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Statistical inference in high dimensions --- whether by measure transport, by sampling, 
or by other methods --- is often made possible only by identifying and exploiting low-
dimensional structure. For Bayesian inference in particular, one useful class of 
structure is to model the high-dimensional target measure as a low-dimensional update 
of a dominating reference measure (e.g., the prior). Determining optimal ``dimension 
reduction'' in this sense is computationally intractable, but we discuss how the 
logarithmic Sobolev and Poincar\'e inequalities, and generalizations thereof, allow us 
to derive approximations with certifiable error properties that are typically good 
enough in practice. 
As a byproduct, for certain reference measures, we identify linear low-dimensional 
subspaces which exert universal control over the worst-case approximation error with 
respect to the KL divergence, the squared Hellinger metric, and everything in between. 
In the latter part of the talk, we then discuss: why should such tools from Markov 
semigroup theory have any bearing on dimension reduction at all? We answer this by 
showing that the optimal choice of functional inequality for the KL divergence is the 
\emph{dimensional} logarithmic Sobolev inequality which, in some sense, implicitly 
captures the low-dimensional update structure that we seek. We demonstrate some 
applications of these ideas to modern Bayesian inverse problems with GAN-based 
generative priors. Based on joint work with Olivier Zahm, Youssef Marzouk, Tiangang 
Cui, and Fengyi Li. 


