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History of the problem and description of the first main result

1. History of the problem and description of the first main result

Let M := (Q, F, (Ft)e>0, (X(t))e>0, (Px)xece) be a normal Markov process with state
space (E,B(E)), where E top. space with Borel o-algebra B(E), having right-continuous
sample paths, so we have:

P.[X(0) =x] =1 ("normal”)
P.[X(s + t) € AlFs] = Px(5[X(t) € A] Px-as. (" Markov property")
for every A€ B(E), x € E, s,t > 0.

Transition semigroup:
pe(x, dy) := (Px o X(t) " ')(dy), t >0, x € E,
and set for f : E — R, bounded B(E)-measurable
Pif(x) = [ 1) pi(xdy), x € E. £,
E

hence P; : By(E) — Bs(E).
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History of the problem and description of the first main result

Feller property:

fe C(E)= P:f € G(E),t > 0. (F)
Then
E 5 x — pi(x, dy) € P(E) continuous in the weak (&)
topology on P(E) Vt > 0.
[0,00) 3 t — pi(x, dy) € P(E) right-continuous in the (r&)

weak topology on P(E) Vx € E.

Well-known:
In all interesting cases

[0,00) € t = P:f € (Co(E), || - |loo) not right continuous Vf € Cy(E).
Also not, if C,(E) is replaced by UC,(E) and one assumes (F) with UC,(E) replacing

Co(E).
So, (Pt)ezo0 not Co-semigroup on (Co(E), || - [|oo) (or (UCH(E), || - [loo))-
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History of the problem and description of the first main result

Hence the theory of Cp-semigroups on Banach spaces does not apply. If it did, P, t > 0,
would be uniquely determined by its strong derivative at t =0, i.e.,
d

1
- dt H=0 ?(Prf* f)7 fe D(L)7 (3)

— lim

t—0
which defines a linear operator L: D(L) C Cp(E) — Cu(E) with D(L) being the set of all
f € Cp(E) for which the limit in (3) exists. In this case P;,t > 0, can be recalculated
from the operator (L, D(L)), called infinitesimal generator of (P:)¢>0, through Euler’s
formula. But as said, this is in general not possible on (Cp(E), || - ||oo)-
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History of the problem and description of the first main result

Ways out:
a) Assume E locally compact and

PA(C(E)) C Cw(E), t > 0. (Fo)

Then (P:)>0 Co-semigroup on (Coo(E), || - lloo) ! And e.g., if E =RY, (Fx) can be
verified in quite a large number of cases. But need locally compact, so all infinite
dimensional E are out, hence e.g. all SPDEs are out.

b) Drop " Go-" and define "generator” L in a different way, namly by D(L) := R1Cp(E)
and

L:=1—R;", where Rif(x) ;:/ e P f(x)dt, f € Co(E).
0

But its definition uses the whole semigroup P, t € [0, c0), so definitely can not be called
an infinitesimal generator.
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History of the problem and description of the first main result

c) Consider P, t > 0, not as operators on Cp(E), but on LP(E, p), p € [1, 00), for some
suitable reference measure i on (E,B(E)), as e.g. an invariant or symmetrizing
measure for Py, t > 0. Clearly, the latter do not always exist. But it was proven in
[R/Trutnau 2007] that for any semigroup (P:):>0 as above one can construct a
probability measure p so that each P: uniquely extends to a continuous operator on
LP(E, 1) and these extensions form a Co-semigroup on LP(E, 1) which then have an
infinitesimal generator (L*, D(L*)) on LP(E, p).

But p not unique and generator depends on p (so no " pointwise” theory, but only

" u-a.e. theory”).

Worse: The construction u depends on the whole semigroup P:, t € [0, 00). So, again
(L*, D(L*)) is not really an infinitesimal generator of the transition semigroup of our
Markov process M.

Remark

For references to all approaches (a)-(c) above we refer to our paper [G/N/R 2022: arXiv:
2204.07484)].
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History of the problem and description of the first main result

So, concluding: It has been an open problem whether the transition semigroup of a
general Markov process M as above, which has the Feller property (F), is infinitesimally
generated by its strong derivative at zero in a "suitable” topology on Cy(E).

The first main contribution of this paper is to prove that such a "suitable” topology is
the well-known mixed topology 7% on Cy(E), i.e., the strongest locally convex topology
on Cu(E) which on || - ||sc-bounded subsets of Cp(E) coincides with the topology of
uniform convergence on compact subsets of E, provided (P;):>o, satisfies the following
very general condition:

[0,00) x K 3 (t,x) = pe(x,dy) € P(E) is continuous in the weak (Cex)
topology on P(E) for all compact K C E.
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History of the problem and description of the first main result

In fact, this is true for very general state spaces E, more precisely, those which satisfy:
Hypothesis (E)

E is a completely regular Hausdorff topological space, such that

© compact subsets of E are metrizable,

Q@ B(E) = o(Cs(E)).

© a function ¢ : E — R is continuous if and only if ¢ is continuous on every compact

subset of E.

So, in such a very general case the transition semigroup of a Markov process with right
continuous sample paths is uniquely determined by its strong derivative at zero with
respect to the mixed topology 1% on Co(E) and can be reconstructed from it through
an Euler formula.
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Basic definitions

2. Basic definitions

Fix a continuous weight function x : E — (0, 00) and define
1
C.(E) == ;CI,(E)7
lells = llsello, o € Ca(E).
For compact C C E, define the seminorm on C,(E)
Pr.c(p) = suplr(x) o (x|, ¢ € Cu(E)
and
T,S := topology generated by the seminorms p. ¢, C C E, C compact.

For every zero sequence a, € [0,00),n € N, and every sequence (Cy)nen of compacts sets
in E define the seminorm on C,..(E)

Pre(Co)sam) (©) :=sup (an Pr,c, (), @ € Cu(E).

and
T,f” := topology generated by all the seminorms p,. (c,),(an)-

7% is called mixed topology on C.(E). Clearly, 75 C 7% C 7). and (Cc(E), %) is

a locally convex topological vector space.
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Basic definitions

Remark

For k = 1,71 well-known, well studied. See e.g. [Wiweger 1961],
[Fremlin/Garling/Haydon 1972], [LeCam 1957], [Sentilles 1972] and the Appendix in our
paper. Here we only list the following important properties:

(i) 7% is the strongest locally convex topology on C,.(E), which coincides on
|| - ||lx-bounded sets with 7.
(ii) 7% is (in general) not metrizable.
(iii) If E satisfies Hypothesis (E), then (C.(E), %) is complete.
(iv) A sequence (¢n)nen in Ce(E) is 7% -convergent to ¢ € C.(E) if and only if
{¢n|n € N} is || - ||«-bounded and 75 -convergent to .

(v) For the topological dual of (C.(E), %) of (Cx(E), %) we have
(CK(E)7TI;//{)/ = MK(E) =kK- Mb(E)7

where M,(E) := all Radon measures on (E,B(E)) of bounded total variation.
Below M,.(E) will be equipped with the weak® topology.
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Basic definitions

The proof for (v) in the literature is quite involved. So, let us give a short and easy
proof here based on (iv) (which in turn is very easy to prove) and on the Daniell-Stone
theorem, assuming that (E,B(E)) is a Radon space, i.e. every finite positive measure on
(E,B(E)) is Radon, (which is a very weak condition):

For simplicity we assume xk = 1.

Obviously, each p € My(E) is in the topological dual (Cs(E), 7i%)" of (Co(E), 7). To
prove the converse we first note that it is well-known that every element £ of the latter
can be written as a difference £ = £t — ¢~ with £+, ¢~ € (Co(E),7i%)’ and both are
nonnegative on nonnegative elements in C,(E). Hence we may assume that £ itself has
this property. Since Cp(E) is a Stone vector lattice, which by assumption (2) in
Hypothesis (E) generates Z(E), we only have to show Daniell continuity, because then ¢
is represented by a unique finite nonnegative measure p, which, since E is a Radon space,
is in Mp(E). But if ¢, € Go(E), ¢n >0, n € N, such that ¢, | 0 pointwise on E, then
by (iv) and Dini's Theorem, we conclude that

% — lim f,=0,
n—oo

hence lim ¢(f,) =0, and Daniell continuity holds.
n— oo
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Strongly continuous semigroups on Cy; (E) with mixed topology ;%

3. Strongly continuous semigroups on C.(E) with mixed topology T;f/

Definition |

A family of (possibly nonlinear) operators P = (P;):>0 on C.(E) is called a semigroup on
C.(E) if

(i) Pop = ¢ for all ¢ € C(E).
(il) PsPrp = Psitp for all s, t > 0 and p € C.(E).
The family P is called a Go-semigroup on (C.(E), ;%) if it additionally satisfies:

(ii) The semigroup P is locally 7. -uniformly equicontinuous, i.e., for every T >0,
€ > 0, and every seminorm p,; (), (a,), there exists a seminorm p,; (c,,(,) and 6 >0
such that, for every 0 < t < T and o1, 2 € C.(E),

Pro (ko) (am) (Petpr — Prp2) <& if  pu (). (bm (01 — 2) < 6.

(iv) The semigroup P is strongly 7. -right continuous, i.e., for all ¢ € C.(E) and every
5eminorm py (k,),(an):

lim Pr (ko). (an) (Pep — ) = 0.
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Strongly continuous semigroups on Cy; (E) with mixed topology ;%

Theorem |

Let P = (P:):>0 be a semigroup of linear operators on C.(E). Then, the following

conditions are equivalent.

(a) The semigroup P is a Go-semigroup on (C.(E), 7).

(b) There exists a family of Borel measures {u:(x, -): x € E, t > 0} C M. (E) such
that:

(1) The map E 5 x — p¢(x, B) is measurable for every B € B(E) and t > 0.
(2) Forevery t > 0, put(-, dy) represents Py, i.e.,

Prp(x) = / e(y)pe(x,dy) Vo € Co(E), x € E. ("measure representation”)
E
(3) Forevery T >0,
dy)
sup sup(k(x) / el G, dy) — /) < .
t<T x€E H()’)
(4) For every T > 0 and every compact C C E, the family of measures

KO) el (x,dy)
{ ) : eC,te[O,T]}

is tight.
(5) For every x € E and any sequence (xn) C E with limp—oc xn = x (in E), we have

lim  pt(xn, -) = 0x (= Dirac measure in x) in My (E).
(t,x0)—(0,%)
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n

Strongly continuous semigroups on Cy (E) with mixed topology %

Proposition |
(4) and (5) above holds, if for all compact C C E and all ¢ € C.(E)

[0,00) x C > (t,x) — / ©(y) we(x, dy) is continuous, (Cex)
E

provided E is a Prokhorov space, i.e. every compact subset of Mb+ is tight (which is the
case for all examples below).
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Strongly continuous semigroups on Cy; (E) with mixed topology ;%

Example 1 (Variational solutions to locally monotone SDEs on Hilbert spaces with norm
topology) Let:

E := H be a separable Hilbert space with dual H*.

V := reflexive Banach space such that V C H continuously and densely.

Hence

V C H (= H") C V* ("Gelfand triple")

continuously and densely. Let W(t), t € [0,00), be a cylindrical Wiener process in a
separable Hilbert space U on a probability space (2, F,P) with normal filtration
Ft, t € [0,00). Consider the following SDE on H:

dX(t) = A(X(t))dt + B(X(t))dW(t), X(0) =x € H, (SDE),
where
A:V V" B:V = L(UH)

are measurable, where L>(U, H) denotes the set of all Hilbert-Schmidt operators from U
to H.
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Strongly continuous semigroups on Cy; (E) with mixed topology ;%

Assume that the usual local monotonicity conditions from [Liu/R. 2015] are fulfilled.
Hence by [Liu/R. 2015] (SDE), has a unique solution X(t,x), t >0, x € H. In
particular, the laws

P, :=Po X(-,x)" ", x € H,

form a Markov process with state space H.
Consider the corresponding transition semigroup, i.e. for ¢ € Cp(H), x € H, t > 0,

Prp(x) : = E[p(X(t, )] =/§2@(X(t7X)(w))P(dW)

= /<p(y) pe(x, dy),

where

(. dy) = (B o X (£, x))(dy).
Let m € [1,00) and

R(x) = (L4 X071 x € H.

Then:
Theorem | + Proposition | = (P;)>0 is Co-semigroup on (C..(H), 7:%)
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Strongly continuous semigroups on Cy; (E) with mixed topology ;%

Remark

The above framework from [Liu/R. 2015] covers a large class of SPDEs including the
stochastic heat equation, the stochastic p-Laplace equation, the stochastic slow
diffusion-porous media equation, the stochastic fast diffusion-porous media equation,
both with general diffusivity, the perturbed stochastic Burgers equation and the
stochastic 2D Navier-Stokes equation.
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Strongly continuous semigroups on Cy; (E) with mixed topology ;%

Example 2 (Mild solutions to SDEs on Hilbert spaces with bounded weak topology)
Let
H := separable Hilbert space equipped with bounded weak topology 7b.,.
Recall:
B C H is Tp,-closed if its intersection with every weakly compact set in H is weakly
closed. Then Cy»((H, 7)) = bounded sequentially weakly continuous functions on H.

Consider the following SDE on H:
dX(t) = (AX(t) + F(X(t))) dt + G(X(t)) dW(t), X(0)=x€ H, (SDE)m

where W is a cylindrical Wiener process on a separable Hilbert space U, as in Example 1.
Assume:

- A generates a Co-semigroup T:, t >0, on H,

- F: H — H Lipschitz continuous.

- G:E— L(U, E) (:= all continuous linear operators from U to H) is strongly
measurable such that

I TGO Ly < k(E)A+ IIx[E), x € H,
and
[ Te(G(x) = GOIEsw,my < k(t)lIx =yl x,y € H,

where k € L},.(0,00), k > 0.
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Strongly continuous semigroups on Cy; (E) with mixed topology ;%

Then (SDE)m has a unique mild solution X(t,x), t >0, x € H, in H.
As in Example 1 let for ¢ € Cp(H), t >0, x € H,

Prp(x) == E[p(X(t, x))],
and for m > 1,
K(x) s (14 [Ix[I]) 7

Then, if each T, = e, t > 0, is compact on (H, || - ||n):

Theorem | + Proposition | = (P;):>0 is Co-semigroup on (Ci(H, Tbw), 7:%).

M. Réckner (Bielefeld) On a long standing problem in the theory of Markov processes 20 / 39



Strongly continuous semigroups on Cy; (E) with mixed topology ;%

Example 3 (Generalized Mehler semigroups on Banach spaces)

Let E be a separable Banach space and let k = 1. Let (T;)¢>0 be Co-semigroup of linear
operators on E. Furthermore, let p, t € [0, 00), be probability measures on (E, B(E))
such that:

[0,00) 3 t —> pe € P(E) is weakly continuous. (GMS1)

Ptrs = (,Ut o Ts_l) * s t,s € [0,00). (GMS2)

Define for t € [0,00), x € E

Pep(x) :Z/Eso(TrXer) pe(dy), @ € Co(E).

Then (P¢):>0 is by (GMS2) a semigroup of linear operators on Cy(E), called " generalized
Mehler semigroup” = transition semigroup of Ornstein-Uhlenbeck process with Levy
noise, i.e. solutions to the following SDEs on E

dX(t) = AX(t)dt + dY(t),

where A is the generator of (T;) on E and Y(t), t > 0, is the underlying Levy process.
(See [Bogachev/R./Schmuland: PTRF 1995], [Fuhrman/R.: POTA 2000]).
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Strongly continuous semigroups on Cy; (E) with mixed topology

Then:

Theorem | + Proposition | = (P;)>0 is Co-semigroup on (Cy(E), 7i%) and,
provided E is reflexive, also on (Cp(E, The), 5% ).

M. Réckner (Bielefeld) On a long standing problem in the theory of Markov processes 22 /39



Infinitesimal generators

4. Infinitesimal generators

Definition 11

Let (P:)¢>0 be a Co-semigroup on (C.(E), T,j”) Then, we define its infinitesimal

generator (L, D(L)) b

o —|.mPf“" ? for p € D(L) := {zpeC()aT%—nm

t—0 t—0 t

v,

v

Proposition Il

Let P = (P:):>0 be a Co-semigroup on (C,.(E), %) consisting of linear operators with
generator (L, D(L)). Then, the following holds:

(a) 7% -closure of D(L) = C.(E).

(b) (L, D(L)) is 7 ~closed.

(c) For every ¢ € D(L), Prp € D(L) and LPrp = P:Lp. In particular,
P.: D(L) — D(L) is continuous in the ;% -graph topology of L on D(L).
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Infinitesimal generators

Proposition Il (continued)
(d) For every ¢ € D(L)

t
Pttp—ap:/ PsLods.
0

Moreover, for every ¢ € C.(E)

t

t
/ Pspds € D(L), and Pip—p= L/ Pspds.
0 0

(e) The Euler formula holds, i.e., for all ¢ € C.(E)

Pio =% — lim (%(% — L)fl) ®.

n— 0o

Remark

It is very easy to check that in the linear case our Co-semigroups on (C.(E), %) are

special cases of the bi-continuous semigroups introduced in [Kiihnemund: Semigroup
Forum 2003].
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Infinitesimal generators

Definition 11l

Let P = (P:)¢>0 be a Co-semigroup on (Cx(E), 7). We say that ¢ € D(L,,) C C.(E) if
and only if there exists some f € C.(E) such that 1(Prp — ) 2% £ weakly in
(C(E), %), ie.,

lim / Pro() =00 gy = / F(x) v(dx) for each v € M, (E)
t—0 [ t E

In this case, we define the operator L,, by the formula
Lyp=f.

We say that L., is the weak generator of the Cy-semigroup P on (Ci(E), 7—,(”) with
domain D (Ly,).
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Infinitesimal generators

Theorem I
Let (Pt)e>0 be a Co-semigroup on (C..(E), ;%) consisting of linear operators. Then,
L=1L,.

Moreoever, ¢ € D(L) if and only if

1
sup <7 | Pep — sDHN) < o0,
t<1 \ 't

f(x) := lim 7%@()() —e(x)

exists for all x € E,
t—0 t

and f € C(E). In this case, f = L.
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Infinitesimal generators

Definition IV

Let P;, t >0, be a Co-semigroup on (C.(E), ;%) with infinitesimal generator (L, D(L))
and let (Lo, D(Lo)) be a densely defined (i.e., D(Lo) is dense in (Cx(E), 7)) linear
operator on C,.(E) such that Ly C L (i.e., D(Lo) C D(L) and Loy = L for all
[72lS D(Lo)).
(i) The operator (Lo, D(Lo)) is called a core operator for (L, D(L)) if the closure of its
graph T(Lo) = {(¢, Log) € Cu(E) x Cu(E) | ¢ € D(Lo)} in
(C(E), 7%) x (Cx(E), %) coincides with the graph T(L).
(i) Suppose that k is bounded and that (P:)¢>o is Markov, i.e.
C(E)29>0= Pip>0,t>0; and P11 =1, t > 0. The operator (Lo, D(Lo)) is
called a Markov core operator for (L, D(L)) if (L, D(L)) is the only operator with

Lo C L, which is the infinitesimal generator of a Markov Cy-semigroup on
(Cu(E), 7).

Remark

core operator = Markov core operator
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Infinitesimal generators

Theorem IV (Sufficient condition for Markov uniqueness)

Let k be bounded and (P;)+>o be a Markov Co-semigroup on (C.(E), 7:%) with
infinitesimal generator (L, D(L)) and let (Lo, D(Lo)) be a densely defined linear operator
on C.(E) such that Ly C L. Suppose that, for every x € E, the
Fokker-Planck-Kolmogorov equation

[ ety = [ty atan+ [ t [ ooty va) ds. 120,50 € D(Lo)

(see [BKRS 2015]) has a unique solution (v¢):>0 € C([0,00), M (E)), such that
ve(E) =1 for all t € [0, 00) and such that

Tri
/ /fdl/tdt<oo, T >0.
o JEK

Then (Lo, D(Lo)) is a Markov core operator for (L, D(L)) on (C.(E), ).
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Infinitesimal generators

Application | (SDEs on R?)

Let E :=R? and (Q, F,P) be a complete probability space with normal filtration
Fr, t >0, and (W:)e>0 be a (standard) (F:)-Wiener process on R®. Let M(d x dy, R)
denote the set of real d x di-matrices equipped with the Hilbert-Schmidt norm || - || and
let

o:RY - M(d x di, R),

b: RY — R,
be continuous maps satisfying the following standard assumptions. There exist
K € L},([0,00)) and C € [0, 00) such that for all R > 0,

2(x =y, b(x) = b(y)) + llo(x) = o(V)II* < K(R)Ix = y*, x,y € R, x|, y] S(? )

and
2(x, b(x)) + [lo(x)|I” < C(1 +|x]?), forallx € RY. (bo2)

Here () denotes the Euclideam inner product on R? and | - | the corresponding norm.
v
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Infinitesimal generators

Then it is well-known that
dX(t) = b(X(t))dt + o(X(t))dW(t), X(0)=x € R, (SDE)q4
has a unique strong solution X(t,x), t > 0. Let for m > 1
R(x) = (L4 |x™) 7
and for ¢ € C.(R9), t > 0, x € R?,
Pep(x) 1= Eelp(X(e, )] = [ el dy),
where

He(x, dy) = (Po X(t,%) ") (dy) € Mu(R).

Then:

Theorem | + Proposition | = (P¢)¢>0 Co-semigroup on (C.(R9), 7:%).
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Infinitesimal generators

Let (L, D(L)) be its infinitesimal generator and let us consider the Kolmogorov operator
(Lo, D(Lo)) corresponding to (SDE)y, defined as

d o 0 J
Lop(x) = Z (x)o(x)" ,fafmaf)gw(XH(b(X),Vw(X)), x € RY,

I\)H—A

¢ € D(Lo) = Cb(Rd)

Assume
bCI+ oGl _ (bo3)
x€Rd 1 + |X|m
and:
For every compact K C R? there exists cx € (0, 00) (o1)
such that for all £ = (&1,...,&) € R?
d
> (e(x)o(x)")i&& > exlé’, x e R
ij=1
Each (o0 );; is locally in VMO(R). (02)
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Infinitesimal generators

We recall that a #(R“)-measurable function g : R — R belongs to the class VMO(RY),
if it is bounded and for

O(g,R) = sup sup |B-(x)| // g(y) — g(z)| dydz, R €(0,00),

xERI r<
y,ZEBr(x)

we have

Jim O(g; R) =0,

where B,(x) denotes the ball in RY of radius r, centered at x € R?, and |B,(x)] its
Lebesgue measure. g belongs locally to the class VMO(R?) if (g € VMO(R?) for every
¢ € G°(RY).
Then:
Theorem IV 4 Theorem 9.3.6 in [BKRS 2015] = (Lo, D(Lo)) is Markov core

operator for (L, D(L)).
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Infinitesimal generators

Remark
(i) We have corresponding applications for SDE’s on Hilbert spaces, hence for SPDEs.
(ii) Consider the Co-semigroup on (Cy(H), i) given by a generalized Mehler
semigroup on a Hilbert space H (see Example 3 above), i.e. the transition semigroup
corresponding to

dX(t) = AX(t)dt + dY(t), X(0) = x, "OU-process with Levy noise”

and let (L, D(L)) be its infinitesimal generator.

Then we have proved (under fairly weak conditions) that the corresponding
Kolmogorov operator (Lo, D(Lo)) is even a core operator for (L, D(L)). The
Kolmogorov operator in this case is a pseudo differential operator, more precisely,

Lop(x) = /H (A€, %) = M(€)) €' u(d¢), x € H,

where o(x) := [ €9 u(d¢), x € E, and v runs in a suitable large enough class of
finite measures on (H,B(H)), A™ is the adjoint of A and X is the symbol of the
Kolmogorov operator associated to the Levy process Y(t), t > 0.
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Convex Co-semigroups on (Cr; (E), 7;77)

5. Convex Co-semigroups on (C,(E), 7:), viscosity solutions and nonlinear
Markov processes

Now consider a Go-semigroup on (C,(E), ;%) consisting of convex increasing operators
on C.(E) with infinitesimal generator (L, D(L)) and the corresponding abstract
differential equation of the form

u'(t) = Lu(t), forall t>0. (ade)
In the following, an operator T: C.(E) — C.(E) is called increasing if

To1 < Ty forall p1,p2 € Co(E) with o1 < @2,
and convex if

T(Ap1+ (L= N)p2) <ATo1+ (1= AT
for all A € [0,1] and 1, 92 € Ci(E).
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Definition V

Let L: D — C.(E) be a nonlinear operator, defined on a nonempty set D C C.(E). We
say that u: [0,00) — C.(E) is a D-viscosity subsolution to the abstract differential
equation (ade) if u is continuous w.r.t. the mixed topology 7% and, for every t > 0,

x € E, and every differentiable function 1): (0,00) — C.(E) with 1(t) € D,

(¥(t))(x) = (u(t))(x), and (s) > u(s) for all s >0,

(¥'(1) (x) < (L () ().

Analogously, u is called a D-viscosity supersolution to (ade) if u: [0,00) = C.(E) is
continuous and, for every t > 0, x € M, and every differentiable function

¥: (0,00) = Cu(E) with ¢(t) € D, (¢(t))(x) = (u(t))(x), and ¥(s) < u(s) for all
s>0,

(') (x) > (Lep(1)) ().

We say that u is a D-viscosity solution to (ade) if u is a viscosity subsolution and a
viscosity supersolution.
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Theorem V

Let (P;)t>0 be a Co-semigroup on (Cy, ;%) consisting of convex increasing operators
with infinitesimal generator (L, D(L)). Then, for every ¢ € C.(E), the function

u: [0,00) — Ci(E), t+— Py is a D(L)-viscosity solution to the abstract initial value
problem

u'(t) =Lu(t), forallt >0,
u(0) =p.
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Convex Co-semigroups on (Cr; (E), 7;77)

Finally, we have a stochastic representation for (P;):>o using convex expectations. We
recall:
Definition VI

Let (2, F) be a measurable space. A functional £: Bp(Q2, F) — R is called a convex
expectation if, for all X, Y € By(Q2, F) and X € [0, 1],

(i) EX) < EY)iFX <Y,
(i) £(m) = m for all constants m € R,

(i) EAX + (1= A)Y) < AE(X) + (1= NE(Y).

We say that (Q, F,E) is a convex expectation space if there exists a set of probability
measures P on (Q, F) and a function a: P — [0, 00) such that

E(X) = ggng(X) —a(P) forall X € By(Q2, F),

where Ep(-) denotes the expectation w.r.t. to the probability measure P.
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The following theorem is a consequence of [Denk/ Kupper/Nendel 2018] and the fact
that the T,j”-continuity of P; implies Daniell continuity of P, for t > 0.
Theorem VI

Assume that E is a Polish space, k = 1, and P is a Co-semigroup of increasing convex
operators with Pem = m for all t > 0 and m € R. Then, there exists a quadruple
(2, F, (E¥)xek, (X(t))e>0) such that

(i) X(t): Q — E is F-B-measurable for all t > 0,

(i) (R, F,&X) is a convex expectation space with £*(p(X(0))) = ¢(x) for all x € E and
¢ € Go(E),

(i) Forall0<s<t,n€N,0<t <...<t,<sand € C(E™),
& (1/J(X(t1)’ s 7X(tn)v X(t))) =& ((Ptfs’(/)(x(tl)r e 7X(tn)7 : ))(X(S))) .
In particular,

(Peg) (x) = £ ((X(1)))-
forallt >0, x € E, and ¢ € Cy(E).

v

The quadruple (2, F, (£¥)xeke, (X(t))e>0) can be seen as a nonlinear version of a Markov
process.
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THANK YOU VERY MUCH, NICK!

AND ALL THE BEST FOR MANY MORE HAPPY AND SCIENTIFICALLY
PRODUCTIVE YEARS!
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