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Regularisation by noise

Bad:

Xt = x0 +

∫ t

0
bs(Xs) ds

Non-uniqueness of solutions (if b ∈ Cα, α < 1)

Non-existence of solutions (if b is discontinuous)

No meaning of the equation (if b is a distribution)

Good:

Xt = x0 +

∫ t

0
bs(Xs) ds + noiset

Weak existence/uniqueness

Strong existence/uniqueness

Path-by-path uniqueness

Regular flow of solutions

. . .
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Recap: fractional Brownian motion

For H ∈ (0,∞) \ N,
BH = IH+1/2ξ,

where ξ is white noise and Iβ is ‘integration’ of order β.

H = 1/2: Classical BM

Gaussian

Scale invariant (BH
t )t≥0

law
= (λ−HBH

λt)t≥0

For any ε > 0, a.s. BH ∈ CH−ε \ CH

(germ) Markovian if and only if H = k + 1/2, k ∈ N
 no Itô’s formula, Kolmogorov equation, Zvonkin
transformation, martingale problem...



I. Drift close to criticality



Scaling

Xt =

∫ t

0
br (Xr )dr + BH

t .

By (BH
t )t≥0

law
= (λ−HBH

λt)t≥0, we can rescale and get a similar
equation with new drift

bλt (x) = λ1−Hb(λt, λHx).

We call a space V of functions (or distributions) on R+ × Rd

critical/subcritical/supercritical if for the rescaled drift coefficient
one has ‖bλ‖V = λγ‖b‖V with γ = 0/γ > 0/γ < 0.

Goal: Develop solution theory in optimal regimes for any H
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Example V = Cα
x

Subcriticality condition:

α > 1− 1

H
.

Weak E&U for H ∈ N+ + 1/2 [Chaudru de Raynal-Menozzi ’21].

H = 1/2
Strong E&U for α ≥ 0 [Zvonkin ’74, Veretennikov ’80, Davie ’07]
Weak E&U for α > −1/2 [Flandoli-Issoglio-Russo ’16]

Non-Markovian H

α > 1− 1

2H

Strong E&U [Nualart-Ouknine ’02, Catellier-Gubinelli ’16, G ’20]
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Example V = Lqt L
p
x

Subcriticality condition (Ladyzhenskaya-Prodi-Serrin condition):

1

q
+

Hd

p
< 1− H.

H=1/2
Strong E&U [Krylov-Röckner ’05]
Critical case with = [Krylov 19-20-21, Röckner-Zhao ’21]

H ∈ (0, 1/2)
1

q
+

Hd

p
<

1

2

Weak E&U [Nualart-Ouknine ’03, Lê ’20]

1

q
+

Hd

p
<

1

2
− H

Strong E&U [Lê ’20]
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Main result: full subcritical regime if q ∈ (1, 2]

Xt = x0 +

∫ t

0
br (Xr ) dr + BH

t

Theorem (Galeati-G ’22)

Assume

H ∈ (0,∞) \ N, q ∈ (1, 2], α ∈
(

1− 1

q′H
, 1
)
.

Then if b ∈ Lqt C
α
x , then

Strong existence and path-by-path uniqueness holds

The solutions form a flow of diffeomorphisms

The solutions are Malliavin-differentiable (in fact Fréchet
differentiable in directions of 2 + ε-variation paths)

The solutions are ρ-irregular for any ρ < 1/(2H)
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Brownian case

The results are also new in the classical case H = 1/2.
Kolmogorov PDE

∂tu − 1
2 ∆u = b · ∇u.

If b ∈ Lqt C
α
x with q ∈ (1, 2), naive power counting fails:

b ∈ Lqt C
α
x  u ∈ L∞t C

α+2−2/q
x  b · ∇u ∈ Lqt C

α+1−2/q
x .

Also, for q < 2 no Girsanov is available (even if b is spatially
constant).

Overall, we do not use Girsanov. It would be applicable if and only
if the critical exponent 1− 1/(q′H) < 0.
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ρ-irregularity

Definition (Catellier-Gubinelli ’16)

A function h ∈ C ([0, 1],Rd) is ρ-irregular if there exists a constant
γ > 1/2 such that for all 0 ≤ s ≤ t ≤ 1, ξ ∈ Rd

∣∣∣ ∫ t

s
e iξ·hr dr

∣∣∣ ≤ |ξ|−ρ|t − s|γ

In terms of the local time L of h:

LHS =

∫ t

s

∫
Rd

e iξ·xδ0(x−hr ) dx dr =

∫
Rd

e iξ·xLs,t(x) dx = F(Ls,t)(ξ).

Theorem (Galeati-G ’22)

If there exists a control w such that for all m <∞

‖ϕt − E(ϕt |Fs)‖Lm(Ω) . w(s, t)1/2(t − s)H ,

then BH + ϕ is ρ-irregular for any ρ < 1/(2H).



Supercritical case: counterexample to weak uniqueness

Let q ∈ (1,∞), −1 < α < 1− 1/(q′H), d = 1. Define

bt(x) = t−1/(q+ε)sign(x)|x |α ∈ Lqt C
α
x .

Lemma (Chaudru de Raynal ’18, Galeati-G ’22)

On some probability space there exist two continuous processes
X+, X− and a fBM BH , such that

X±t =

∫ t

0
bs(X±s ) ds + BH

s

and up to a stopping time τ = τ(BH) > 0 we have

X+|(0,τ ] > 0, X−|(0,τ ] < 0.



II. Multiplicative noise



Rough/Young/Ordinary differential equations

So far, everything with additive noise. How about multiplicative?

Xt = x0 +

∫ t

0
br (Xr ) dr +

∫ t

0
σ(Xr ) dBH

r .

Recall: BH is not a semimartingale unless H = 1/2 or H > 1.
Noise is both friend and enemy.

Three regimes:

H ∈ (1,∞) \ N: classical integration

H ∈ (1/2, 1): Young integration

H ∈ (1/3, 1/2]: rough integration
 need an adapted rough path lift of BH
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Mutliplicative noise - strong well-posedness

Theorem (Dareiotis-G ’22)

If H ∈ (1/3,∞) \N, α > (1− 1/(2H))∨ 0, b ∈ Cα, σ ∈ C b1/Hc+1,
and σ is uniformly elliptic, then strong existence and path-by-path
uniqueness holds.

For H ∈ (1/3, 1/2) we get α > 0 instead of α > 1− 1/(2H).
This is not due to the distributional drift, which we can handle in a
weaker form:
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Multiplicative noise - weak existence

Theorem (Dareiotis-G ’22)

Assume H ∈ (1/3, 1/2], α > 1/2− 1/(2H), b ∈ Cα, σ ∈ C 2.
Then there exists a filtered probability space (Ω̄, F̄, P̄) with a
F̄-fBM B̄H that has an adapted rough path lift and F̄-adapted
stochastic processes (X̄t)t∈[s0,1] and (D̄t)t∈[s0,1] such that

P̄-almost surely (X̄ , σ(X̄ )) ∈ Dγ
BH for some γ > 1− H;

P̄-almost surely for all t ∈ [0, 1] it holds that

X̄t = D̄t +

∫ t

0
σ(X̄s) dB̄H

s ,

For any sequence (bn)n∈N of smooth functions converging to
b in Cα, one has P̄-almost surely for all t ∈ [0, 1]

D̄t = lim
n→∞

∫ t

0
bn(X̄s) ds.



Thank you for your attention!


