Lattice Reduction \mathcal{E} Attacks

Lab

Martin R. Albrecht

27 July 2022

In this lab, we will make intensive use of FPLLL and FPyLLL.

FPLLL is a $C++11$ library for operating on lattices using floating point arithmetic. It implements Gram-Schmidt orthogonalisation, LLL, BKZ, BKZ 2.0 ${ }^{1}$, Slide reduction ${ }^{2}$ and Self-Dual BKZ ${ }^{3}$.

FPyLLL is a Python wrapper and extension of FPLLL, making its data structures and algorithms available in Python and SageMath. It also (re-)implements some algorithms in Python to make their internals easily accessible, a feature we will make use of.

G6K is C++ library \& Python wrapper that implements lattice sieving. This tutorial should use G6K but it does not come by default with SageMath. Thus, to avoid spending all our time installing it, this lab uses only FPLLL/FPyLLL. Feel encouraged to try these exercised with G6K later, which builds on FPyLLL.

Introduction

In this lab, we ask you to experiment with LLL and BKZ as implemented in FPyLLL. We start with a little tutorial on how to use this library. To start, we first import the fpylll API into Sage's main namespace:

```
from fpylll import *
```


Integer Matrices

To experiment, we generate a q-ary lattice of dimension 100 and determinant q^{50} where q is a 30-bit prime. Before we sample our basis, we set the random seed to ensure we can reproduce our experiments later.
set_random_seed(1337)
A = IntegerMatrix.random(100, "qary", k=50, bits=30)
Remark 1. Objects and functions in Python/Sage can be interrogated to learn more about them such as what parameters they accept (for functions) or (often) their documentation.

Gram-Schmidt Orthogonalisation

To run LLL we have two choices. We can either run the high-level LLL. reduction() function or we can create the appropriate hierarchy of objects "by hand". That is, algorithms are represented by
${ }^{1}$ Yuanmi Chen and Phong Q. Nguyen. "BKZ 2.0: Better Lattice Security Estimates". In: ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang. Vol. 7073. LNCS. Springer, Heidelberg, Dec. 2011, pp. 1-20. doi: 10.1007/978-3-642-25385-0_1.
${ }^{2}$ Nicolas Gama and Phong Q. Nguyen. "Finding short lattice vectors within Mordell's inequality". In: 40th ACM STOC. ed. by Richard E. Ladner and Cynthia Dwork. ACM Press, May 2008, pp. 207-216. Doi: $10.1145 / 1374376$. 1374408.
${ }^{3}$ Daniele Micciancio and Michael Walter. Practical, Predictable Lattice Basis Reduction. Cryptology ePrint Archive, Report 2015/1123. https : //eprint.iacr.org/2015/1123. 2015.
objects with which we can interact. As this exercise is about dealing with those internal objects, we are going to pursue this strategy. We, hence, first create a MatGSO object, which takes care of computing the Gram-Schmidt orthogonalisation. A MatGSO object stores the following information:

- An integral basis B,
- the Gram-Schmidt coefficients $\mu_{i, j}=\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle /\left\|\mathbf{b}_{j}^{*}\right\|^{2}$ for $i>j$,
- the coefficients $r_{i, j}=\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle=\mu_{i, j} \cdot r_{j, j}$ for $i \geq j$

It holds that: $\mathbf{B}=\mathbf{R} \times \mathbf{Q}=(\mu \times \mathbf{D}) \times\left(\mathbf{D}^{-1} \times \mathbf{B}^{*}\right)$ where \mathbf{Q} is orthonormal, \mathbf{R} is lower triangular and \mathbf{B}^{*} is the Gram-Schmidt orthogonalisation.

We choose the floating point type (\approx bits of precision) used to represent the Gram-Schmidt coefficients as native double, which is fastest and fine up to dimension 170 or so. If you choose mpfr for arbitrary precision, you must call FPLLL. set_precision(prec) before constructing your object M , i.e. precision is global!

```
M = GSO.Mat(A, float_type="d")
```

When we said "internal", we meant it. Note that M is lazy, i.e. the Gram-Schmidt orthogonalisation is only computed/updated when needed. For example, as of now, none of the coefficients are meaningful:

```
M.get_r(0,0)
```

0.0

To get meaningful results, we need to trigger the appropriate computation. To compute the complete GSO, run:

```
_ = M.update_gso()
```

This is better:
M.get_r(0,0)/A[0].norm($)^{\wedge} 2$
1.0

You can call update_gso at construction time with:
M = GSO.Mat(A, float_type="d", update=True)
Remark 2. $F P(y) L L L$ also supports GSO objects for Gram matrices, i.e. in lieu of a basis.

LLL

We can now create an LLL object which operates on GSO objects. All operations performed on GSO objects, e.g. M, are automatically also applied to the underlying integer matrix, e.g. A.

```
L = LLL.Reduction(M, delta=0.99, eta=0.501, flags=LLL.VERBOSE)
```

Now that we have an LLL object, we can call it, i.e. run the algorithm. Note that you can specify a range of rows on which to perform LLL.

L(0, 0, 10)
Entering LLL
delta $=0.99$
eta $=0.501$
precision = 53
exact_dot_product $=0$
row_expo $=0$
early_red = 0
siegel_cond = 0
long_in_babai $=0$
Discovering vector $2 / 10$ cputime=0
Discovering vector $3 / 10$ cputime=0
Discovering vector $4 / 10$ cputime=0
Discovering vector $5 / 10$ cputime=0
Discovering vector $6 / 10$ cputime=0
Discovering vector 7/10 cputime=0
Discovering vector $8 / 10$ cputime=0
Discovering vector $9 / 10$ cputime=0
Discovering vector $10 / 10$ cputime=0
End of LLL: success

That's maybe a bit verbose, let's continue to the end without all that feedback:

```
L = LLL.Reduction(M, delta=0.99, eta=0.501)
L()
    If our LLL implementation is any good, then | }\mp@subsup{\mu}{i,j}{}|\leq\eta\mathrm{ should
hold for all }i>j\mathrm{ . Let's check:
all([abs(M.get_mu(i,j)) <= 0.501 for i in range(M.d) for j in range(i)])
True
```

We also want to check if we made progress on A :

```
A[0].norm()^2
```

57755566272.00001

BKZ

Calling BKZ works similarly: there is a high-level function BKZ. reduction() and a BKZ object BKZ. Reduction. However, in addition there are also several implementations of the BKZ algorithm in

```
fpylll.algorithms
```

These are re-implementations of BKZ-syle algorithms in Python which makes them rather hackable, i.e. we can modify different parts of the algorithms relatively easily. To use those, we first have to import them. We opt for BKZ 2.0: ${ }^{4}$

```
from fpylll.algorithms.bkz2 import BKZReduction as BKZ2
```

BKZ 2.0 takes a lot of parameters, such as:
block_size the block size
strategies we explain this one below
flags verbosity, early abort, etc.
max_loops limit the number of tours
auto_abort heuristic, stop when the average slope of $\log \left(\left\|b_{i}^{*}\right\|\right)$
does not decrease fast enough
${ }^{4}$ See here for a simple implementation of BKZ.

gh_factor heuristic, if set then the enumeration bound will be set

 to this factor times the Gaussian Heuristic.It gets old fast passing these around one-by-one. Thus, FPLLL and FPyLLL introduce an object BKZ. Param to collect such parameters:

```
flags = BKZ.AUTO_ABORT|BKZ.MAX_LOOPS|BKZ.GH_BND
params = BKZ.Param(60, strategies=BKZ.DEFAULT_STRATEGY,
    max_loops=4,
    flags=flags)
```

The parameter strategies takes a list of "reduction strategies" or a filename for a JSON file containing such strategies. For each block size these strategies determine what pruning coefficients are used and what kind of recursive preprocessing is applied before enumeration. The strategies in BKZ. DEFAULT_STRATEGY were computed using fplll's strategizer.

```
strategies = load_strategies_json(BKZ.DEFAULT_STRATEGY)
print(strategies[60])
```

Strategy<60, (40), 0.30-0.53, \{\}>

That last line means that for block size 60 we are preprocessing with block size 40 and our pruning parameters are such that enumeration succeeds with probability between 29% and 50% depending on the target enumeration radius. Still, constructing such parameter objects gets old, too, we can simply call:

```
params = BKZ.EasyParam(60, max_loops=4)
```

Finally, let's call BKZ-60 on our example lattice:

```
bkz = BKZ2(A)
bkz = BKZ2(GSO.Mat(A)) # or
bkz = BKZ2(LLL.Reduction(GSO.Mat(A)))
_ = bkz(params)
```


Lattice Reduction

In this exercise, we ask you to verify various predictions made about lattice reduction using the implementations available in FPyLLL.

root-Hermite factors

Recall that lattice reduction returns vectors such that

$$
\|\mathbf{v}\|=\delta^{d-1} \cdot \operatorname{Vol}(\Lambda)^{1 / d}
$$

where δ is the root-Hermite factor which depends on the algorithm. For LLL it is $\delta_{0} \approx 1.0219$ and for BKZ- k it is

$$
\delta_{0} \approx\left(\frac{k}{2 \pi e}(\pi k)^{\frac{1}{k}}\right)^{\frac{1}{2(k-1)}} .
$$

Experimentally measure root-Hermite factors for various bases and algorithms.

GS norms \mathcal{E} Geometric series assumption

Schnorr's geometric series assumption (GSA) states that the norms of the Gram-Schmidt vectors after lattice reduction satisfy

$$
\left\|\mathbf{b}_{i}^{*}\right\|=\alpha_{\beta}{ }^{(d-1-2 i) / 2} \cdot \operatorname{Vol}(\Lambda)^{1 / d} \text { for some } 0<\alpha_{\beta}<1
$$

and $\alpha_{\beta}=\mathrm{GH}(\beta)^{1 /(\beta-1)}$.
Check how well this assumption holds for various block sizes of BKZ. That is, running several tours of BKZ 2.0, plot the logs of GramSchmidt norms agains the GSA after each tour. You have several options to get to those norms:

- Check out the dump_gso_filename option for BKZ. Param.
- Set up BKZ parameters to run one tour only an measure between BKZ calls.
- Inherit from fpylll.algorithms.bkz2.BKZReduction and add the functionality to plot after each tour.

To plot you can simply call line() to plot, e.g.

```
kwds = {"color": "lightgrey", "dpi":150r, "thickness":2}
line(zip(range(10),prime_range(30)), **kwds)
```


Primal Attack

For varying parameters $\left(n, q, \chi_{e}\right)$ determine the BKZ block size required to break LWE instances corresponding to these parameters and compare your predict with experimental evidence. You may use the following lattice basis generator to run those experiments.

```
def lwe_instancef(n=20, q=7681, Xe=2, Xs=None, m=None):
    m = n if m is None else m
    Xs = Xe if Xs is None else Xs
    s = random_vector(ZZ, n, x=-Xs, y=Xs+1)
    e = random_vector(ZZ, m, x=-Xe, y=Xe+1)
    A = random_matrix(GF(q), m, n)
    b = A*s + e
    B = block_matrix(
        [
            [q*identity_matrix(ZZ, m), 0, 0],
            [A.T.lift(),identity_matrix(ZZ, n),0],
            [matrix(ZZ,1,m,b).lift(), 0, Xe],
```

return B

B = lwe_instancef()

Example Solutions

root-Hermite factors

```
# -*- coding: utf-8
deltaf = lambda b: (b/(2*pi*e) * (pi*b)^(1/b))^(1/(2*b-1))
fmt = "n: %3d, bits: %2d, \beta: %2d, \delta_0: %.4f, " \
    + "pred: 2^%5.2f, real: 2^%5.2f"
N = (50, 70, 90, 110, 130)
BETAS = (2, 20, 50, 60)
q = 7681
ntrials = 8
for n in N:
    for beta in BETAS:
        if beta > n:
            continue
        delta = 1.0219 if beta == 2 else deltaf(beta)
        n_pred = float(delta^(n-1) * q^(1/2))
        n_real = []
        for i in range(ntrials):
            A = IntegerMatrix.random(n, "qary", k=n/2, q=q)
            if beta == 2:
                LLL.reduction(A)
            else:
                BKZ.reduction(A, BKZ.EasyParam(block_size=beta))
            n_real.append(A[0].norm())
        n_real = sum(n_real)/ntrials
        print(fmt%(n, bits, beta, delta,
                    log(n_pred,2), log(n_real,2)))
```

n: 50, bits: 20, $\beta: 2, \delta_{-0} 1.0219$, pred: $2^{\wedge} 7.98$, real: $2^{\wedge} 7.73$
$\mathrm{n}: 50$, bits: 20, $\beta: 20, \delta _0: 1.0094$, pred: $2^{\wedge} 7.11$, real: $2^{\wedge} 7.40$
n: 50, bits: 20, $\beta: 50, \delta_{-0}: 1.0119$, pred: $2^{\wedge} 7.29$, real: $2^{\wedge} 7.31$
n: 70, bits: 20, $\beta: 2, \delta _0: 1.0219$, pred: $2^{\wedge} 8.61$, real: $2^{\wedge} 8.53$
n: 70, bits: 20, $\beta: 20, \delta_{-0}$ 1.0094, pred: $2^{\wedge} 7.38$, real: $2^{\wedge} 7.82$
n: 70, bits: 20, $\beta: 50, \delta_{-} 0: 1.0119$, pred: $2^{\wedge} 7.64$, real: $2^{\wedge} 7.56$
n: 70, bits: 20, $\beta: 60, \delta_{-0}$: 1.0114, pred: $2^{\wedge} 7.58$, real: $2^{\wedge} 7.54$
n: 90, bits: 20, $\beta: 2, \delta_{-} 0: 1.0219$, pred: 2^ 9.24, real: $2^{\wedge} 8.96$
$\mathrm{n}: 90$, bits: 20, $\beta: 20, \delta_{-0}$: 1.0094, pred: $2^{\wedge} 7.65$, real: $2^{\wedge} 8.27$
$\mathrm{n}: 90$, bits: 20, $\beta: 50, \delta_{-0}$: 1.0119, pred: $2^{\wedge} 7.98$, real: $2^{\wedge} 7.93$
n: 90, bits: 20, $\beta: 60, \delta_{-0}$: 1.0114, pred: $2^{\wedge} 7.90$, real: $2^{\wedge} 7.87$
n: 110, bits: 20, $\beta: 2, \delta_{-0}$ 1.0219, pred: $2^{\wedge} 9.86$, real: $2^{\wedge} 9.62$
$\mathrm{n}: 110$, bits: 20, $\beta: 20, \delta_{-0} 01.0094$, pred: $2^{\wedge} 7.92$, real: $2^{\wedge} 8.72$
n: 110, bits: 20, $\beta: 50, \delta _0: 1.0119$, pred: $2^{\wedge} 8.32$, real: $2^{\wedge} 8.26$
n: 110, bits: 20, β : 60, $\delta _0: 1.0114$, pred: $2^{\wedge} 8.23$, real: $2^{\wedge} 8.19$
n: 130, bits: 20, $\beta: 2, \delta_{-0}$ 1.0219, pred: 2^10.49, real: 2^10.41
$\mathrm{n}: 130$, bits: 20, $\beta: 20, \delta_{-} 0: 1.0094$, pred: $2^{\wedge} 8.19$, real: $2^{\wedge} 9.10$
n: 130, bits: 20, $\beta: 50, \delta_{-0}$: 1.0119, pred: $2^{\wedge} 8.66$, real: $2^{\wedge} 8.64$
n: 130, bits: 20, $\beta: 60, \delta _0: 1.0114$, pred: $2^{\wedge} 8.56, ~ r e a l: ~ 2^{\wedge} 8.50$

GS norms \mathcal{E} Geometric series assumption

```
dump_gso_filename
```

```
# -*- coding: utf-8
```


-*- coding: utf-8

set_random_seed(1)
set_random_seed(1)
n, bits = 120, 40
n, bits = 120, 40
A = IntegerMatrix.random(n, "qary", k=n/2, bits=bits)
A = IntegerMatrix.random(n, "qary", k=n/2, bits=bits)
beta = 60
beta = 60
tours = 8

```
tours = 8
```

```
fn = "/tmp/logs.txt"
par = BKZ.EasyParam(block_size=beta,
    dump_gso_filename=fn,
    max_loops=tours)
delta = (beta/(2*pi*e) * (pi*beta)^(1/Zz(beta)))^(1/(2*beta-1))
alpha = delta^(-2*n/(n-1))
norms = [map(log, [(alpha^i * delta^n * 2^(bits/2))^2
    for i in range(n)])]
BKZ.reduction(A, par)
for i, l in enumerate(open(fn).readlines()):
    if i > tours:
            break
    _norms = l.split(":")[1] # stop off other information
    _norms = _norms.strip().split(" ") # split string
    _norms = map(float, _norms) # map to floats
    norms.append(_norms)
C = ["#4D4D4D", "#5DA5DA", "#FAA43A", "#60BD68",
        "#F17CB0", "#B2912F", "#B276B2", "#DECF3F", "#F15854"]
g = line(zip(range(n), norms[0]), legend_label="GSA", color=C[0])
g += line(zip(range(n), norms[1]), legend_label="lll", color=C[1])
for i,_norms in enumerate(norms[2:]):
    g += line(zip(range(n), _norms),
        legend_label="tour %d"%i, color=C[i+2])
g
    bkz.tour
from fpylll import *
from fpylll.algorithms.bkz2 import BKZReduction as BKZ2
set_random_seed(1)
n, bits = 120, 40
A = IntegerMatrix.random(n, "qary", k=n/2, bits=bits)
beta = 60
tours = 2
par = BKZ.EasyParam(block_size=beta)
delta = (beta/(2*pi*e) * (pi*beta)^(1/zz(beta)))^(1/(2*beta-1))
alpha = delta^(-2*n/(n-1))
LLL.reduction(A)
M = GSO.Mat(A)
M.update_gso()
norms = [map(log, [(alpha^i * delta^n * 2^(bits/2))^2
    for i in range(n)])]
norms += [[log(M.get_r(i,i)) for i in range(n)]]
bkz = BKZ2(M)
for i in range(tours):
    bkz.tour(par)
    norms += [[log(M.get_r(i,i)) for i in range(n)]]
C = ["#4D4D4D", "#5DA5DA", "#FAA43A", "#60BD68",
    "#F17CB0", "#B2912F", "#B276B2", "#DECF3F", "#F15854"]
```

g = line(zip(range(n), norms[0]), legend_label="GSA", color=C[0])
g += line(zip(range(n), norms[1]), legend_label="lll", color=C[1])
for i,_norms in enumerate(norms[2:]):
g += line(zip(range(n), _norms), legend_label="tour \%d"\%i, color=C[i+2])
g

