On a long standing problem in the theory of Markov processes

Michael Röckner (Bielefeld University and Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing)

Joint work with: Ben Goldys (University of Sydney) Max Nendel (Bielefeld University)

Work supported by Deutsche Forschungsgemeinschaft (DFG) through "Collaborative Research Centre (CRC) 1283".

Reference: G/N/R 2022: arXiv:2204.07484 Bogachev/Krylov/R./Shaposhnik: AMS-Monograph 2015 Liu/R.: Springer Universitext 2015 History of the problem and description of the first main result

2 Basic definitions

3 Strongly continuous semigroups on $C_{\kappa}(E)$ with mixed topology $\tau_{\kappa}^{\mathscr{M}}$

Infinitesimal generators

5 Convex C_0 -semigroups on $(C_{\kappa}(E), \tau_{\kappa}^{\mathcal{M}})$

1. History of the problem and description of the first main result

Let $\mathbb{M} := (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, (X(t))_{t \ge 0}, (\mathbb{P}_x)_{x \in E})$ be a normal **Markov process** with state space $(E, \mathcal{B}(E))$, where E top. space with Borel σ -algebra $\mathcal{B}(E)$, having right-continuous sample paths, so we have:

$$\begin{split} & \mathbb{P}_x[X(0) = x] = 1 \quad (" \text{ normal"}) \\ & \mathbb{P}_x[X(s+t) \in A | \mathcal{F}_s] = \mathbb{P}_{X(s)}[X(t) \in A] \quad \mathbb{P}_x\text{-a.s.} \qquad (" \text{ Markov property"}) \\ & \text{for every } A \in \mathcal{B}(E), \, x \in E, \, s, t \geq 0. \end{split}$$

Transition semigroup:

$$p_t(x, dy) := (\mathbb{P}_x \circ X(t)^{-1})(dy), \ t \ge 0, \ x \in E,$$

and set for $f : E \to \mathbb{R}$, bounded $\mathcal{B}(E)$ -measurable

$$P_tf(x):=\int_E f(y)\ p_t(x,dy),\ x\in E,\ t\geq 0,$$

hence $P_t : \mathcal{B}_b(E) \to \mathcal{B}_b(E)$.

Feller property:

$$F \in C_b(E) \Rightarrow P_t f \in C_b(E), t \ge 0.$$
 (F)

Then

f

$$E \ni x \mapsto p_t(x, dy) \in \mathcal{P}(E) \text{ continuous in the weak} \qquad (C_x)$$

topology on $\mathcal{P}(E) \ \forall t \ge 0.$
$$[0, \infty) \ni t \mapsto p_t(x, dy) \in \mathcal{P}(E) \text{ right-continuous in the} \qquad (rC_t)$$

weak topology on $\mathcal{P}(E) \ \forall x \in E.$

Well-known:

In all interesting cases

 $[0,\infty) \in t \mapsto P_t f \in (C_b(E), \|\cdot\|_{\infty})$ not right continuous $\forall f \in C_b(E)$.

Also not, if $C_b(E)$ is replaced by $UC_b(E)$ and one assumes (F) with $UC_b(E)$ replacing $C_b(E)$. So, $(P_t)_{t\geq 0}$ not C_0 -semigroup on $(C_b(E), \|\cdot\|_{\infty})$ (or $(UC_b(E), \|\cdot\|_{\infty})$). Hence the theory of C_0 -semigroups on Banach spaces does **not** apply. If it did, $P_t, t \ge 0$, would be uniquely determined by its strong derivative at t = 0, i.e.,

$$Lf := \frac{d}{dt} \mathop{|}_{t=0} P_t f = \| \cdot \|_{\infty} - \lim_{t \to 0} \frac{1}{t} (P_t f - f), \quad f \in D(L),$$
(3)

which defines a linear operator $L: D(L) \subset C_b(E) \to C_b(E)$ with D(L) being the set of all $f \in C_b(E)$ for which the limit in (3) exists. In this case $P_t, t \ge 0$, can be recalculated from the operator (L, D(L)), called *infinitesimal generator* of $(P_t)_{t\ge 0}$, through Euler's formula. But as said, this is in general not possible on $(C_b(E), \|\cdot\|_{\infty})$.

Ways out:

a) Assume E locally compact and

$$P_t(C_{\infty}(E)) \subset C_{\infty}(E), \ t \ge 0.$$
 (F_{\infty})

Then $(P_t)_{t\geq 0}$ C_0 -semigroup on $(C_{\infty}(E), \|\cdot\|_{\infty})$! And e.g., if $E = \mathbb{R}^d$, (F_{∞}) can be verified in quite a large number of cases. But **need** locally compact, so all infinite dimensional E are out, hence e.g. **all** SPDEs are out. b) Drop " C_0 -" and define "generator" L in a different way, namly by $D(L) := R_1 C_b(E)$

and

$$L := 1 - R_1^{-1}$$
, where $R_1 f(x) := \int_0^\infty e^{-t} P_t f(x) dt, f \in C_b(E)$.

But its definition uses the whole semigroup $P_t, t \in [0, \infty)$, so definitely can **not** be called an **infinitesimal** generator.

c) Consider $P_t, t \ge 0$, not as operators on $C_b(E)$, but on $L^p(E,\mu), p \in [1,\infty)$, for some suitable **reference measure** μ on $(E, \mathcal{B}(E))$, as e.g. an **invariant** or **symmetrizing** measure for $P_t, t \ge 0$. Clearly, the latter do not always exist. But it was proven in [R/Trutnau 2007] that for any semigroup $(P_t)_{t\ge 0}$ as above one can construct a probability measure μ so that each P_t uniquely extends to a continuous operator on $L^p(E,\mu)$ and these extensions form a C_0 -semigroup on $L^p(E,\mu)$ which then have an infinitesimal generator $(L^{\mu}, D(L^{\mu}))$ on $L^p(E,\mu)$.

But μ not unique and generator depends on μ (so no "pointwise" theory, but only " μ -a.e. theory").

Worse: The construction μ depends on the whole semigroup $P_t, t \in [0, \infty)$. So, again $(L^{\mu}, D(L^{\mu}))$ is **not** really an **infinitesimal** generator of the transition semigroup of our Markov process \mathbb{M} .

Remark

For references to all approaches (a)-(c) above we refer to our paper [G/N/R 2022: arXiv: 2204.07484].

So, concluding: It has been an open problem whether the transition semigroup of a general Markov process \mathbb{M} as above, which has the Feller property (F), is infinitesimally generated by its strong derivative at zero in a "suitable" topology on $C_b(E)$. The first main contribution of this paper is to prove that such a "suitable" topology is the well-known mixed topology $\tau_1^{\mathscr{M}}$ on $C_b(E)$, i.e., the strongest locally convex topology on $C_b(E)$ which on $\|\cdot\|_{\infty}$ -bounded subsets of $C_b(E)$ coincides with the topology of uniform convergence on compact subsets of E, provided $(P_t)_{t\geq 0}$, satisfies the following very general condition:

$$[0,\infty) \times K \ni (t,x) \to p_t(x,dy) \in \mathcal{P}(E) \text{ is continuous in the weak}$$
 (C_{t,x}) topology on $\mathcal{P}(E)$ for all compact $K \subset E$.

In fact, this is true for very general state spaces E, more precisely, those which satisfy:

Hypothesis (E)

- E is a completely regular Hausdorff topological space, such that
 - compact subsets of E are metrizable,

 - a function $\varphi : E \to \mathbb{R}$ is continuous if and only if φ is continuous on every compact subset of E.

So, in such a very general case the transition semigroup of a Markov process with right continuous sample paths is uniquely determined by its strong derivative at zero with respect to the mixed topology $\tau_1^{\mathcal{M}}$ on $C_b(E)$ and can be reconstructed from it through an Euler formula.

Basic definitions

2. Basic definitions

Fix a continuous weight function $\kappa: E \to (0,\infty)$ and define

$$\begin{split} & C_{\kappa}(E) := \frac{1}{\kappa} C_b(E), \\ & \|\varphi\|_{\kappa} := \|\kappa \varphi\|_{\infty}, \quad \varphi \in C_{\kappa}(E). \end{split}$$

For compact $C \subset E$, define the seminorm on $C_{\kappa}(E)$

$$p_{\kappa,C}(\varphi) := \sup_{x\in C} |\kappa(x) \varphi(x)|, \quad \varphi \in C_{\kappa}(E)$$

and

 $\tau_{\kappa}^{\mathcal{C}} :=$ topology generated by the seminorms $p_{\kappa,\mathcal{C}}, \mathcal{C} \subset \mathcal{E}, \mathcal{C}$ compact.

For every zero sequence $a_n \in [0, \infty)$, $n \in \mathbb{N}$, and every sequence $(C_n)_{n \in \mathbb{N}}$ of compacts sets in E define the seminorm on $C_{\kappa}(E)$

$$p_{\kappa,(C_n),(a_n)}(\varphi) := \sup_n (a_n \, p_{\kappa,C_n}(\varphi)), \quad \varphi \in C_{\kappa}(E).$$

and

 $\tau_{\kappa}^{\mathscr{M}} :=$ topology generated by all the seminorms $p_{\kappa,(C_n),(a_n)}$.

 $\tau_{\kappa}^{\mathscr{M}}$ is called **mixed topology** on $C_{\kappa}(E)$. Clearly, $\tau_{\kappa}^{\mathsf{C}} \subset \tau_{\kappa}^{\mathscr{M}} \subset \tau_{\|\cdot\|_{\kappa}}$ and $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$ is a locally convex topological vector space.

M. Röckner (Bielefeld)

Remark

For $\kappa \equiv 1, \tau_1^{\mathscr{M}}$ well-known, well studied. See e.g. [Wiweger 1961], [Fremlin/Garling/Haydon 1972], [LeCam 1957], [Sentilles 1972] and the Appendix in our paper. Here we only list the following important properties:

- (i) $\tau_{\kappa}^{\mathscr{M}}$ is the strongest locally convex topology on $C_{\kappa}(E)$, which coincides on $\|\cdot\|_{\kappa}$ -bounded sets with τ_{κ}^{C} .
- (ii) $\tau_{\kappa}^{\mathcal{M}}$ is (in general) not metrizable.
- (iii) If E satisfies Hypothesis (E), then $(C_{\kappa}(E), \tau_{\kappa}^{\mathcal{M}})$ is complete.
- (iv) A sequence $(\varphi_n)_{n \in \mathbb{N}}$ in $C_{\kappa}(E)$ is $\tau_{\kappa}^{\mathscr{M}}$ -convergent to $\varphi \in C_{\kappa}(E)$ if and only if $\{\varphi_n | n \in \mathbb{N}\}$ is $\|\cdot\|_{\kappa}$ -bounded and $\tau_{\kappa}^{\mathsf{C}}$ -convergent to φ .
- (v) For the topological dual of $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})'$ of $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$ we have

$$(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})' = M_{\kappa}(E) = \kappa \cdot M_{b}(E),$$

where $M_b(E) :=$ all Radon measures on $(E, \mathcal{B}(E))$ of bounded total variation. Below $M_{\kappa}(E)$ will be equipped with the weak^{*} topology. The **proof for** (v) in the literature is quite involved. So, let us give a short and easy proof here based on (iv) (which in turn is very easy to prove) and on the Daniell-Stone theorem, assuming that $(E, \mathcal{B}(E))$ is a Radon space, i.e. every finite positive measure on $(E, \mathcal{B}(E))$ is Radon, (which is a very weak condition):

For simplicity we assume $\kappa \equiv 1$.

Obviously, each $\mu \in M_b(E)$ is in the topological dual $(C_b(E), \tau_1^{\mathscr{M}})'$ of $(C_b(E), \tau_1^{\mathscr{M}})$. To prove the converse we first note that it is well-known that every element ℓ of the latter can be written as a difference $\ell = \ell^+ - \ell^-$, with $\ell^+, \ell^- \in (C_b(E), \tau_1^{\mathscr{M}})'$ and both are nonnegative on nonnegative elements in $C_b(E)$. Hence we may assume that ℓ itself has this property. Since $C_b(E)$ is a Stone vector lattice, which by assumption (2) in Hypothesis (E) generates $\mathscr{B}(E)$, we only have to show Daniell continuity, because then ℓ is represented by a unique finite nonnegative measure μ , which, since E is a Radon space, is in $M_b(E)$. But if $\varphi_n \in C_b(E), \varphi_n \ge 0, n \in \mathbb{N}$, such that $\varphi_n \downarrow 0$ pointwise on E, then by (iv) and Dini's Theorem, we conclude that

$$\tau_1^{\mathcal{M}}-\lim_{n\to\infty}f_n=0,$$

hence $\lim_{n\to\infty} \ell(f_n) = 0$, and Daniell continuity holds.

3. Strongly continuous semigroups on $C_{\kappa}(E)$ with mixed topology $\tau_{\kappa}^{\mathscr{M}}$

Definition I

A family of (possibly nonlinear) operators $P = (P_t)_{t \ge 0}$ on $C_{\kappa}(E)$ is called a semigroup on $C_{\kappa}(E)$ if

- (i) $P_0\varphi = \varphi$ for all $\varphi \in C_{\kappa}(E)$.
- (ii) $P_sP_t\varphi = P_{s+t}\varphi$ for all $s, t \ge 0$ and $\varphi \in C_{\kappa}(E)$.

The family P is called a C₀-semigroup on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$ if it additionally satisfies:

(iii) The semigroup P is locally $\tau_{\kappa}^{\mathscr{M}}$ -uniformly equicontinuous, i.e., for every $T \ge 0$, $\varepsilon > 0$, and every seminorm $p_{\kappa,(K_n),(a_n)}$, there exists a seminorm $p_{\kappa,(C_n),(b_n)}$ and $\delta > 0$ such that, for every $0 \le t \le T$ and $\varphi_1, \varphi_2 \in C_{\kappa}(E)$,

$$p_{\kappa,(K_n),(a_n)}(P_t\varphi_1-P_t\varphi_2)<\varepsilon \quad \text{if} \quad p_{\kappa,(C_n),(b_n)}(\varphi_1-\varphi_2)<\delta.$$

(iv) The semigroup P is strongly $\tau_{\kappa}^{\mathcal{M}}$ -right continuous, i.e., for all $\varphi \in C_{\kappa}(E)$ and every seminorm $p_{\kappa,(K_n),(a_n)}$,

$$\lim_{t\to 0} p_{\kappa,(K_n),(a_n)} \left(P_t \varphi - \varphi \right) = 0.$$

Theorem I

Let $P = (P_t)_{t \ge 0}$ be a semigroup of <u>linear</u> operators on $C_{\kappa}(E)$. Then, the following conditions are equivalent.

- (a) The semigroup P is a C₀-semigroup on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$.
- (b) There exists a family of Borel measures $\{\mu_t(x, \cdot) : x \in E, t \ge 0\} \subset M_{\kappa}(E)$ such that:
 - (1) The map $E \ni x \mapsto \mu_t(x, B)$ is measurable for every $B \in \mathcal{B}(E)$ and $t \ge 0$.
 - (2) For every $t \ge 0, \mu_t(\cdot, dy)$ represents P_t , i.e.,

$${\mathcal P}_t arphi({\mathsf x}) = \int_E arphi({\mathsf y}) \mu_t({\mathsf x}, {\mathsf d}{\mathsf y}) \ orall arphi \in {\mathcal C}_\kappa(E), {\mathsf x} \in E.$$
 ("measure representation")

(3) For every $T \ge 0$,

$$\sup_{t\leq T}\sup_{x\in E}(\kappa(x)\int_E\frac{|\mu_t|(x,dy)}{\kappa(y)})<\infty\,.$$

(4) For every $T \ge 0$ and every compact $C \subset E$, the family of measures

$$\left\{\frac{\kappa(x)\left|\mu_{t}\right|\left(x,dy\right)}{\kappa(y)}:x\in\mathcal{C},\ t\in\left[0,T\right]\right\}$$

is tight.

(5) For every $x \in E$ and any sequence $(x_n) \subset E$ with $\lim_{n\to\infty} x_n = x$ (in E), we have

$$\lim_{t,x_n)\to(0,x)}\mu_t(x_n,\,\cdot\,)=\delta_x\ (=\text{Dirac measure in }x)\ \text{in }M_\kappa(E).$$

Proposition I

(4) and (5) above holds, if for all compact $C \subset E$ and all $\varphi \in C_{\kappa}(E)$

$$[0,\infty) \times C \ni (t,x) \longmapsto \int_{E} \varphi(y) \ \mu_t(x,dy) \text{ is continuous,} \qquad (C_{t,x})$$

provided E is a Prokhorov space, i.e. every compact subset of M_b^+ is tight (which is the case for all examples below).

Example 1 (Variational solutions to locally monotone SDEs on Hilbert spaces with norm topology) Let:

E := H be a separable Hilbert space with dual H^* .

V:= reflexive Banach space such that $V\subset H$ continuously and densely.

Hence

$$V \subset H \ (\equiv H^*) \subset V^* \ ($$
"Gelfand triple")

continuously and densely. Let W(t), $t \in [0, \infty)$, be a cylindrical Wiener process in a separable Hilbert space U on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with normal filtration \mathcal{F}_t , $t \in [0, \infty)$. Consider the following SDE on H:

$$dX(t) = A(X(t))dt + B(X(t))dW(t), X(0) = x \in H,$$
 (SDE)_v

where

 $A: V \rightarrow V^*; B: V \rightarrow L_2(U, H)$

are measurable, where $L_2(U, H)$ denotes the set of all Hilbert-Schmidt operators from U to H.

Assume that the usual local monotonicity conditions from [Liu/R. 2015] are fulfilled. Hence by [Liu/R. 2015] (*SDE*)_v has a unique solution X(t,x), $t \ge 0$, $x \in H$. In particular, the laws

$$\mathbb{P}_x := \mathbb{P} \circ X(\cdot, x)^{-1}, x \in H,$$

form a Markov process with state space H.

Consider the corresponding transition semigroup, i.e. for $\varphi \in C_b(H)$, $x \in H$, $t \ge 0$,

$$egin{aligned} & P_t arphi(x) := \mathbb{E}[arphi(X(t,x))] = \int_\Omega arphi(X(t,x)(\omega)) \mathbb{P}(d\omega) \ & = \int arphi(y) \ \mu_t(x,dy), \end{aligned}$$

where

$$\mu_t(x, dy) := (\mathbb{P} \circ X(t, x)^{-1})(dy).$$

Let $m \in [1,\infty)$ and

$$\kappa(x) := (1 + ||x||_{H}^{m})^{-1}, \quad x \in H.$$

Then:

Theorem I + Proposition I \Rightarrow $(P_t)_{t\geq 0}$ is C₀-semigroup on $(C_{\kappa}(H), \tau_{\kappa}^{\mathscr{M}})$

Remark

The above framework from [Liu/R. 2015] covers a large class of SPDEs including the stochastic heat equation, the stochastic p-Laplace equation, the stochastic slow diffusion-porous media equation, the stochastic fast diffusion-porous media equation, both with general diffusivity, the perturbed stochastic Burgers equation and the stochastic 2D Navier-Stokes equation.

Example 2 (Mild solutions to SDEs on Hilbert spaces with bounded weak topology) Let

H := separable Hilbert space equipped with bounded weak topology τ_{bw} . Recall:

 $B \subset H$ is τ_{bw} -closed if its intersection with every weakly compact set in H is weakly closed. Then $C_b((H, \tau_{bw}))$ = bounded sequentially weakly continuous functions on H.

Consider the following SDE on H:

 $dX(t) = (AX(t) + F(X(t))) dt + G(X(t)) dW(t), \quad X(0) = x \in H,$ (SDE)_m

where W is a cylindrical Wiener process on a separable Hilbert space U, as in Example 1. Assume:

- A generates a C_0 -semigroup T_t , $t \ge 0$, on H,
- $F: H \rightarrow H$ Lipschitz continuous.

- $G: E \to L(U, E)$ (:= all continuous linear operators from U to H) is strongly measurable such that

$$\|T_t G(x)\|_{L_2(U,H)}^2 \le k(t)(1+\|x\|_H^2), \quad x \in H,$$

and

$$\|T_t(G(x) - G(y))\|^2_{L_2(U,H)} \le k(t)\|x - y\|^2_H, \quad x, y \in H,$$

where $k \in L^1_{loc}(0,\infty)$, $k \ge 0$.

Then $(SDE)_m$ has a unique mild solution X(t,x), $t \ge 0$, $x \in H$, in H. As in Example 1 let for $\varphi \in C_b(H)$, $t \ge 0$, $x \in H$,

$$P_t\varphi(x) := \mathbb{E}[\varphi(X(t,x))],$$

and for $m \geq 1$,

 $\kappa(x): (1 + ||x||_{H}^{m})^{-1}.$

Then, if each $T_t = e^{tA}$, t > 0, is compact on $(H, \|\cdot\|_H)$:

Theorem I + Proposition I \Rightarrow $(P_t)_{t\geq 0}$ is C_0 -semigroup on $(C_{\kappa}(H, \tau_{bw}), \tau_{\kappa}^{\mathscr{M}})$.

Example 3 (Generalized Mehler semigroups on Banach spaces)

Let *E* be a separable Banach space and let $\kappa = 1$. Let $(T_t)_{t\geq 0}$ be C_0 -semigroup of linear operators on *E*. Furthermore, let μ_t , $t \in [0, \infty)$, be probability measures on $(E, \mathcal{B}(E))$ such that:

$$[0,\infty) \ni t \longmapsto \mu_t \in P(E) \text{ is weakly continuous.}$$
(GMS1)
$$\mu_{t+s} = \left(\mu_t \circ T_s^{-1}\right) * \mu_s \quad t, s \in [0,\infty).$$
(GMS2)

Define for $t \in [0, \infty)$, $x \in E$

$$P_t\varphi(x) := \int_E \varphi(T_t x + y) \ \mu_t(dy), \quad \varphi \in C_b(E).$$

Then $(P_t)_{t\geq 0}$ is by (GMS2) a semigroup of linear operators on $C_b(E)$, called "generalized Mehler semigroup" = transition semigroup of Ornstein-Uhlenbeck process with Levy noise, i.e. solutions to the following SDEs on E

dX(t) = AX(t)dt + dY(t),

where A is the generator of (T_t) on E and Y(t), $t \ge 0$, is the underlying Levy process. (See [Bogachev/R./Schmuland: PTRF 1995], [Fuhrman/R.: POTA 2000]). Then:

 $\begin{array}{l} \text{Theorem I}+\text{Proposition I}\Rightarrow (P_t)_{t\geq 0} \text{ is } C_0\text{-semigroup on } (C_b(E),\tau_1^{\mathscr{M}}) \text{ and,} \\ \text{provided } E \text{ is reflexive, also on } (C_b(E,\tau_{bw}),\tau_1^{\mathscr{M}}). \end{array}$

4. Infinitesimal generators

Definition II

Let $(P_t)_{t\geq 0}$ be a C_0 -semigroup on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$. Then, we define its infinitesimal generator (L, D(L)) by

$$L\varphi := \tau_{\kappa}^{\mathscr{M}} - \lim_{t \to 0} \frac{P_t \varphi - \varphi}{t} \text{ for } \varphi \in D(L) := \left\{ \psi \in C_{\kappa}(E) \colon \exists \tau_{\kappa}^{\mathscr{M}} - \lim_{t \to 0} \frac{P_t \psi - \psi}{t} \right\}.$$

Proposition II

Let $P = (P_t)_{t \ge 0}$ be a C_0 -semigroup on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$ consisting of linear operators with generator (L, D(L)). Then, the following holds: (a) $\tau_{\kappa}^{\mathscr{M}}$ -closure of $D(L) = C_{\kappa}(E)$. (b) (L, D(L)) is $\tau_{\kappa}^{\mathscr{M}}$ -closed. (c) For every $\varphi \in D(L)$, $P_t \varphi \in D(L)$ and $LP_t \varphi = P_t L \varphi$. In particular, $P_t : D(L) \to D(L)$ is continuous in the $\tau_{\kappa}^{\mathscr{M}}$ -graph topology of L on D(L).

Proposition II (continued)

(d) For every $\varphi \in D(L)$

$$P_t \varphi - \varphi = \int_0^t P_s L \varphi \, ds \, .$$

Moreover, for every $\varphi \in C_{\kappa}(E)$

$$\int_0^t P_s arphi \, ds \in D(L), \quad ext{and} \quad P_t arphi - arphi = L \int_0^t P_s arphi \, ds \, .$$

(e) The Euler formula holds, i.e., for all $\varphi \in C_{\kappa}(E)$

$$P_t\varphi=\tau_{\kappa}^{\mathcal{M}}-\lim_{n\to\infty}\left(\frac{n}{t}(\frac{n}{t}-L)^{-1}\right)^n\varphi.$$

Remark

It is very easy to check that in the linear case our C_0 -semigroups on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$ are special cases of the bi-continuous semigroups introduced in [Kühnemund: Semigroup Forum 2003].

Definition III

Let $P = (P_t)_{t \ge 0}$ be a C_0 -semigroup on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$. We say that $\varphi \in D(L_w) \subset C_{\kappa}(E)$ if and only if there exists some $f \in C_{\kappa}(E)$ such that $\frac{1}{t}(P_t\varphi - \varphi) \xrightarrow{t \to 0} f$ weakly in $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$, *i.e.*,

$$\lim_{t\to 0}\int_E \frac{P_t\varphi(x)-\varphi(x)}{t}\ \nu(dx) = \int_E f(x)\ \nu(dx) \quad \text{ for each } \nu\in M_\kappa(E)$$

In this case, we define the operator L_w by the formula

$$L_w \varphi = f$$
.

We say that L_w is the weak generator of the C_0 -semigroup P on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$ with domain $D(L_w)$.

Theorem III

Let $(P_t)_{t\geq 0}$ be a C_0 -semigroup on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$ consisting of linear operators. Then,

$$L = L_w$$
.

Moreoever, $\varphi \in D(L)$ if and only if

$$\sup_{t\leq 1}\left(\frac{1}{t}\left\|\boldsymbol{P}_{t}\boldsymbol{\varphi}-\boldsymbol{\varphi}\right\|_{\kappa}\right)<\infty,$$

$$f(x) := \lim_{t \to 0} \frac{P_t \varphi(x) - \varphi(x)}{t}$$
 exists for all $x \in E$,

and $f \in C_{\kappa}(E)$. In this case, $f = L\varphi$.

Definition IV

Let P_t , $t \ge 0$, be a C_0 -semigroup on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$ with infinitesimal generator (L, D(L))and let $(L_0, D(L_0))$ be a densely defined (i.e., $D(L_0)$ is dense in $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}}))$ linear operator on $C_{\kappa}(E)$ such that $L_0 \subset L$ (i.e., $D(L_0) \subset D(L)$ and $L_0\varphi = L\varphi$ for all $\varphi \in D(L_0)$).

(i) The operator (L₀, D(L₀)) is called a core operator for (L, D(L)) if the closure of its graph Γ(L₀) = {(φ, L₀φ) ∈ C_κ(E) × C_κ(E) | φ ∈ D(L₀)} in (C_κ(E), τ_κ^M) × (C_κ(E), τ_κ^M) coincides with the graph Γ(L).

(ii) Suppose that κ is bounded and that (P_t)_{t≥0} is Markov, i.e.
 C_κ(E) ∋ φ ≥ 0 ⇒ P_tφ ≥ 0, t ≥ 0; and P_t1 = 1, t ≥ 0. The operator (L₀, D(L₀)) is called a Markov core operator for (L, D(L)) if (L, D(L)) is the only operator with L₀ ⊂ L, which is the infinitesimal generator of a Markov C₀-semigroup on (C_κ(E), τ^M_κ).

Remark

core operator ⇒ Markov core operator

Theorem IV (Sufficient condition for Markov uniqueness)

Let κ be bounded and $(P_t)_{t\geq 0}$ be a Markov C_0 -semigroup on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$ with infinitesimal generator (L, D(L)) and let $(L_0, D(L_0))$ be a densely defined linear operator on $C_{\kappa}(E)$ such that $L_0 \subset L$. Suppose that, for every $x \in E$, the Fokker-Planck-Kolmogorov equation

$$\int \varphi(y) \ \nu_t(dy) = \int \varphi(y) \ \delta_x(dy) + \int_0^t \int L_0 \varphi(y) \ \nu_s(dy) \ ds, \quad t \ge 0, \ \varphi \in D(L_0),$$

(see [BKRS 2015]) has a unique solution $(\nu_t)_{t\geq 0} \in C([0,\infty), M^+_{\kappa}(E))$, such that $\nu_t(E) = 1$ for all $t \in [0,\infty)$ and such that

$$\int_0^T \int_E \frac{1}{\kappa} \, d\nu_t \, dt < \infty, \quad T > 0.$$

Then $(L_0, D(L_0))$ is a Markov core operator for (L, D(L)) on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$.

Application I (SDEs on \mathbb{R}^d)

Let $E := \mathbb{R}^d$ and (Ω, F, \mathbb{P}) be a complete probability space with normal filtration \mathscr{F}_t , $t \ge 0$, and $(W_t)_{t\ge 0}$ be a (standard) (\mathscr{F}_t) -Wiener process on \mathbb{R}^{d_1} . Let $M(d \times d_1, \mathbb{R})$ denote the set of real $d \times d_1$ -matrices equipped with the Hilbert-Schmidt norm $\|\cdot\|$ and let

$$egin{aligned} &\sigma\colon \mathbb{R}^d o M(d imes d_1,\,\mathbb{R}), \ &b\colon \mathbb{R}^d o \mathbb{R}^d, \end{aligned}$$

be continuous maps satisfying the following standard assumptions. There exist $K \in L^1_{loc}([0,\infty))$ and $C \in [0,\infty)$ such that for all $R \ge 0$,

$$2\langle x-y, b(x)-b(y)\rangle + \|\sigma(x)-\sigma(y)\|^2 \le K(R)|x-y|^2, \ x,y \in \mathbb{R}^d, |x|, |y| \le R,$$

$$(b\sigma 1)$$

and

$$2\langle x, b(x)
angle + \|\sigma(x)\|^2 \le C(1+|x|^2), \quad \text{for all } x \in \mathbb{R}^d.$$
 (b\sigma2)

Here \langle , \rangle denotes the Euclideam inner product on \mathbb{R}^d and $| \cdot |$ the corresponding norm.

Then it is well-known that

$$dX(t) = b(X(t))dt + \sigma(X(t))dW(t), \quad X(0) = x \in \mathbb{R}^d,$$
 (SDE)_d

has a unique strong solution $X(t,x), t \ge 0$. Let for $m \ge 1$

$$\kappa(x) \coloneqq (1+|x|^m)^{-1}$$

and for $\varphi \in C_{\kappa}(\mathbb{R}^d), t \ge 0, x \in \mathbb{R}^d$,

$$P_t \varphi(x) := \mathbb{E}_{\mathbb{P}}[\varphi(X(t,x))] = \int \varphi(y) \mu_t(x,dy),$$

where

$$\mu_t(x, dy) \coloneqq (\mathbb{P} \circ X(t, x)^{-1})(dy) \in M_\kappa(\mathbb{R}^d).$$

Then:

Theorem I + Proposition I \Rightarrow $(P_t)_{t\geq 0}$ C_0 -semigroup on $(C_{\kappa}(\mathbb{R}^d), \tau_{\kappa}^{\mathscr{M}})$.

Infinitesimal generators

Let (L, D(L)) be its infinitesimal generator and let us consider the Kolmogorov operator $(L_0, D(L_0))$ corresponding to $(SDE)_d$, defined as

$$\begin{split} L_0\varphi(x) &\coloneqq \frac{1}{2}\sum_{i,j=1}^d (\sigma(x)\sigma(x)^T)_{i,j}\frac{\partial}{\partial x_i}\frac{\partial}{\partial x_j}\varphi(x) + \langle b(x), \nabla\varphi(x)\rangle, \quad x \in \mathbb{R}^d, \\ \varphi \in D(L_0) &\coloneqq C_b^2(\mathbb{R}^d). \end{split}$$

Assume

$$\sup_{x \in \mathbb{R}^d} \frac{|b(x)| + \|\sigma(x)\|}{1 + |x|^m} < \infty$$
(b\sigma3)

and:

For every compact
$$K \subset \mathbb{R}^d$$
 there exists $c_K \in (0, \infty)$ (σ 1)
such that for all $\xi = (\xi_1, \dots, \xi_d) \in \mathbb{R}^d$
$$\sum_{i,j=1}^d (\sigma(x)\sigma(x)^T)_{i,j}\xi_i\xi_j \ge c_K |\xi|^2, \quad x \in \mathbb{R}^d.$$

Each $(\sigma \sigma^T)_{i,j}$ is locally in $VMO(\mathbb{R}^d)$.

M. Röckner (Bielefeld)

 $(\sigma 2)$

We recall that a $\mathscr{B}(\mathbb{R}^d)$ -measurable function $g : \mathbb{R}^d \to \mathbb{R}$ belongs to the class $VMO(\mathbb{R}^d)$, if it is bounded and for

$$O(g,R)\coloneqq \sup_{x\in \mathbb{R}^d}\sup_{r\leq R}|B_r(x)|^{-2} \iint_{y,z\in B_r(x)}|g(y)-g(z)|\;dydz,\quad R\in(0,\infty),$$

we have

 $\lim_{R\to 0} O(g,R) = 0,$

where $B_r(x)$ denotes the ball in \mathbb{R}^d of radius r, centered at $x \in \mathbb{R}^d$, and $|B_r(x)|$ its Lebesgue measure. g belongs locally to the class $VMO(\mathbb{R}^d)$ if $\zeta g \in VMO(\mathbb{R}^d)$ for every $\zeta \in C_0^{\infty}(\mathbb{R}^d)$.

Then:

Theorem IV + Theorem 9.3.6 in [BKRS 2015] \Rightarrow (L_0 , $D(L_0)$) is Markov core operator for (L, D(L)).

Remark

- (i) We have corresponding applications for SDE's on Hilbert spaces, hence for SPDEs.
- (ii) Consider the C₀-semigroup on (C_b(H), τ₁^{*M*}) given by a generalized Mehler semigroup on a Hilbert space H (see Example 3 above), i.e. the transition semigroup corresponding to

dX(t) = AX(t)dt + dY(t), X(0) = x, "OU-process with Levy noise"

and let (L, D(L)) be its infinitesimal generator. Then we have proved (under fairly weak conditions) that the corresponding Kolmogorov operator $(L_0, D(L_0))$ is even a core operator for (L, D(L)). The Kolmogorov operator in this case is a pseudo differential operator, more precisely,

$$L_0\varphi(x) = \int_H \left(i\langle A^*\xi, x\rangle - \lambda(\xi)\right) e^{i\langle\xi, x\rangle} \nu(d\xi), \quad x \in H,$$

where $\varphi(x) := \int e^{i\langle x,\xi \rangle} \nu(d\xi)$, $x \in E$, and ν runs in a suitable large enough class of finite measures on $(H, \mathcal{B}(H))$, A^* is the adjoint of A and λ is the symbol of the Kolmogorov operator associated to the Levy process Y(t), $t \ge 0$.

5. Convex C_0 -semigroups on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$, viscosity solutions and nonlinear Markov processes

Now consider a C_0 -semigroup on $(C_{\kappa}(E), \tau_{\kappa}^{\mathscr{M}})$ consisting of convex increasing operators on $C_{\kappa}(E)$ with infinitesimal generator (L, D(L)) and the corresponding abstract differential equation of the form

$$u'(t) = Lu(t), \quad \text{for all } t > 0. \tag{ade}$$

In the following, an operator $T: C_{\kappa}(E) \to C_{\kappa}(E)$ is called *increasing* if

$$T\varphi_1 \leq T\varphi_2$$
 for all $\varphi_1, \varphi_2 \in C_{\kappa}(E)$ with $\varphi_1 \leq \varphi_2$,

and convex if

$$Tig(\lambda arphi_1 + (1-\lambda)arphi_2ig) \leq \lambda T arphi_1 + (1-\lambda) T arphi_2ig)$$

for all $\lambda \in [0,1]$ and $\varphi_1, \varphi_2 \in C_{\kappa}(E)$.

Definition V

Let L: $D \to C_{\kappa}(E)$ be a nonlinear operator, defined on a nonempty set $D \subset C_{\kappa}(E)$. We say that $u: [0, \infty) \to C_{\kappa}(E)$ is a D-viscosity subsolution to the abstract differential equation (ade) if u is continuous w.r.t. the mixed topology $\tau_{\kappa}^{\mathscr{M}}$ and, for every t > 0, $x \in E$, and every differentiable function $\psi: (0, \infty) \to C_{\kappa}(E)$ with $\psi(t) \in D$, $(\psi(t))(x) = (u(t))(x)$, and $\psi(s) \ge u(s)$ for all s > 0,

$$(\psi'(t))(x) \leq (L\psi(t))(x).$$

Analogously, u is called a D-viscosity supersolution to (ade) if $u: [0, \infty) \to C_{\kappa}(E)$ is continuous and, for every t > 0, $x \in M$, and every differentiable function $\psi: (0, \infty) \to C_{\kappa}(E)$ with $\psi(t) \in D$, $(\psi(t))(x) = (u(t))(x)$, and $\psi(s) \le u(s)$ for all s > 0,

 $(\psi'(t))(x) \ge (L\psi(t))(x).$

We say that u is a D-viscosity solution to (ade) if u is a viscosity subsolution and a viscosity supersolution.

Theorem V

Let $(P_t)_{t\geq 0}$ be a C_0 -semigroup on $(C_{\kappa}, \tau_{\kappa}^{\mathscr{M}})$ consisting of convex increasing operators with infinitesimal generator (L, D(L)). Then, for every $\varphi \in C_{\kappa}(E)$, the function $u : [0, \infty) \to C_{\kappa}(E)$, $t \mapsto P_t \varphi$ is a D(L)-viscosity solution to the abstract initial value problem

$$u'(t) = Lu(t)$$
, for all $t > 0$,
 $u(0) = \varphi$.

Finally, we have a stochastic representation for $(P_t)_{t\geq 0}$ using convex expectations. We recall:

Definition VI

Let (Ω, \mathcal{F}) be a measurable space. A functional $\mathcal{E} \colon B_b(\Omega, \mathcal{F}) \to \mathbb{R}$ is called a convex expectation if, for all $X, Y \in B_b(\Omega, \mathcal{F})$ and $\lambda \in [0, 1]$,

(i) $\mathcal{E}(X) \leq \mathcal{E}(Y)$ if $X \leq Y$,

(ii) $\mathcal{E}(m) = m$ for all constants $m \in \mathbb{R}$,

(iii)
$$\mathcal{E}(\lambda X + (1 - \lambda)Y) \leq \lambda \mathcal{E}(X) + (1 - \lambda)\mathcal{E}(Y).$$

We say that $(\Omega, \mathcal{F}, \mathcal{E})$ is a convex expectation space if there exists a set of probability measures \mathcal{P} on (Ω, \mathcal{F}) and a function $\alpha \colon \mathcal{P} \to [0, \infty)$ such that

$$\mathcal{E}(X) = \sup_{\mathbb{P}\in\mathcal{P}} \mathbb{E}_{\mathbb{P}}(X) - \alpha(\mathbb{P}) \quad \textit{for all } X \in B_b(\Omega, \mathcal{F}),$$

where $\mathbb{E}_{\mathbb{P}}(\cdot)$ denotes the expectation w.r.t. to the probability measure \mathbb{P} .

The following theorem is a consequence of [Denk/ Kupper/Nendel 2018] and the fact that the $\tau_{\kappa}^{\mathcal{M}}$ -continuity of P_t implies Daniell continuity of P_t , for $t \geq 0$.

Theorem VI

Assume that E is a Polish space, $\kappa \equiv 1$, and P is a C₀-semigroup of increasing convex operators with $P_t m = m$ for all $t \ge 0$ and $m \in \mathbb{R}$. Then, there exists a quadruple $(\Omega, \mathcal{F}, (\mathcal{E}^x)_{x \in \mathcal{E}}, (X(t))_{t \ge 0})$ such that

- (i) $X(t): \Omega \rightarrow E$ is \mathcal{F} - \mathcal{B} -measurable for all $t \geq 0$,
- (ii) $(\Omega, \mathcal{F}, \mathcal{E}^{\times})$ is a convex expectation space with $\mathcal{E}^{\times}(\varphi(X(0))) = \varphi(x)$ for all $x \in E$ and $\varphi \in C_b(E)$,
- (iii) For all $0 \le s < t$, $n \in \mathbb{N}$, $0 \le t_1 < \ldots < t_n \le s$ and $\psi \in C_b(E^{n+1})$,

$$\mathcal{E}^{\times}(\psi(X(t_1),\ldots,X(t_n),X(t))) = \mathcal{E}^{\times}((P_{t-s}\psi(X(t_1),\ldots,X(t_n),\cdot))(X(s)))$$

In particular,

 $(P_t\varphi)(x) = \mathcal{E}^x(\varphi(X(t))).$

for all $t \ge 0$, $x \in E$, and $\varphi \in C_b(E)$.

The quadruple $(\Omega, \mathcal{F}, (\mathcal{E}^{\times})_{x \in E}, (X(t))_{t \geq 0})$ can be seen as a nonlinear version of a Markov process.

M. Röckner (Bielefeld)

THANK YOU VERY MUCH, NICK!

AND ALL THE BEST FOR MANY MORE HAPPY AND SCIENTIFICALLY PRODUCTIVE YEARS!