION & ATTACKS LAB 8

fn = "/tmp/logs.txt"
par = BKZ.EasyParam(block_size=beta,

dump_gso_filename=fn,
max_loops=tours)

delta = (beta/(2*pi*e) * (pi*beta)^(1/ZZ(beta)))^(1/(2*beta-1))
alpha = delta^(-2*n/(n-1))

norms = [map(log, [(alpha^i * delta^n * 2^(bits/2))^2
for i in range(n)])]

BKZ.reduction(A, par)

for i, l in enumerate(open(fn).readlines()):
if i > tours:

break
_norms = l.split(":")[1] # stop off other information
_norms = _norms.strip().split(" ") # split string
_norms = map(float, _norms) # map to floats
norms.append(_norms)

C = ["#4D4D4D", "#5DA5DA", "#FAA43A", "#60BD68",
"#F17CB0", "#B2912F", "#B276B2", "#DECF3F", "#F15854"]

g = line(zip(range(n), norms[0]), legend_label="GSA", color=C[0])
g += line(zip(range(n), norms[1]), legend_label="lll", color=C[1])

for i,_norms in enumerate(norms[2:]):
g += line(zip(range(n), _norms),

legend_label="tour %d"%i, color=C[i+2])
g

bkz.tour

-*- coding: utf-8 -*-
from fpylll import *
from fpylll.algorithms.bkz2 import BKZReduction as BKZ2

set_random_seed(1)
n, bits = 120, 40
A = IntegerMatrix.random(n, "qary", k=n/2, bits=bits)
beta = 60
tours = 2
par = BKZ.EasyParam(block_size=beta)

delta = (beta/(2*pi*e) * (pi*beta)^(1/ZZ(beta)))^(1/(2*beta-1))
alpha = delta^(-2*n/(n-1))

LLL.reduction(A)

M = GSO.Mat(A)
M.update_gso()

norms = [map(log, [(alpha^i * delta^n * 2^(bits/2))^2
for i in range(n)])]

norms += [[log(M.get_r(i,i)) for i in range(n)]]

bkz = BKZ2(M)

for i in range(tours):
bkz.tour(par)
norms += [[log(M.get_r(i,i)) for i in range(n)]]

C = ["#4D4D4D", "#5DA5DA", "#FAA43A", "#60BD68",
"#F17CB0", "#B2912F", "#B276B2", "#DECF3F", "#F15854"]

LATTICE REDUCTION & ATTACKS LAB 9

g = line(zip(range(n), norms[0]), legend_label="GSA", color=C[0])
g += line(zip(range(n), norms[1]), legend_label="lll", color=C[1])

for i,_norms in enumerate(norms[2:]):
g += line(zip(range(n), _norms),

legend_label="tour %d"%i, color=C[i+2])
g

	Introduction
	Lattice Reduction
	Primal Attack
	Example Solutions

